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STUDIA MATHEMATICA 111 (3) (1994)

Every separable Banach space has a bounded strong norming
biorthogonal sequence which is also a Steinitz basis

by
PAOLQO TERENZI (Milano)
Abstract. Every separable, infinite-dimensional Banach space X has a biorthogonal

sequence {zn, 2%}, with span{zy;} norming on X and {|lzn[| + 23]/} bounded, so that, for
every z in X and z* in X*, there exists a permutation {x(n)} of {n} so that

=} oQ
ze &"ﬁl"ﬁ{ﬁnite subseries of z z;(m)zn} and  zh(x) = Z z;(n) ()" {2y )-
n=1 n=1

Introduction. This note concerns the search for the best sequence ca~
pable of representing the elements of a separable Banach space X.

A sequence {z,} in X is said to be complete or fundamental if span{x,}
= X.If {22} C X* (the dual space) then {zn,z},} is said to be biorthogonal
if 2* (2n) = Smn (Kronecker symbol).

A hiorthogonal sequence {2n,z},} is said to be

o complete if {z,} is complete;

o total if [span{z*}t (= {z € X : a%(z) = 0 for each n}) = {0};

o norming if there exists a number H such that, for each # in X, Izl <
Hsup{|z* (z)|/l[z*|| : =~ € span{z} } };

e strong if for each decomposition {n} = {nx} U {n}}, {nx} N {n}} = @,
of the positive integers, SPAR{2n bne fny} = [SPBOLTN Fne(ny )™

If a complete biorthogonal sequence {zn,z5} is total (resp. norming,
strong) then {z,} is said to be an M-basis (resp. a norming M-basis, strong
M-basis).

{zn, 2} is said to be bounded (and {zn} wniformly minimal) if {zn}
and {z%} are both bounded.

Moreover, in this note we say that {z,, o} is conves strong if, for each
¢ in X, z € conv{finite subseries of Y ") @5 (%) ®a}-

We recall three characterizations of strong biorthogonal sequences:

1991 Muthematics Subject Classification: Primary 46B15.
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208 P. Terenzi

{zn, 2k} is a strong biorthegonal sequence

& for each decomposition {n} = {nr} U {ni},{ns} N {n}} = 0, of the
positive integers, sefting Xo = SpaR{wy, }, there ewists {F.} C (X/Xq)*
such that {zn, + Xo, Fi} is an M-basis of X/ Xy ([20], p. 243)

¢ for each couple of infinite subsequences {ny} and {n}} of {n},
Span{iy, } NSpan{zn } = SPan{ek bue{n, pnin} (17])
& for each z in X, z € Span{z] (z)z,} ([20], p. 762).

Hence “convex strong” implies “strong”.
Finally, if {z,, 2} is biorthogonal then {a,} is said to be

o o Steinitz bosis if, for each @ in X and 2® in X*, there exists a permu-
tation {7(n)} so that

z” (m) == Z m:(n}(m)x*(xw(n))§
n=]

e a basis if, for each z in X,

o0
A=l

From [7] we recall the following characterization

I*. A bounded biorthogonal sequence is conver strong if and only if it is
a Steinitz basis.

The search for a best complete sequence originates already in Banach’s
book [1] (1932) with the famous problems of existence of a basis and of
a complete bounded biorthogonal sequence; the problem of existence of a
strong biorthogonal sequence originates in a paper of Ruckle ([18], 1970)
(see also [19] and [3]). :

The story of this research goes through a number of intermediate results
on existence of an M-basis (Markushevich [13], 1943), existence of a complete
norming biorthogonal sequence (Mackey [11], 1946) and other improvements
(Davis-Johnson, (2], 1973).

Finally, the basis problem was given a negative answer by Enflo [5]
{1973); while Ovsepian and Pelczyfiski proved the existence of & complete
bounded biorthogonal sequence ([15], 1975; refined by Pelezyniski [16], 1976).

For a long period of time we can see refinements of the negative an-
swer of Enflo (for example, in these last years, Szarek [21] (1987) and
Mankiewicz and Nielsen.[12] (1989)); while the positive answer of Ovsepian
and-Pelezynski did not gain further improvements.

The ajm of this note is to present the following positive answer:

icm

Biorthogonal sequences 209

THEOREM. Bvery separable Banach space has a bounded norming convex
strong biorthogonal sequence.

That is, every separable Banach space hos o uniformly minimal norming
conver strong M-basis which (oy I*) 45 also a Steinitz basis.

Remark 1. We showed in [24] that the concepts of norming M-basis,
uniformly minimal M-basis and strong M-basis are quite independent.

Remark 2. Actually, the proof of §2 gives the following property: Every
separable Banach space X has a uniformly minimal norming M-basis {Z,},
with {Z,, Z;;} biorthogonal, such that there is an increasing sequence {g., }
of positive integers so that for every  in X and for each £ > 0 there exists
an integer m, so that, for every m > m,

N{m)

o~ {E 50+ 3 o @} <
n=1

for some 0 < &, < 1 and some
Um L8, <n(l,m) <...<n(N(m),m) < gmt1

with

Em.
Em” S m@En| <.
n=1
Hence we also have
[ N(m}
|z {1~ 2w Y. B@% +5n 3 Ty @i | < 2
=1 )

Remark 3. We recall that, if {z,, z}} is a complete bounded bior-
thogonal sequence, then lim, . 2} (z)z, = 0 for each z in X.

Acknowledgments are due to the referee for improving the presenta-
tion of this note. :

1. Main tools of the proof. The main tool in §2 is the following
property ([22]; recall also [9] and [10]}).

1%, If {zy, x} is o complete norming biorthogonal sequence in X then
there exists an increasing sequence {rm} of positive integers so that, for
every T in X,

Tm Tm+1
F= lim [Z:c:;(s?)mn-l— Z anmn]
m—od
n=1 =rm+L

where {4, } depends on & while {ry,} does not; moreover, if there erisis an
infinite subsequence {my} of {m} so that z}(Z) = 0 forrm,+1<n < vy 1
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for every k, then setting rp, = 0 we have
o0
5=

The first statement follows from Theorem I of [22]; for the second, fol-
lowing the proof of Corollary 2 of [22] and setting

o0
P eryy o
Y = span {{3771};;!1 J { U {5"'7'-}?1«;’::::',“4«1 -H}}
k==l

we have
o] P+ 1
+Y =% S (zi(@)en+Y)
k=l mmry, 1

for every z in X, and

ey Tl

m=2m:(m)wn+z Z

k=1 N=Tyy 1+

for every  in ¥; thus in our case ¢ ¥ by the hypothesis and by the first
of these two relations; then the assertion follows from the second relation
since zp(Z) =0 for ryp, +1<n < Trmy+1 for every k.

We point out that an M-basis has property II* if and only if it is norm-
ing [B].

The next main tool in §2 is the following property, which appears in [15]

[(sef]a also [20], p. 248) and which is a modification of a lemma of Olevskil
14]:

[1*. Let {mn,m;}ﬁil be a biorthogonal sequence in X. Then there exists
another biorthogonal sequence {yy,, y* ﬁil with span{y,n},%i,L: spa,n{a:n},ﬁil
inggspan{yﬁ}ﬁil = span{z2 122, and such that Jor every n with 1 < n
—_ H

lynll < ll22li/29/% + (1 + 24/2) max{)|zs| : 2 < & < 29},
Il < 23li/297% + (1 + 24/%) max{|lef ) : 2 < k < 29},
More precisely,

29 2Q
Yn = Zﬂ@njwj and y; = Zﬁ@wm;‘
§=1 i=1

where Bony = 1/29/2 for 1 <n <29 and moreover, for every k with
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0<k<Q~1 and every j with 1 < j < 2%, we have

1/2(@=R)/2  fop (25— 2)29=k-1 1 1 < < (25 — 1)2@~F~1,
—1/2@=8)/2  fop (95— 1)2Q=k-1 11 <4 < 25 .2Q7k"1,
0 Jor 1 <i < (25 —2)2@-%-1
and for 25 - 29F1 1] < ¢ < 2@,
We also use in §2 the following property ([23], see in particular (f) of the
introduction):

Baigk+g =

IV If {zn, fu} is a norming (on span{z,}) bounded biorthogonal se-
quence in X then there exist {yn} in X and {25} U {32} in X* so that
{0, 25} U{yn, 45} is a complete norming bounded biorthogonal SeqUENce
in X,

Another main tocl in §2 is the following property, which comes from

the Dvoretzky theorem [4] that {* is finitely represented in every infinite-
dimensional Banach space.

V*. There exists in X a norming bounded biorthogonal sequence {2, 5}
with {zn} = Up _1{ZTmn} Ty such that, for every m and for every sequence
{an}i of numbers,

(1- 2"m)(i lan12)1/2 <| i“ﬂ”m s+ Tm)'(i eaf’) "
n=1 nesl =

Indeed, let {yn} be a basic sequence of X, with a basis constant K. By
[4] there exists an increasing sequence {r,,} of positive integers so that, for
every m, span{y, }, 2% . contains a sequence {Z,,, }7%; with the property

of the assertion. It is sufficient to prove that, for every fixed p > 1 and for
every k with 1 < k < p,

—1 m Kk
H __>_ E QmnTmn + E TpnTpn
ma=] =l m=1

for every sequence {{@mxs},}5,=, of numbers (indeed, it will then follow
that {zn} = U _1{Zmn}T, is basic, with basis constant < 8K, therefore
norming and bounded too, where we use the intrinsic characterization (f) of
[23] for norming sequences). Set

=1 m k »
0= 33 Gt 0= g, W= > Gpntpn.
n=1

me=1 n=1 n=k+1

We know that |Ju| < Klju-+ v+ wl| since K is the basis constant of {y, };
moreover, |[¢| < 2|lv+w| since {zym}h_; has the property of the assertion.
Then if [|u] = [lu + v]|/4 we have

lu+ v < 4)u] < 4K||u + v + w];

<58 3 5]

m=1n=]




212 P. Terenzi

while if || < |u+v|/4, that is, ||ul| < ||v]/3, it follows that
[+ vl < (4/3) [0l = 8(|lwll/2 = [|2]|/3) < 8([[w]l/2 — [|el])
< B{lv 4wl — [[ul) < 8fu+ v+ wl.
This completes the proof.

2. Proof of Theorem. By IV* and V*, together with the techniques of
[23], there exists in X a norming M-basis {z,}, with {z,, 2%} biorthogonal,
such that |z, || = 1 and |a}i|| < M for every n and {zn} = {znn} U {2}
with {zn} = {o_1{Zmn}l;, where, for every m and for every sequence
{an}ie; of numbers,

m

W -2 (32 < |3 g
n=1

T

<@+ (Y a) 7

n=1

We shall construct two biorthogonal sequences {yn,y%} and {z,,z2*} by
means of a suitable block perturbation of {,, z}}, that is, there will be an
increasing sequence {g, } of positive integers such that, for every m,

dm+1 — I3 _ Gl

2 span{yn iy’ 11 = span{z, et L = span{zn}iit’ Ly,
* Yy Em1 . # | el e * Tl

Spa‘n{yn n=g¢m+1 Span{zn [ O N spa'n{mn Mgy 41

We shall define {g,, } by means of the sequence {r,, } of IT*, that is, we shall
find an increasing sequence {t(m)} of positive integers such that g, = Ti(m)
for every m.

We start with

{ymy:}zlzl = {zn:z: 'rqq,l.»—_l = {mmm::a}:zl:l

and we proceed by induction. Suppose we have defined {ym, ym }im . and
{zn, 23}, for some m > 1. We now construct {ys,y;}izt’ | and
{Zm 2, }iﬂ_—i—:}:ﬂ-{-l .

First, we set
Sm1 = 2" Mritmys,  Qut = 2Smy + MM, Ny = 4m+3@e1+MSna,
N ow we choose a sequence {vmln}f;j_f} which ig (1/.90,1)-dense in the ball of
r?ctm)s 281 in span{wn}n‘;";;:)_kl +1- Next we set, by means of the sequences
of (1),

§'(m,1) = Ly 29m N,
s(m, 1) = the first integer > ¢'(m, 1)
such that {ma(m,l),n};(:i‘l) - {mn}"‘>'r'£(m)+ﬁ'

We arrange the first §'(m, 1) vectors of the sequence {ms(mlm};ﬂ’l) in the
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following way:
s’ (m,1) N, 2Qm1, L
{Bstm)ntnat = {{{mmlnkj}j;i}k=1 -

Now, we set

Lmlel

Ygr-+1 = Bapt1/Sm1 —~ szmlnlj and y;m+1 = Smlm;mﬂ;
n=1 =1

moreover, for every n and j with 1 <n < L;; and 1 < j < Ny, we set
Yminlj = Tmlnlj + Vmin and y:ralnlj = "B:'Ll'nlj + Smi m;m+1’

while, for 2 < k < 29m1, we set Ymlnki = Tmink; and y;"nlnkj =z

*
] mlnkj*
Then there exists

* e (m)-pa ® % TEm) 42 * 3" {m,1)
{yn}n=rt(";}+1+1 - Spa‘n{mqm+1 U {xn}n=m(m)+1+l U {ms(m,l),n}n=l

such that, on setting y, = z, for Teemy+1 T 1 £ 1 < rymyq2, the sequence

Ti{m)+2 3’( \1)
{lem-l-l’ y;m—i—l} U {yﬂi y;}nt='r't):-m)+1+1 u {ys(m11):n:y:(m,1),n n:T

is biorthogonal; namely, if

T4{m)+2
Umiln = Z brmim®r  for 1 <n < Ly
l=’rt(m)+1+l
then
L1 N
V=l = DD bmintlnang 8 Tgmyr + 1 <1 rygmya.
ne=] j=1

At this point, by IIT* of §1 and by (1), there exists a sufficiently large
positive integer t(m, 1)} such that, on setting
t{m, ! m,1 Tm
{mn};;rrz;)Hﬂ = {ms(m,l),n}fmil U {ZmintnZi
and Ymin = Tmin and yh,, = b, for 1 < n < 1,1, there exists a block
perturbation

* * 7 Ttlm)+2 * T
{Z'Jm-l-l: ZQm-i-l} U {Zﬂ, zn}nmm(m)ﬂ+1 U {zmlm zmln}nZI

of

# 1 Tt{m) 42 * Tma
{¥gmt1s y;m+1} U {¥n, ¥n fmrrggoy g1 +1 Y {Ymin, Yrnin Fast
(m)+

such that max{{zg,.+1l, 25, +1ll/M; [zl |25l /M for remy1+1 < n <
Titmy+2; | Zminlls 21 ll/M for 1< n < T} < 8. :

On the other hand, since by the above 29m1/2 % amAfS . by IIT* and
(1), for every n and j with 1 £ n < Ly and 1 < 7 < Ny, there exists a,
block perturbation

Qle

o@mi *
of {yml'nkj:ymlnkj k=1

*
{zmlnkjs Zrlnk fk=1
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such that
{lZmank;lls “z:q,]nk:j“/M 1<k < ZQM} <3
We now pass to the definition in the general case: that is, we fix an
integer 4 with 1 <14 < Pypny+1 — Te(m) and we suppose to have defined

# 7 TEm 1)

" il
{qu+1) yq,n+l}E=1 U {yn’ Yn =Ty 1+

and

* -1 Ta(mi—1)
{ZQm“H’ zqm-l-l}lzl U {z'n.: Z, M= ()l |-11

then we are going to define

Te(m, i)

{me-H! qu+z} U {yﬂﬂyn R=Ty o, i— 1)+

and

o * 1 ()
{zqﬁd—m zqm+i} u {Zﬂ«v zn}n=m(m‘i_l)-l-1‘

First, we set
Srmi = 2™ M7y i1y,

® Qmi = 2(Spms +m) M,

Nopi == 4720 4 M 8ms |
Again we choose a sequence v = {’U-mm} ot such that

(4) v is (1/8mi)-dense in the ball of radius 25,,; in span{:cn}“(,:f”_”L;f}ff“

(then, on setting t{m, 0) = {(m) + 1, the definition of vy1, agrees with this
general definition).
Next, we set, by means of the sequences of (1),

Sl(ma 1’) = LmiQQmiNmi:

s(m, ) = the first integer > s'(m, ) such that

(5)

s(m,i) .
{w-"‘(i’ﬂui Tb}ﬂzl C {'Eﬂ'}ﬂ'>"'t(m,i-l)+l7

We arrange the first s'(m, z) vectors of {Zsim i, n)}ﬂ ™% in the following way:

{ws(m,«i),ﬂ nwi = {{{'ﬂmwka}J it %QTL f:lgi
Now, we set
Lni Non
Ygmti = Tgpti/ Smi — Zzwmmu and  yg 4y = Smaly i
ne=l =],

moreover, for every n and j with 1 <n < Ly and 1 € 5 < Ny, we set

. . N . s *
(6) Yminly = Twminlj T Umin and Ymants = m:ninlj + S’m'iwzm+h
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while, for 2 < k < 297 we set Yminki = Tminkj a0d Yy .. = Ty inks
Again as for ¢ = 1 there exists

* 7 Tt(m,i—1)41 Tt(m,i—1)+1

{yn}n:rt(m,i_l)—}«l - span{:rq “+1 U {mn N (m,i- 13T U {“N;:(m,i),n}fliq%ﬂ)}

such that, on setting y, = 2, for ryms-1y +1 < n < rygmi-1)41, the
sequence

Te(m,i—1)

{qu+ia y;m+i} U {'yn; yn}n—-n(m 1._;_)wi»l U {ys (m,i),m ys(m,z) n
is biorthogonal.

Now, by [11* and by (1) and {6), there exists a sufficiently large positive
integer t(vm,1) such that, on setting

{mﬂ«}:ztf:::inﬂ 1t T {2?5 {(rn,t) ,'n.}n L) U {mMWﬂ}TM1

and Ymin = Train aNA Yhip = Ti, for 1 < n < Ty, there exists a block
perturbation

g (mz)

T T
{ZQm+17 qm+’b} U {z'ﬁ-i n}nt.(_n;t‘mlz-i'::)—i—l U {’zm":’lll z:nin}nzi

of

Tt{m,i~1)+1

{qu+i’y;m+i} U {yn, y:}nzrt(m,i_l)-}-l U {ymin: y:u'n}zz?:l
such that
(1) max{||zgn il | 25,43l /M Uznll; 12711/ 3 for
Pitmyi-1) T 1 <0< Pypm 13415 zminll | 2minll /M, 1 < n < Tini} < 3.
Again by IIT* and (1), (3), (5) and (6) for every n and j with 1 S 1 < Lim;
and 1 € j € Ny, there exists a block perturbation

* 2@mi * 2Qmi
{zminkj:zminkj fer Of  {Yminks: Yminks Te=1

such that, for every k with 1 < k < 29m¢,
(8) ”zm'z’nkj“ < 3 Hzmmk:;”/M <3

We proceed in this way till ¥g,,+i 8nd 2g,, 44 0T 2 = Tiim)+1 = Te(m)} then
we St g1 = Ty(m.q) for 4 = Ti(m)+1 — Ti(mys it follows that (2) is satisﬁed
and moreover, {z,} is uniformly minimal.

Now we consider the following permutation of {zn}aer ¢ By (6), (7)
and (8) we have
ko) —Fi(m Te{m,i T —Tt(m
{zn i"i;;ﬂ = {zqmﬂ}m T )U{{zn}r:im:m 1)+1}z-t_—{1n)+1 “my

where, for every ¢ with 1 <4 < 7e(m)+1 = Tt(m)»
Tt(m,4) Tt{m,i—1)+1
{Z-,—,, n=ry gyl {zn}na-m(m i-13t+1 U {zmi’ﬂ}n-—

X3 L 3
U {{{zm'ihnj}jéﬂl }i=ﬂ1” i
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Grme4-3

Now we take a biorthogonal sequence {Zy, 7 }oe am1 Which is a permu-

tation of {z,, 2} }art! || where

{~ o Im P m, 1) —Ti(m) 41741

w1 Tt(rn,1)
Zpy & nin=gm+1

. *
{ZQm'l'l’ ZQW;+1} U {z'f“ Zn =Ty (m) +1+17

(9)

{E ok Y G T Y T (e, ) ]
B n T"“‘]m"""t(m. 1-1) " Tt {m, 0)+('5 +1
Tt{m,i)

= {z9m+h qm+z} U {z’m Z }TL—T'L (rnyim1y L for 1<i< Tiem)+1 — Ti(m).

Let us check that the assertion is satisfied. Let T
there are two possibilities:

T e X with |7 = 1;

(A) There exists an integer mg such that, for each integer m > my, there
exists another integer i(m) so that

1<i(m) < Tt{m)+1 — Ti(m)s
(10) &mqm-i-i.(m)( )I > M/Sm,i(m)7
€545 (T S M/Smy; fori(m)+ 1< § < riygmyrr — Tigm)-
We fix £ > 0. Since {z,} is uniformly minimal, by (1) and by Remark 3 of
the introduction there exists an integer m’(e) such that
1/2mE) < /2,
(11) |z ()| < &/2® for each n > Tyemy and m > m'(g),

Pa{m)+1—Ti(m)

| > $§m+j(f)~’~"qm+j”<€/22
F=i(m)

(where the third inequality follows from the second and from the third in-
equality of (10)). By IT* of §1 there exists another integer m(e) > m/ (g) s0
that, for each m > rn(e), there exists v,, so that

p-("8
(12) Thas

Teim, ilm) =171
Um € Span{m”‘}ﬂmﬂ(m,t(m)—l)+1’

Tt{m,i{m)—1)

:E:;(:_E'):g.n + Um}” < 5/227

o emll < 2Mrign i gmy—1y.
Indeed; by (1) and the first inequality we have

rt(m,i(m)—l)

ol < |2~ Y i@

n=1

R M’f't(m,i(m)—l) +8/22,

+£/2%
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On the other hand, by hypothesis and by (6)-(8) we have

gm+i(m}—1 Tigm,i(m) —1)
SN ow@zt+ Y, zn@)za
n=1 N=Tipm)+1-HL
amA-i{m)—1 Te(m,i(m)—1)
=T p@mt S i@
n=1 n=rggm)41+1
g +i{m)—1 Tt{m,i(m)~1)
= Y 2@+ Y, w@m
n=1 n=rym)+1+1

(where the indices n with 7ymy1 +1 £ 1 < Tyim,itm)-1) do not appear if
i(m) = 1). Therefore, since

Te{m)+1 Tt {m} Te(m)+1

Dot @anti = D Tl@zn,
j=i(m) n=gm+i(m)

by (11} and (12) we obtain

Ti(m,i{m)~1)

@+ Y

n=re(my 41+l

gmAi(m)—1

w -

<3 (Foe +on} |

grmti{m)—1 Pe(m,i(m}—1)
- Hz - { Y g@mt Y s@m *um}H <ef2.
n=1 n=Tyim)+1+1

By (10) we have
(14) S i(m) € mtitm) TN > M.

Hence by (4), (11) and (12) for every § with 1 < § < Ny, i(m), there exists
an integer n(j, m), with 1 € n(j,m) £ Ly i(m), such that

1
Lt () < ;
27 wiom @ Grmilm) n(tm) S i(m)

and for 2 < § € Ny i(m)o

ifm) (&)
_‘!_”:L(.%Um i(m), n{j,m)

(15)

1 L g ti(m) @) .
) ‘ (=
mm,'l.(m),n(,j—*l,m),l,,j —1 | U i(m) nlg~1im) ~ Um | < Smi(m)
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. Ti(m,éi(m)~ 1)1
(SInCe Uy, i(m) n(5—1,m) a0d Up, belong to span{zy, =iy 1) 1 and more-

over, by (11) and (14), Iﬂl;%’i(m)’n(j_d,m)!l,j_](E)/(Sm,i(m)x;m+i(m)(E)N <
e/ (22 M).
Now set
Gy, = G + '5(777') -1+ Ti(mifm)=1) ™ Te(m)+1s
5 = 1
" Nowigm) S, itm) 15, yigeny ()]

H

(16)

~ N Qrm,i(m)
{zﬂ(k m)}k_ET) = {{zm a{m),n(si,mhk,j ﬁ 1 E

<o {u-ruSme

Since by (9),

}J . i{m) ,

T)Zn + Em Zz”(k m) z'nk.m }”

G LG < m(L,m) < ..o <nlk,m) < ... < n(N{m),m) < gm + 1,

it is sufficient to prove that
(17) A<e.

By (8), (9), (13) and (16) we have

1
asfe {(o- )
No,i(rm) S i(m) |25, i) (B

gmHi(m)—1 T4 (rm,i(m)~1)

x( S o g@m e S z;:(ijzn)
n=1 A=Tiim)+1T1

1
Nm,'i(m) Sm,i(m) ‘m;,m+1;(m) (E) |

.+_

Non,igm) 29mai(m)

ADIEDY

j=l. k=1
< 5/2 +A1 +A1,()

z:n,vi(m),n(j,m),k,j (E)Zm,i(m),n(j,m),k,{i } ”

with
1
A= —
Nm,i(m) Sm,i('m.) [:B;m +i(m) (Cl:) |
Qm'f'i(m)_l

<X

n=1

Te(m,i(m)~1}

@t Y. Zh(T)w,

N1 )1 7F 1

H
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1

AI,[] = H = —
Nm,i(m)sm,i(m) [wqu(m) (@]

Nm,i(-m.) qu!i(m)

x 2
i=1

By (1) and (3)—(14) we have

Tt(myi(m)—1) M Ti{mai(m)—1)
A < — <
' Nm,i(m)sm,i(m)150;,“-]-7;(7;1)(3")‘ Nm,'i(m)
< 1/4m 8 miimy < 1 93,

y (6) and (8) we have A1 < Ay + Az with

1
Nm i m)Sm i m)‘xz +.g(m)(?f)|

o]

N itm) 2%m,i(m)

DDV

F=1

m 1(m )"’ Jm ) v (ﬂf)ﬁm z(m J m) ki

1

A g = —memm—
20 Neni(m)

=1 (S |$;m+i(m)(—f)i

X y;z,'i(m),n(j,m),l,j (E)ym,i(m),n(j,m},l,j - ’Um) “ '

By (1), (3), (5), (11) and (14) we obtain
2
Nonigm) S (m) |, sy (E)
2Qm.i(m)/2+1
< 72
(Nm,'ﬁ(m)) M

As <

(N iy 2950 ) /2
< 2/4m+MSm‘“m) < 1/2'm+3_

v (6) and (8) we see that

1 Nm i(m) 1
Ao = {
=N i(m) ; Somi(my |8 iy @

X (I (ri(m),nd,m), 1,3 (m) +S5m ﬂ(m)mqm+m (E))

D Vritmyntim) g EWmitm)nlimyied — m

219

X (B i(m)mGm)Ld T Vmi(m)n(m)) = Vm ’ < Az +Agp
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Nenigm)

Nm,i ™m -
e ( m:’b,i('fﬂ)an(jim):llj (m)
Sm,i(m) |w;m+'i:(m') (EN

& i) (%)
|m;m -}-'i(ﬂL) (?E) |

+

7

) Lani(m),n(dm), 1,3
=1

1
Agg = ‘

Nm,i(m)
23 ity (&) _ o }H
mzm+1(m)(§)l ryi(m)m(g,m) m '
By (1), (3), (5), (11) and (14) we have
2 .
Az < ———{Npimy(e/ (M - 2°) + 1)}/?
Nm,i(m)

< 4/ (N gy )2 < 4/ 2558 mastn) g jomkd,
On the other hand, Aszg < 44 + As with
1 H Ty vigmy(®)

Nen,i(m) lxzmﬂ(m)(m)'

Nm.'i(m) * -
Z { ( m,m(m),n(.i‘,m)alu( )l Ui (m) )

i=1 Simi(m) |85, wi(m) (

+

Ay =

Vmd{m)n(lim) — Vm }

vm:""(m)in(j—lf"”)

Nm.,i m e
L Z(: ){m;:m,'i(m),n(j—l,m),l,jml(m)
= U Smim) |25 imy (T

T tifrmy (&) o _
Iw;m+¢(m) (E_N m,i(m),n{im) — Um (||

1
N’m,i(m)

+

a’;;'bli(m))n(Nm,i(m)|m)=15Nm,i(m) (_m_)
St 1, +s0my @),
By (3) and (15) we have Ay < 1/8,, im) < 1/2™+2, while by (3), (4), (11)
and (14), '
A5 < 268, i(m) < 2€ < 1
M. ZBNm,i(m) 93P M+ 2 s i () am43 "
Consequently,
A<ef24+ A+ A+ A3+ Ay + A5 <e/2+1/2™ < e,
That is, (17) is proved.”

(B) If (A} does not occur then there exists a subsequence )Y of
. such that, for every k, 4 {m(k)} of {m}

Ag =

vm,i(m'Ln(Nm.i(m) zm) H !

|Gy e BN S M/ Sy i for LS8 < rygmiyyn = Pogm(e))-
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Hence, by (1) and (3), for every k& we have

Tt (m(i))+1

Y an(®u.

=Tk L

T{m{k))+1

< X

N=Ty(m (k) L

| 2* (%) < 1/2mF),

If we set
Te{mik))+1

o
=2 +z” with 2"=> Y &)z

k=1n=ry (m(k})+1

&

it follows that 3 (2") = 0 for rymy) +1 < 0 < Typmr))+1 for every k; hence
by the second part of II* of §1 we have

TH{m(1)) oo Tefm{k+1))
3 = Z 25 (2 )Ty —|~Z }: 2k (2zs
n=1 k=1 n=7i(mr))+1
Tt(m(1)) oo Tt{m(k-+1))
= Z & (T)an + Z Z 3, (T)%n;
n==] k=1 n=rimr))+1+1

therefore, setting gmk) = Ti(m(x)) for every k and gm(oy =0, we have

oo Om{k+1) oo I (fe+1)

3o an@ra=Y, > %@

k=0 n=gum (k) +1 k=0 n=g¢nx+1

I

T
co Gmik-1) o0 k1)

SO m@R=Y, Y a@n

k=0 n=gp (5 +1 k=0 n=@mk)t+1

This completes the proof of the Theorem.
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Operators in finite distributive
subspace lattices 11

by

N. K. SPANOUDAKIS (Iraklion)

Abstract. In a previous paper we gave an example of a finite distributive subspace
lattice £ on a Hilbert space and a rank two operator of Alg £ that cannot be written as
a finite sum of rank one operators from Alg £. The lattice £ was a specific realization of
the free distributive lattice on three generators. In the present paper, which is a sequel
to the aforementioned one, we study Alg L for the general free distributive lattice with
three generators (on a normed space). Necessary and sufficient conditions are given for
1) a finite rank operator of Alg £ to be written as a finite sum of rank ones from Alg L,
and 2) a realization of £ to contain a finite rank operator of Alg L with the preceding
property. These results are then used to show the curiosity that the product of two finite
rank operators of Alg L always has the above property.

1. Introduction. This paper is a continuation of 7], of which we shall
assume familiarity and whose notation we follow.

Briefly, if £ is a subspace lattice on a normed space X, a general question
is whether every finite rank operator of Alg £ has the FRP, i.e. whether it
can be written as a finite sum of rank one operators from Alg £. The question
is more natural in the case of completely distributive £, as Alg £ then has a
large supply of rank one operators [4]. Indeed, in the special case of a nest £
the answer is affirmative [1, 6] and so is the case when £ is a complete atormic
Boolean subspace lattice [5, 3]. (In some of these results & was assumed a
Hilbert, space.) For general completely distributive lattices the answer was
again shown to be affirmative if the underlying space was finite-dimensional
[5] but the question was finally settled negatively by Hopenwasser and Moore
[2] in infinite dimensions. In the same paper they give an affirmative answer
if £ is a finite width (see [2] for the definition} commutative subspace lattice.
Their example of a completely distributive subspace lattice £ for which Alg £
fails the FRP has an infinite number of elements. This then left open the
case of finite distributive subspace lattices £, which was settled negatively
in [7]. There, a specific realization of the free distributive lattice L3 was

1991 Mathematics Subject Clussification: Primary 47D30.
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