

Contents of Volume 111, Number 3

P. TERENZI, Every separable Banach space has a bounded strong norming bior-	
thogonal sequence which is also a Steinitz basis	207-222
N. K. SPANOUDAKIS, Operators in finite distributive subspace lattices II	223-239
E. J. BALDER, M. GIRARDI and V. JALBY, From weak to strong types of $\mathcal{L}_{E^-}^1$	
convergence by the Bocce criterion	241-262
J. Bonet, A. Defant, A. Peris and M. S. Ramanujan, Coincidence of topolo-	
gies on tensor products of Köthe echelon spaces	263-281
M. FAN, Complex interpolation functors with a family of quasi-power function	
parameters	283-305

STUDIA MATHEMATICA

Executive Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-293997

Correspondence concerning subscription, exchange and back numbers should be addressed to

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
Publications Department

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-293997

© Copyright by Instytut Matematyczny PAN, Warszawa 1994

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute
Printed and bound by

Understand & Experiments
spoke gwine
02-240 WARSZAWA UL, JAKOBINOW 2
tol. 46-79-66

PRINTED IN POLAND

ISSN 0039-3223

STUDIA MATHEMATICA 111 (3) (1994)

Every separable Banach space has a bounded strong norming biorthogonal sequence which is also a Steinitz basis

by

PAOLO TERENZI (Milano)

Abstract. Every separable, infinite-dimensional Banach space X has a biorthogonal sequence $\{z_n, z_n^*\}$, with span $\{z_n^*\}$ norming on X and $\{\|z_n\| + \|z_n^*\|\}$ bounded, so that, for every x in X and x^* in X^* , there exists a permutation $\{\pi(n)\}$ of $\{n\}$ so that

$$x \in \overline{\operatorname{conv}} \Big\{ ext{finite subseries of } \sum_{n=1}^{\infty} z_n^*(x) z_n \Big\} \quad ext{and} \quad x_n^*(x) = \sum_{n=1}^{\infty} z_{\pi(n)}^*(x) x^*(z_{\pi(n)}).$$

Introduction. This note concerns the search for the best sequence capable of representing the elements of a separable Banach space X.

A sequence $\{x_n\}$ in X is said to be *complete* or *fundamental* if $\overline{\text{span}}\{x_n\}$ = X. If $\{x_n^*\} \subset X^*$ (the dual space) then $\{x_n, x_n^*\}$ is said to be *biorthogonal* if $x_m^*(x_n) = \delta_{mn}$ (Kronecker symbol).

A biorthogonal sequence $\{x_n, x_n^*\}$ is said to be

- complete if $\{x_n\}$ is complete;
- total if $[\text{span}\{x_n^*\}]^{\perp}$ (= $\{x \in X : x_n^*(x) = 0 \text{ for each } n\}$) = $\{0\}$;
- norming if there exists a number H such that, for each x in X, $||x|| \le H \sup\{|x^*(x)|/||x^*|| : x^* \in \operatorname{span}\{x_n^*\}\};$
- strong if for each decomposition $\{n\} = \{n_k\} \cup \{n'_k\}, \{n_k\} \cap \{n'_k\} = \emptyset$, of the positive integers, $\overline{\operatorname{span}}\{x_n\}_{n \in \{n_k\}} = [\overline{\operatorname{span}}\{x_n^*\}_{n \in \{n'_k\}}]^{\perp}$.

If a complete biorthogonal sequence $\{x_n, x_n^*\}$ is total (resp. norming, strong) then $\{x_n\}$ is said to be an *M-basis* (resp. a norming *M-basis*, strong *M-basis*).

 $\{x_n, x_n^*\}$ is said to be bounded (and $\{x_n\}$ uniformly minimal) if $\{x_n\}$ and $\{x_n^*\}$ are both bounded.

Moreover, in this note we say that $\{x_n, x_n^*\}$ is convex strong if, for each x in X, $x \in \overline{\text{conv}}\{\text{finite subseries of } \sum_{n=1}^{\infty} x_n^*(x) x_n\}$.

We recall three characterizations of strong biorthogonal sequences:

¹⁹⁹¹ Mathematics Subject Classification: Primary 46B15.

 $\{x_n, x_n^*\}$ is a strong biorthogonal sequence

- \Leftrightarrow for each decomposition $\{n\} = \{n_k\} \cup \{n'_k\}, \{n_k\} \cap \{n'_k\} = \emptyset$, of the positive integers, setting $X_0 = \overline{\operatorname{span}}\{x_{n'_k}\}$, there exists $\{F_k\} \subset (X/X_0)^*$ such that $\{x_{n_k} + X_0, F_k\}$ is an M-basis of X/X_0 ([20], p. 243)
- $\Leftrightarrow for each couple of infinite subsequences \{n_k\} \ and \{n'_k\} \ of \{n\}, \\ \overline{\operatorname{span}}\{x_{n_k}\} \cap \overline{\operatorname{span}}\{x_{n'_k}\} = \overline{\operatorname{span}}\{x_k\}_{k \in \{n_k\} \cap \{n'_k\}} \ ([17])$
- \Leftrightarrow for each x in X, $x \in \overline{\operatorname{span}}\{x_n^*(x)x_n\}$ ([20], p. 762).

Hence "convex strong" implies "strong".

Finally, if $\{x_n, x_n^*\}$ is biorthogonal then $\{x_n\}$ is said to be

• a Steinitz basis if, for each x in X and x^* in X^* , there exists a permutation $\{\pi(n)\}$ so that

$$x^*(x) = \sum_{n=1}^{\infty} x_{\pi(n)}^*(x) x^*(x_{\pi(n)});$$

• a basis if, for each x in X,

$$x = \sum_{n=1}^{\infty} x_n^*(x) x_n.$$

From [7] we recall the following characterization

I*. A bounded biorthogonal sequence is convex strong if and only if it is a Steinitz basis.

The search for a best complete sequence originates already in Banach's book [1] (1932) with the famous problems of existence of a basis and of a complete bounded biorthogonal sequence; the problem of existence of a strong biorthogonal sequence originates in a paper of Ruckle ([18], 1970) (see also [19] and [3]).

The story of this research goes through a number of intermediate results on existence of an M-basis (Markushevich [13], 1943), existence of a complete norming biorthogonal sequence (Mackey [11], 1946) and other improvements (Davis-Johnson [2], 1973).

Finally, the basis problem was given a negative answer by Enflo [5] (1973); while Ovsepian and Pełczyński proved the existence of a complete bounded biorthogonal sequence ([15], 1975; refined by Pełczyński [16], 1976).

For a long period of time we can see refinements of the negative answer of Enflo (for example, in these last years, Szarek [21] (1987) and Mankiewicz and Nielsen [12] (1989)); while the positive answer of Ovsepian and Pełczyński did not gain further improvements.

The aim of this note is to present the following positive answer:

THEOREM. Every separable Banach space has a bounded norming convex strong biorthogonal sequence.

That is, every separable Banach space has a uniformly minimal norming convex strong M-basis which (by I^*) is also a Steinitz basis.

Remark 1. We showed in [24] that the concepts of norming M-basis, uniformly minimal M-basis and strong M-basis are quite independent.

Remark 2. Actually, the proof of §2 gives the following property: Every separable Banach space X has a uniformly minimal norming M-basis $\{\widetilde{z}_n\}$, with $\{\widetilde{z}_n, \widetilde{z}_n^*\}$ biorthogonal, such that there is an increasing sequence $\{q_m\}$ of positive integers so that for every \overline{x} in X and for each $\varepsilon > 0$ there exists an integer m_{ε} so that, for every $m \geq m_{\varepsilon}$,

$$\left\|\overline{x} - \left\{\sum_{n=1}^{\overline{q}_m} \widetilde{z}_n^*(\overline{x}) \widetilde{z}_n + \overline{\varepsilon}_m \sum_{k=1}^{N(m)} \widetilde{z}_{n(k,m)}^*(\overline{x}) \widetilde{z}_{n(k,m)} \right\} \right\| < \varepsilon$$

for some $0 \le \overline{\varepsilon}_m < 1$ and some

$$q_m \le \overline{q}_m < n(1, m) < \ldots < n(N(m), m) \le q_{m+1}$$

with

$$\left\|\sum_{n=1}^{\overline{q}_m}\widetilde{z}_n^*(\overline{x})\widetilde{z}_n\right\|$$

Hence we also have

$$\left\|\overline{x} - \left\{ (1 - \overline{\varepsilon}_m) \sum_{n=1}^{\overline{q}_m} \widetilde{z}_n^*(\overline{x}) \widetilde{z}_n + \overline{\varepsilon}_m \sum_{k=1}^{N(m)} \widetilde{z}_{n(k,m)}^*(\overline{x}) \widetilde{z}_{n(k,m)} \right\} \right\| < 2\varepsilon.$$

Remark 3. We recall that, if $\{x_n, x_n^*\}$ is a complete bounded biorthogonal sequence, then $\lim_{n\to\infty} x_n^*(x)x_n = 0$ for each x in X.

Acknowledgments are due to the referee for improving the presentation of this note.

1. Main tools of the proof. The main tool in §2 is the following property ([22]; recall also [9] and [10]).

II*. If $\{x_n, x_n^*\}$ is a complete norming biorthogonal sequence in X then there exists an increasing sequence $\{r_m\}$ of positive integers so that, for every \hat{x} in X,

$$\widehat{x} = \lim_{m \to \infty} \left[\sum_{n=1}^{r_m} x_n^*(\widehat{x}) x_n + \sum_{n=r_m+1}^{r_{m+1}} \widehat{a}_n x_n \right]$$

where $\{\widehat{a}_n\}$ depends on \widehat{x} while $\{r_m\}$ does not; moreover, if there exists an infinite subsequence $\{m_k\}$ of $\{m\}$ so that $x_n^*(\widehat{x}) = 0$ for $r_{m_k} + 1 \le n \le r_{m_k+1}$

for every k, then setting $r_{m_0} = 0$ we have

$$\widehat{x} = \sum_{k=0}^{\infty} \sum_{n=r_{m_k}+1}^{r_{m_{k+1}}} x_n^*(\widehat{x}) x_n.$$

The first statement follows from Theorem I of [22]; for the second, following the proof of Corollary 2 of [22] and setting

$$Y = \operatorname{span}\left\{ \left\{ x_n \right\}_{n=1}^{r_{m_1}} \cup \left\{ \bigcup_{k=1}^{\infty} \left\{ x_n \right\}_{n=r_{m_k+1}+1}^{r_{m_k+1}} \right\} \right\}$$

we have

$$x + Y = \sum_{k=1}^{\infty} \sum_{n=r_{m_k}+1}^{r_{m_k+1}} (x_n^*(x)x_n + Y)$$

for every x in X, and

$$x = \sum_{n=1}^{r_{m_1}} x_n^*(x) x_n + \sum_{k=1}^{\infty} \sum_{n=r_{m_k+1}+1}^{r_{m_k+1}} x_n^*(x) x_n$$

for every x in Y; thus in our case $\widehat{x} \in Y$ by the hypothesis and by the first of these two relations; then the assertion follows from the second relation since $x_n^*(\widehat{x}) = 0$ for $r_{m_k} + 1 \le n \le r_{m_k+1}$ for every k.

We point out that an M-basis has property II* if and only if it is norming [6].

The next main tool in §2 is the following property, which appears in [15] (see also [20], p. 248) and which is a modification of a lemma of Olevskii [14]:

III*. Let $\{x_n, x_n^*\}_{n=1}^{2^Q}$ be a biorthogonal sequence in X. Then there exists another biorthogonal sequence $\{y_n, y_n^*\}_{n=1}^{2^Q}$ with $\operatorname{span}\{y_n\}_{n=1}^{2^Q} = \operatorname{span}\{x_n\}_{n=1}^{2^Q}$ and $\operatorname{span}\{y_n^*\}_{n=1}^{2^Q} = \operatorname{span}\{x_n^*\}_{n=1}^{2^Q}$ and such that for every n with $1 \leq n \leq 2^Q$,

$$||y_n|| < ||x_1||/2^{Q/2} + (1+2^{1/2}) \max\{||x_k|| : 2 \le k \le 2^Q\},$$

$$||y_n^*|| < ||x_1^*||/2^{Q/2} + (1+2^{1/2}) \max\{||x_k^*|| : 2 \le k \le 2^Q\}.$$

More precisely,

$$y_n = \sum_{j=1}^{2^Q} \beta_{Qnj} x_j$$
 and $y_n^* = \sum_{j=1}^{2^Q} \beta_{Qnj} x_j^*$

where $\beta_{Qn1}=1/2^{Q/2}$ for $1\leq n\leq 2^Q$, and moreover, for every k with

 $0 \le k \le Q-1$ and every j with $1 \le j \le 2^k$, we have

$$\beta_{Q,i,2^k+j} = \begin{cases} 1/2^{(Q-k)/2} & for \ (2j-2)2^{Q-k-1} + 1 \leq i \leq (2j-1)2^{Q-k-1}, \\ -1/2^{(Q-k)/2} & for \ (2j-1)2^{Q-k-1} + 1 \leq i \leq 2j \cdot 2^{Q-k-1}, \\ 0 & for \ 1 \leq i \leq (2j-2)2^{Q-k-1} \\ & and \ for \ 2j \cdot 2^{Q-k-1} + 1 \leq i \leq 2^Q. \end{cases}$$

We also use in §2 the following property ([23], see in particular (f) of the introduction):

IV*. If $\{x_n, f_n\}$ is a norming (on span $\{x_n\}$) bounded biorthogonal sequence in X then there exist $\{y_n\}$ in X and $\{x_n^*\} \cup \{y_n^*\}$ in X^* so that $\{x_n, x_n^*\} \cup \{y_n, y_n^*\}$ is a complete norming bounded biorthogonal sequence in X.

Another main tool in $\S 2$ is the following property, which comes from the Dvoretzky theorem [4] that l^2 is finitely represented in every infinite-dimensional Banach space.

V*. There exists in X a norming bounded biorthogonal sequence $\{x_n, x_n^*\}$ with $\{x_n\} = \bigcup_{m=1}^{\infty} \{x_{mn}\}_{n=1}^m$ such that, for every m and for every sequence $\{a_n\}_{n=1}^m$ of numbers,

$$(1-2^{-m})\Big(\sum_{n=1}^m |a_n|^2\Big)^{1/2} \le \Big\|\sum_{n=1}^m a_n x_{mn}\Big\| \le (1+2^{-m})\Big(\sum_{n=1}^m |a_n|^2\Big)^{1/2}.$$

Indeed, let $\{y_n\}$ be a basic sequence of X, with a basis constant K. By [4] there exists an increasing sequence $\{r_m\}$ of positive integers so that, for every m, span $\{y_n\}_{n=r_m+1}^{r_{m+1}}$ contains a sequence $\{x_{mn}\}_{n=1}^m$ with the property of the assertion. It is sufficient to prove that, for every fixed p > 1 and for every k with $1 \le k \le p$,

$$\left\| \sum_{m=1}^{p-1} \sum_{n=1}^{m} a_{mn} x_{mn} + \sum_{n=1}^{k} a_{pn} x_{pn} \right\| \le 8K \left\| \sum_{m=1}^{p} \sum_{n=1}^{m} a_{mn} x_{mn} \right\|$$

for every sequence $\{\{a_{mn}\}_{n=1}^m\}_{m=1}^p$ of numbers (indeed, it will then follow that $\{x_n\} = \bigcup_{m=1}^{\infty} \{x_{mn}\}_{n=1}^m$ is basic, with basis constant $\leq 8K$, therefore norming and bounded too, where we use the intrinsic characterization (f) of [23] for norming sequences). Set

$$u = \sum_{m=1}^{p-1} \sum_{n=1}^{m} a_{mn} x_{pn}, \quad v = \sum_{n=1}^{k} a_{pn} x_{pn}, \quad w = \sum_{n=k+1}^{p} a_{pn} x_{pn}.$$

We know that $||u|| \le K||u+v+w||$ since K is the basis constant of $\{y_n\}$; moreover, $||v|| \le 2||v+w||$ since $\{x_{pn}\}_{n=1}^p$ has the property of the assertion. Then if $||u|| \ge ||u+v||/4$ we have

$$||u+v|| \le 4||u|| \le 4K||u+v+w||;$$

Biorthogonal sequences

while if ||u|| < ||u+v||/4, that is, ||u|| < ||v||/3, it follows that

$$||u+v|| < (4/3)||v|| = 8(||v||/2 - ||v||/3) < 8(||v||/2 - ||u||)$$

$$\leq 8(||v+w|| - ||u||) \leq 8||u+v+w||.$$

This completes the proof.

2. Proof of Theorem. By IV* and V*, together with the techniques of [23], there exists in X a norming M-basis $\{x_n\}$, with $\{x_n, x_n^*\}$ biorthogonal, such that $||x_n|| = 1$ and $||x_n^*|| < M$ for every n and $\{x_n\} = \{x_{n''}\} \cup \{x_{n'}\}$ with $\{x_{n'}\} = \bigcup_{m=1}^{\infty} \{x_{mn}\}_{n=1}^{m}$, where, for every m and for every sequence $\{a_n\}_{n=1}^{m}$ of numbers,

$$(1) \qquad (1-2^{-m})\Big(\sum_{n=1}^m a_n^2\Big)^{1/2} \le \Big\|\sum_{n=1}^m a_n x_{mn}\Big\| \le (1+2^{-m})\Big(\sum_{n=1}^m a_n^2\Big)^{1/2}.$$

We shall construct two biorthogonal sequences $\{y_n, y_n^*\}$ and $\{z_n, z_n^*\}$ by means of a suitable block perturbation of $\{x_n, x_n^*\}$, that is, there will be an increasing sequence $\{q_m\}$ of positive integers such that, for every m,

(2)
$$\begin{aligned} \operatorname{span}\{y_n\}_{n=q_m+1}^{q_{m+1}} &= \operatorname{span}\{z_n\}_{n=q_m+1}^{q_{m+1}} = \operatorname{span}\{x_n\}_{n=q_m+1}^{q_{m+1}}, \\ \operatorname{span}\{y_n^*\}_{n=q_m+1}^{q_{m+1}} &= \operatorname{span}\{z_n^*\}_{n=q_m+1}^{q_{m+1}} = \operatorname{span}\{x_n^*\}_{n=q_m+1}^{q_{m+1}}. \end{aligned}$$

We shall define $\{q_m\}$ by means of the sequence $\{r_m\}$ of Π^* , that is, we shall find an increasing sequence $\{t(m)\}$ of positive integers such that $q_m = r_{t(m)}$ for every m.

We start with

$$\{y_n, y_n^*\}_{n=1}^{q_1} = \{z_n, z_n^*\}_{n=1}^{q_1} = \{x_n, x_n^*\}_{n=1}^{r_1}$$

and we proceed by induction. Suppose we have defined $\{y_n, y_n^*\}_{n=1}^{q_m}$ and $\{z_n, z_n^*\}_{n=1}^{q_m}$ for some $m \geq 1$. We now construct $\{y_n, y_n^*\}_{n=q_m+1}^{q_{m+1}}$ and $\{z_n, z_n^*\}_{n=q_m+1}^{q_{m+1}}$.

First, we set

$$S_{m1} = 2^{m+2} M r_{t(m)+1}, \quad Q_{m1} = 2(S_{m1} + m)M, \quad N_{m1} = 4^{m+2Q_{m1} + MS_{m1}}.$$

Now we choose a sequence $\{v_{m1n}\}_{n=1}^{L_{m1}}$ which is $(1/S_{m1})$ -dense in the ball of radius $2S_{m1}$ in span $\{x_n\}_{n=r_{t(m)+1}+1}^{r_{t(m)+2}}$. Next we set, by means of the sequences of (1),

$$s'(m,1) = L_{m1}2^{Q_{m1}}N_{m1},$$

 $s(m,1) = \text{the first integer} \geq s'(m,1)$
such that $\{x_{s(m,1),n}\}_{n=1}^{s(m,1)} \subset \{x_n\}_{n>r_{t(m)+2}}.$

We arrange the first s'(m,1) vectors of the sequence $\{x_{s(m,1),n}\}_{n=1}^{s(m,1)}$ in the

following way:

$$\{x_{s(m,1),n}\}_{n=1}^{s'(m,1)} = \{\{\{x_{m1nkj}\}_{j=1}^{N_{m1}}\}_{k=1}^{2Q_{m1}}\}_{n=1}^{L_{m1}}$$

Now, we set

$$y_{q_m+1} = x_{q_m+1}/S_{m1} - \sum_{n=1}^{L_{m1}} \sum_{i=1}^{N_{m1}} x_{m1n1j}$$
 and $y_{q_m+1}^* = S_{m1}x_{q_m+1}^*$;

moreover, for every n and j with $1 \le n \le L_{m1}$ and $1 \le j \le N_{m1}$, we set

$$y_{m1n1j} = x_{m1n1j} + v_{m1n}$$
 and $y_{m1n1j}^* = x_{m1n1j}^* + S_{m1}x_{q_m+1}^*$, while, for $2 \le k \le 2^{Q_{m1}}$, we set $y_{m1nkj} = x_{m1nkj}$ and $y_{m1nkj}^* = x_{m1nkj}^*$. Then there exists

$$\{y_n^*\}_{n=r_{t(m)+1}+1}^{r_{t(m)+2}} \subset \operatorname{span}\{x_{q_m+1}^* \cup \{x_n^*\}_{n=r_{t(m)+1}+1}^{r_{t(m)+2}} \cup \{x_{s(m,1),n}^*\}_{n=1}^{s'(m,1)}\}$$

such that, on setting $y_n = x_n$ for $r_{t(m)+1} + 1 \le n \le r_{t(m)+2}$, the sequence

$$\{y_{q_m+1},y_{q_m+1}^*\} \cup \{y_n,y_n^*\}_{n=r_{t(m)+1}+1}^{r_{t(m)+2}} \cup \{y_{s(m,1),n},y_{s(m,1),n}^*\}_{n=1}^{s'(m,1)}$$
 is biorthogonal; namely, if

$$v_{m1n} = \sum_{l=r_{t(m)+1}+1}^{r_{t(m)+2}} b_{m1nl} x_l \quad \text{ for } 1 \le n \le L_{m1}$$

 $_{
m then}$

$$y_l^* = x_l^* - \sum_{n=1}^{L_{m1}} \sum_{j=1}^{N_{m1}} b_{m1nl} y_{m1nj}^*$$
 for $r_{t(m)+1} + 1 \le l \le r_{t(m)+2}$.

At this point, by III* of $\S 1$ and by (1), there exists a sufficiently large positive integer t(m,1) such that, on setting

$$\{x_n\}_{n=r_t(m)+2+1}^{r_t(m,1)} = \{x_{s(m,1),n}\}_{n=1}^{s'(m,1)} \cup \{x_{m1n}\}_{n=1}^{T_{m1}}$$

and $y_{m1n} = x_{m1n}$ and $y_{m1n}^* = x_{m1n}^*$ for $1 \le n \le T_{m1}$, there exists a block perturbation

$$\{z_{q_m+1}, z_{q_m+1}^*\} \cup \{z_n, z_n^*\}_{n=r_{z(m)+1}+1}^{r_{t(m)+2}} \cup \{z_{m1n}, z_{m1n}^*\}_{n=1}^{T_{m1}}$$

of

$$\begin{aligned} \{y_{q_m+1},y_{q_m+1}^*\} \cup \{y_n,y_n^*\}_{n=r_{t(m)+1}+1}^{r_{t(m)+2}} \cup \{y_{m1n},y_{m1n}^*\}_{n=1}^{T_{m1}} \\ \text{such that } \max\{\|z_{q_m+1}\|,\|z_{q_m+1}^*\|/M;\|z_n\|,\|z_n^*\|/M \text{ for } r_{t(m)+1}+1 \leq n \leq r_{t(m)+2};\|z_{m1n}\|,\|z_{m1n}^*\|/M \text{ for } 1 \leq n \leq T_{m1}\} < 3. \end{aligned}$$

On the other hand, since by the above $2^{Q_{m1}/2} > 2^m M S_{m1}$, by III* and (1), for every n and j with $1 \le n \le L_{m1}$ and $1 \le j \le N_{m1}$, there exists a block perturbation

$$\{z_{m1nkj}, z_{m1nkj}^*\}_{k=1}^{2^{Q_{m1}}}$$
 of $\{y_{m1nkj}, y_{m1nkj}^*\}_{k=1}^{2^{Q_{m1}}}$

such that

$$\{\|z_{m1nkj}\|, \|z_{m1nkj}^*\|/M : 1 \le k \le 2^{Q_{m1}}\} < 3.$$

We now pass to the definition in the general case: that is, we fix an integer i with $1 < i \le r_{t(m)+1} - r_{t(m)}$ and we suppose to have defined

$$\{y_{q_m+l}, y_{q_m+l}^*\}_{l=1}^{i-1} \cup \{y_n, y_n^*\}_{n=r_{t(m)+1}+1}^{r_{t(m,i-1)}}$$

and

$$\{z_{q_m+l}, z_{q_m+l}^*\}_{l=1}^{i-1} \cup \{z_n, z_n^*\}_{n=r_{t(m)+1}+1}^{r_{t(m,i-1)}};$$

then we are going to define

$$\{y_{q_m+i}, y_{q_m+i}^*\} \cup \{y_n, y_n^*\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i)}}$$

and

$$\{z_{q_m+i}, z_{q_m+i}^*\} \cup \{z_n, z_n^*\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i)}}.$$

First, we set

(3)
$$S_{mi} = 2^{m+2} M r_{t(m,i-1)},$$

$$Q_{mi} = 2(S_{mi} + m)M, \quad N_{mi} = 4^{m+2Q_{mi} + MS_{mi}}.$$

Again we choose a sequence $v = \{v_{min}\}_{n=1}^{L_{mi}}$ such that

(4) v is $(1/S_{mi})$ -dense in the ball of radius $2S_{mi}$ in span $\{x_n\}_{r_{t(m,i-1)}+1}^{n=r_{t(m,i-1)}+1}$

(then, on setting t(m,0) = t(m) + 1, the definition of v_{m1n} agrees with this general definition).

Next, we set, by means of the sequences of (1),

$$(5) s'(m,i) = L_{mi} 2^{Q_{mi}} N_{mi},$$

 $s(m,i) = ext{the first integer } \geq s'(m,i) ext{ such that}$

$$\{x_{s(m,i),n}\}_{n=1}^{s(m,i)} \subset \{x_n\}_{n>r_{t(m,i-1)+1}},$$

We arrange the first s'(m,i) vectors of $\{x_{s(m,i),n}\}_{n=1}^{s(m,i)}$ in the following way:

$$\{x_{s(m,i),n}\}_{n=1}^{s'(m,i)} = \{\{\{x_{minkj}\}_{j=1}^{N_{mi}}\}_{k=1}^{2^{Q_{mi}}}\}_{n=1}^{L_{mi}}$$

Now, we set

$$y_{q_m+i} = x_{q_m+i}/S_{mi} - \sum_{n=1}^{L_{mi}} \sum_{j=1}^{N_{mi}} x_{min1j}$$
 and $y_{q_m+i}^* = S_{mi} x_{q_m+i}^*$;

moreover, for every n and j with $1 \le n \le L_{mi}$ and $1 \le j \le N_{mi}$, we set

(6)
$$y_{min1j} = x_{min1j} + v_{min}$$
 and $y_{min1j}^* = x_{min1j}^* + S_{mi}x_{q_m+i}^*$

while, for $2 \le k \le 2^{Q_{mi}}$, we set $y_{minkj} = x_{minkj}$ and $y_{minkj}^* = x_{minkj}^*$. Again as for i = 1 there exists

 $\{y_n^*\}_{n=r_{t(m,i-1)+1}}^{r_{t(m,i-1)+1}} \subset \operatorname{span}\{x_{q_m+i}^* \cup \{x_n^*\}_{n=r_{t(m,i-1)+1}}^{r_{t(m,i-1)+1}} \cup \{x_{s(m,i),n}^*\}_{n=1}^{s'(m,i)}\}$ such that, on setting $y_n = x_n$ for $r_{t(m,i-1)} + 1 \leq n \leq r_{t(m,i-1)+1}$, the

 $\{y_{q_m+i},y_{q_m+i}^*\} \cup \{y_n,y_n^*\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i-1)}+1} \cup \{y_{s(m,i),n},y_{s(m,i),n}^*\}_{n=1}^{s'(m,i)}$ is biorthogonal.

Now, by III* and by (1) and (6), there exists a sufficiently large positive integer t(m, i) such that, on setting

$$\{x_n\}_{n=r_{t(m,i-1)+1}+1}^{r_{t(m,i)}} = \{x_{s(m,i),n}\}_{n=1}^{s'(m,i)} \cup \{x_{min}\}_{n=1}^{r_{min}}$$

and $y_{min} = x_{min}$ and $y_{min}^* = x_{min}^*$ for $1 \le n \le T_{mi}$, there exists a block perturbation

$$\{z_{q_m+i}, z_{q_m+i}^*\} \cup \{z_n, z_n^*\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i-1)}+1} \cup \{z_{min}, z_{min}^*\}_{n=1}^{T_{min}}$$

of

$$\{y_{q_m+i},y_{q_m+i}^*\} \cup \{y_n,y_n^*\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i-1)}+1} \cup \{y_{min},y_{min}^*\}_{n=1}^{T_{min}}$$
 such that

(7) $\max\{\|z_{a_m+i}\|, \|z_{a_m+i}^*\|/M; \|z_n\|, \|z_n^*\|/M \text{ for }$

 $r_{t(m,i-1)} + 1 \le n \le r_{t(m,i-1)+1}, ||z_{min}||, ||z_{min}^*||/M, 1 \le n \le T_{mi}\} < 3.$

Again by III* and (1), (3), (5) and (6) for every n and j with $1 \le n \le L_{mi}$ and $1 \le j \le N_{mi}$, there exists a block perturbation

$$\{z_{minkj}, z_{minkj}^*\}_{k=1}^{2^{Q_{mi}}}$$
 of $\{y_{minkj}, y_{minkj}^*\}_{k=1}^{2^{Q_{mi}}}$

such that, for every k with $1 \le k \le 2^{Q_{mi}}$,

(8)
$$||z_{minkj}|| < 3, \quad ||z_{minkj}^*||/M < 3.$$

We proceed in this way till y_{q_m+i} and z_{q_m+i} for $i = r_{t(m)+1} - r_{t(m)}$; then we set $q_{m+1} = r_{t(m,i)}$ for $i = r_{t(m)+1} - r_{t(m)}$; it follows that (2) is satisfied, and moreover, $\{z_n\}$ is uniformly minimal.

Now we consider the following permutation of $\{z_n\}_{n=q_m+1}^{q_{m+1}}$: By (6), (7) and (8) we have

$$\{z_n\}_{n=q_m+1}^{q_{m+1}} = \{z_{q_m+i}\}_{i=1}^{r_{t(m)+1}-r_{t(m)}} \cup \{\{z_n\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i)}}\}_{i=1}^{r_{t(m)+1}-r_{t(m)}}\}$$

where, for every i with $1 \le i \le r_{t(m)+1} - r_{t(m)}$,

$$\begin{split} \{z_n\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i)}} &= \{z_n\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i-1)}+1} \cup \{z_{min}\}_{n=1}^{T_{mi}} \\ & \cup \{\{\{z_{miknj}\}_{j=1}^{N_{mi}}\}_{k=1}^{2^{Q_{mi}}}\}_{n=1}^{L_{mi}}. \end{split}$$

Biorthogonal sequences

217

Now we take a biorthogonal sequence $\{\widetilde{z}_n, \widetilde{z}_n^*\}_{n=q_m+1}^{q_{m+1}}$ which is a permutation of $\{z_n, z_n^*\}_{n=q_m+1}^{q_{m+1}}$ where

$$\{\widetilde{z}_{n}, \widetilde{z}_{n}^{*}\}_{n=q_{m}+1}^{q_{m}+r_{t(m,1)}-r_{t(m)+1}+1} = \{z_{q_{m}+1}, z_{q_{m}+1}^{*}\} \cup \{z_{n}, z_{n}^{*}\}_{n=r_{t(m)+1}+1}^{r_{t(m,1)}},$$

$$\{\widetilde{z}_{n}, \widetilde{z}_{n}^{*}\}_{n=q_{m}+r_{t(m,i)}-r_{t(m,0)}+(i-1)+1}^{q_{m}+r_{t(m,i)}-r_{t(m,i)}-r_{t(m,i)}+(i-1)+1}$$

$$= \{z_{q_{m}+i}, z_{q_{m}+i}^{*}\} \cup \{z_{n}, z_{n}^{*}\}_{n=r_{t(m,i-1)}+1}^{r_{t(m,i)}} \quad \text{for } 1 < i \le r_{t(m)+1} - r_{t(m)}.$$

Let us check that the assertion is satisfied. Let $\overline{x} \in X$ with $||\overline{x}|| = 1$; there are two possibilities:

(A) There exists an integer m_0 such that, for each integer $m \geq m_0$, there exists another integer i(m) so that

$$1 \leq i(m) \leq r_{t(m)+1} - r_{t(m)},$$

$$|x_{q_m+i(m)}^*(\overline{x})| > M/S_{m,i(m)},$$

$$|x_{q_m+j}^*(\overline{x})| \leq M/S_{m,j} \quad \text{for } i(m) + 1 \leq j \leq r_{t(m)+1} - r_{t(m)}.$$

We fix $\varepsilon > 0$. Since $\{x_n\}$ is uniformly minimal, by (1) and by Remark 3 of the introduction there exists an integer $m'(\varepsilon)$ such that

(11)
$$\begin{aligned} & 1/2^{m'(\varepsilon)} < \varepsilon/2, \\ & |x_n^*(\overline{x})| < \varepsilon/2^3 \quad \text{for each } n > r_{t(m)} \text{ and } m \ge m'(\varepsilon), \\ & \left\| \sum_{j=i(m)}^{r_{t(m)+1}-r_{t(m)}} x_{q_m+j}^*(\overline{x}) x_{q_m+j} \right\| < \varepsilon/2^2 \end{aligned}$$

(where the third inequality follows from the second and from the third inequality of (10)). By II* of §1 there exists another integer $m(\varepsilon) \geq m'(\varepsilon)$ so that, for each $m \geq m(\varepsilon)$, there exists v_m so that

(12)
$$\left\| \overline{x} - \left\{ \sum_{n=1}^{r_{t(m,i(m)-1)}} x_n^*(\overline{x}) x_n + v_m \right\} \right\| < \varepsilon/2^2,$$

$$v_m \in \operatorname{span} \left\{ x_n \right\}_{n=r_{t(m,i(m)-1)}+1}^{r_{t(m,i(m)-1)}+1},$$

$$\left\| v_m \right\| < 2M r_{t(m,i(m)-1)}.$$

Indeed, by (1) and the first inequality we have

$$||v_m|| < \left| |\overline{x} - \sum_{n=1}^{r_{t(m,i(m)-1)}} x_n^*(\overline{x}) x_n \right| + \varepsilon/2^2$$

$$< 1 + M r_{t(m,i(m)-1)} + \varepsilon/2^2.$$

On the other hand, by hypothesis and by (6)-(8) we have

$$\sum_{n=1}^{r_{m}+i(m)-1} x_{n}^{*}(\overline{x}) x_{n} + \sum_{n=r_{t(m)+1}+1}^{r_{t(m,i(m)-1)}} x_{n}^{*}(\overline{x}) x_{n}$$

$$= \sum_{n=1}^{q_{m}+i(m)-1} y_{n}^{*}(\overline{x}) y_{n} + \sum_{n=r_{t(m)+1}+1}^{r_{t(m,i(m)-1)}} y_{n}^{*}(\overline{x}) y_{n}$$

$$= \sum_{n=1}^{q_{m}+i(m)-1} z_{n}^{*}(\overline{x}) z_{n} + \sum_{n=r_{t(m)+1}+1}^{r_{t(m,i(m)-1)}} z_{n}^{*}(\overline{x}) z_{n}$$

(where the indices n with $r_{t(m)+1} + 1 \le n \le r_{t(m,i(m)-1)}$ do not appear if i(m) = 1). Therefore, since

$$\sum_{j=i(m)}^{r_{t(m)+1}-r_{t(m)}} x_{q_m+j}^*(\overline{x}) x_{q_m+j} = \sum_{n=q_m+i(m)}^{r_{t(m)+1}} x_n^*(\overline{x}) x_n,$$

by (11) and (12) we obtain

(13)
$$\left\| \overline{x} - \left\{ \sum_{n=1}^{q_m + i(m) - 1} x_n^*(\overline{x}) x_n + \sum_{n=r_{t(m)+1} + 1}^{r_{t(m,i(m)-1)}} x_n^*(\overline{x}) x_n + v_m \right\} \right\|$$

$$= \left\| \overline{x} - \left\{ \sum_{n=1}^{q_m + i(m) - 1} z_n^*(\overline{x}) z_n + \sum_{n=r_{t(m)+1} + 1}^{r_{t(m,i(m)-1)}} z_n^*(\overline{x}) z_n + v_m \right\} \right\| < \varepsilon/2.$$

By (10) we have

$$(14) S_{m,i(m)}|x_{a_m+i(m)}^*(\overline{x})| > M.$$

Hence by (4), (11) and (12), for every j with $1 \le j \le N_{m,i(m)}$, there exists an integer n(j,m), with $1 \le n(j,m) \le L_{m,i(m)}$, such that

$$\left\| \frac{x_{q_m+i(m)}^*(\overline{x})}{|x_{q_m+i(m)}^*(\overline{x})|} v_{m,i(m),n(1,m)} - v_m \right\| < \frac{1}{S_{m,i(m)}};$$

and for $2 \leq j \leq N_{m,i(m)}$,

(15)
$$\left\| \frac{x_{q_m+i(m)}^*(\overline{x})}{|x_{q_m+i(m)}^*(\overline{x})|} v_{m,i(m),n(j,m)} + \frac{x_{m,i(m),n(j-1,m),1,j-1}^*(\overline{x})}{S_{m,i(m)}|x_{m-i(m)}^*(\overline{x})|} v_{m,i(m),n(j-1,m)} - v_m \right\| < \frac{1}{S_{m,i(m)}}$$

Biorthogonal sequences

219

(since $v_{m,i(m),n(j-1,m)}$ and v_m belong to span $\{x_n\}_{n=r_{t(m,i(m)-1)+1}}^{r_{t(m,i(m)-1)+1}}$, and moreover, by (11) and (14), $|x_{m,i(m),n(j-1,m),1,j-1}^*(\overline{x})/(S_{m,i(m)}x_{q_m+i(m)}^*(\overline{x}))| < \varepsilon/(2^3M)$).

Now set

$$\overline{q}_{m} = q_{m} + i(m) - 1 + r_{t(m,i(m)-1)} - r_{t(m)+1},$$

$$\overline{\varepsilon}_{m} = \frac{1}{N_{m,i(m)}S_{m,i(m)}|x_{q_{m}+i(m)}^{*}(\overline{x})|},$$
(16)
$$\{\widetilde{z}_{n(k,m)}\}_{k=1}^{N(m)} = \{\{z_{m,i(m),n(j,m),k,j}\}_{k=1}^{2^{Q_{m,i(m)}}}\}_{j=1}^{N_{m,i(m)}},$$

$$A = \left\|\overline{x} - \left\{(1 - \overline{\varepsilon}_{m})\sum_{r=1}^{\overline{q}_{m}} \widetilde{z}_{n}^{*}(\overline{x})\widetilde{z}_{n} + \overline{\varepsilon}_{m}\sum_{r=1}^{N(m)} \widetilde{z}_{n(k,m)}^{*}(\overline{x})\widetilde{z}_{n(k,m)}\right\}\right\|.$$

Since by (9),

 $q_m \leq \overline{q}_m < n(1,m) < \ldots < n(k,m) < \ldots < n(N(m),m) \leq q_m + 1,$ it is sufficient to prove that

$$(17) A < \varepsilon.$$

By (8), (9), (13) and (16) we have

$$A = \left\| \overline{x} - \left\{ \left(1 - \frac{1}{N_{m,i(m)} S_{m,i(m)} | x_{q_m+i(m)}^*(\overline{x})|} \right) \right.$$

$$\times \left(\sum_{n=1}^{q_m+i(m)-1} z_n^*(\overline{x}) z_n + \sum_{n=r_{t(m)+1}+1}^{r_{t(m,i(m)-1)}} z_n^*(\overline{x}) z_n \right)$$

$$+ \frac{1}{N_{m,i(m)} S_{m,i(m)} | x_{q_m+i(m)}^*(\overline{x})|}$$

$$\times \sum_{j=1}^{N_{m,i(m)}} \sum_{k=1}^{2^{q_{m,i(m)}}} z_{m,i(m),n(j,m),k,j}^*(\overline{x}) z_{m,i(m),n(j,m),k,j} \right\} \left\|$$

$$< \varepsilon/2 + A_1 + A_{1,0}$$

with

$$A_{1} = \frac{1}{N_{m,i(m)}S_{m,i(m)}|x_{q_{m}+i(m)}^{*}(\overline{x})|} \times \left\| \sum_{n=1}^{q_{m}+i(m)-1} x_{n}^{*}(\overline{x})x_{n} + \sum_{n=r_{t(m)+1}+1}^{r_{t(m,i(m)-1)}} x_{n}^{*}(\overline{x})x_{n} \right\|,$$

$$\begin{split} A_{1,0} &= \left\| \frac{1}{N_{m,i(m)} S_{m,i(m)} |x_{q_m+i(m)}^*(\overline{x})|} \right. \\ &\times \sum_{j=1}^{N_{m,i(m)}} \sum_{k=1}^{Q^{Q_{m,i(m)}}} y_{m,i(m),n(j,m),k,j}^*(\overline{x}) y_{m,i(m),n(j,m),k,j} - v_m \right\|. \end{split}$$

By (1) and (3)–(14) we have

$$\begin{split} A_1 < \frac{r_{t(m,i(m)-1)}M}{N_{m,i(m)}S_{m,i(m)}|x_{q_m+i(m)}^*(\overline{x})|} < \frac{r_{t(m,i(m)-1)}}{N_{m,i(m)}} \\ < 1/4^{m+2Q_{m,i(m)}} < 1/2^{m+3}. \end{split}$$

By (6) and (8) we have $A_{1,0} \le A_2 + A_{2,0}$ with

$$A_{2} = \left\| \frac{1}{N_{m,i(m)} S_{m,i(m)} | x_{q_{m}+i(m)}^{*}(\overline{x})|} \times \sum_{j=1}^{N_{m,i(m)} 2^{Q_{m,i(m)}}} x_{m,i(m),n(j,m),k,j}^{*}(\overline{x}) x_{m,i(m),n(j,m),k,j} \right\|,$$

$$A_{2,0} = \frac{1}{N_{m,i(m)}} \left\| \sum_{j=1}^{N_{m,i(m)}} \left(\frac{1}{(S_{m,i(m)} | x_{q_{m}+i(m)}^{*}(\overline{x})|} \times y_{m,i(m),n(j,m),1,j}^{*}(\overline{x}) y_{m,i(m),n(j,m),1,j} - v_{m} \right) \right\|.$$

By (1), (3), (5), (11) and (14) we obtain

$$A_{2} < \frac{2}{N_{m,i(m)}S_{m,i,(m)}|x_{q_{m}+i(m)}^{*}(\overline{x})|} (N_{m,i(m)}2^{Q_{m,i(m)}})^{1/2}$$

$$< \frac{2^{Q_{m,i(m)}/2+1}}{(N_{m,i(m)})^{1/2}M} < 2/4^{m+MS_{m,i(m)}} < 1/2^{m+3}.$$

By (6) and (8) we see that

$$A_{2,0} = \frac{1}{N_{m,i(m)}} \left\| \sum_{j=1}^{N_{m,i(m)}} \left\{ \frac{1}{S_{m,i(m)} | x_{q_m+i(m)}^*(\overline{x})|} \right. \\ \left. \times \left(x_{(m,i(m),n(j,m),1,j}^*(\overline{x}) + S_{m,i(m)} x_{q_m+i(m)}^*(\overline{x}) \right) \right. \\ \left. \times \left(x_{(m,i(m),n(j,m),1,j} + v_{m,i(m),n(j,m)} \right) - v_m \right\} \right\| \le A_3 + A_{3,0}$$

with

$$A_3 = rac{1}{N_{m,i(m)}} imes \left\{ \sum_{i=1}^{N_{m,i(m)}} \left(rac{x_{m,i(m),n(j,m),1,j}^*(\overline{x})}{S_{m,i(m)}|x_{q_m+i(m)}^*(\overline{x})|} + rac{x_{q_m+i(m)}^*(\overline{x})}{|x_{q_m+i(m)}^*(\overline{x})|}
ight) x_{m,i(m),n(j,m),1,j}
ight\|,$$

$$\begin{split} A_{3,0} &= \frac{1}{N_{m,i(m)}} \Bigg\| \sum_{j=1}^{N_{m,i(m)}} \left\{ \left(\frac{x_{m,i(m),n(j,m),1,j}^*(\overline{x})}{S_{m,i(m)}|x_{q_m+i(m)}^*(\overline{x})|} v_{m,i(m),n(j,m)} \right. \\ &+ \frac{x_{q_m+i(m)}^*(\overline{x})}{x_{m+i(m)}^*(\overline{x})|} v_{m,i(m),n(j,m)} - v_m \right\} \Bigg\|. \end{split}$$

By (1), (3), (5), (11) and (14) we have

$$A_3 < \frac{2}{N_{m,i(m)}} \{ N_{m,i(m)} (\varepsilon/(M \cdot 2^3) + 1) \}^{1/2}$$

$$< 4/(N_{m,i(m)})^{1/2} < 4/2^{5m+5S_{m,i(m)}} < 1/2^{m+3}.$$

On the other hand, $A_{3,0} \leq A_4 + A_5$ with

$$\begin{split} A_{4} &= \frac{1}{N_{m,i(m)}} \left\| \left\{ \frac{x_{q_{m}+i(m)}^{*}(\overline{x})}{|x_{q_{m}+i(m)}^{*}(\overline{x})|} v_{m,i(m),n(1,m)} - v_{m} \right\} \\ &+ \sum_{j=2}^{N_{m,i(m)}} \left\{ \frac{x_{m,i(m),n(j-1,m),1,j-1}^{*}(\overline{x})}{S_{m,i(m)}|x_{q_{m}+i(m)}^{*}(\overline{x})|} v_{m,i(m),n(j-1,m)} \right. \\ &+ \left. \frac{x_{q_{m}+i(m)}^{*}(\overline{x})}{|x_{q_{m}+i(m)}^{*}(\overline{x})|} v_{m,i(m),n(j,m)} - v_{m} \right\} \right\|, \\ A_{5} &= \frac{1}{N_{m,i(m)}} \left\| \frac{x_{m,i(m),n(N_{m,i(m)},m),1,N_{m,i(m)}}^{*}(\overline{x})}{S_{m,i(m)}|x_{m,i(m)}^{*}(\overline{x})|} v_{m,i(m),n(N_{m,i(m)},m)} \right\|. \end{split}$$

By (3) and (15) we have $A_4 < 1/S_{m,i(m)} < 1/2^{m+2}$, while by (3), (4), (11) and (14),

$$A_5 < \frac{2\varepsilon S_{m,i(m)}}{M \cdot 2^3 N_{m,i(m)}} < \frac{2\varepsilon}{2^3 4^{m+2Q_{m,i(m)}}} < \frac{1}{2^{m+3}}.$$

Consequently,

$$A < \varepsilon/2 + A_1 + A_2 + A_3 + A_4 + A_5 < \varepsilon/2 + 1/2^m < \varepsilon$$

That is, (17) is proved.

(B) If (A) does not occur then there exists a subsequence $\{m(k)\}$ of $\{m\}$ such that, for every k,

$$|x_{q_{m(k)}+i}^*(\overline{x})| \le M/S_{m(k),i}$$
 for $1 \le i \le r_{t(m(k))+1} - r_{t(m(k))}$.

Hence, by (1) and (3), for every k we have

$$\left\| \sum_{n=r_{t(m(k))}+1}^{r_{t(m(k))+1}} x_n^*(\overline{x}) x_n \right\| < \sum_{n=r_{t(m(k))}+1}^{r_{t(m(k))+1}} |x_n^*(\overline{x})| < 1/2^{m(k)}.$$

If we set

$$\overline{x} = x' + x'' \quad ext{with} \quad x'' = \sum_{k=1}^{\infty} \sum_{n=r_{t(m(k))}+1}^{r_{t(m(k))+1}} x_n^*(\overline{x}) x_n,$$

it follows that $x_n^*(x') = 0$ for $r_{t(m(k))} + 1 \le n \le r_{t(m(k))+1}$ for every k; hence by the second part of II* of §1 we have

$$x' = \sum_{n=1}^{r_{t(m(1))}} x_n^*(x') x_n + \sum_{k=1}^{\infty} \sum_{n=r_{t(m(k))}+1}^{r_{t(m(k+1))}} x_n^*(x') x_n$$
$$= \sum_{n=1}^{r_{t(m(1))}} x_n^*(\overline{x}) x_n + \sum_{k=1}^{\infty} \sum_{n=r_{t(m(k))+1}+1}^{r_{t(m(k+1))}} x_n^*(\overline{x}) x_n;$$

therefore, setting $q_{m(k)} = r_{t(m(k))}$ for every k and $q_{m(0)} = 0$, we have

$$\overline{x} = \sum_{k=0}^{\infty} \sum_{n=q_{m(k)}+1}^{q_{m(k+1)}} x_n^*(\overline{x}) x_n = \sum_{k=0}^{\infty} \sum_{n=q_{m(k)}+1}^{q_{m(k+1)}} y_n^*(\overline{x}) y_n$$

$$= \sum_{k=0}^{\infty} \sum_{n=q_{m(k)}+1}^{q_{m(k+1)}} \widetilde{y}_n^*(\overline{x}) \widetilde{y}_n = \sum_{k=0}^{\infty} \sum_{n=q_{m(k)}+1}^{q_{m(k+1)}} z_n^*(\overline{x}) z_n.$$

This completes the proof of the Theorem.

References

[1] S. Banach, Théorie des opérations linéaires, Chelsea, New York, 1932.

[2] W. J. Davis and W. B. Johnson, On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), 173-179.

[3] W. J. Davis and I. Singer, Boundedly complete M-bases and complemented subspaces in Banach spaces, Trans. Amer. Math. Soc. 175 (1973), 187-194.

[4] A. Dvoretzky, Some results on convex bodies and Banach spaces, in: Proc. Internat. Sympos. on Linear Spaces, Jerusalem Academic Press, 1961, 123-160.

 P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309-317.

[6] V. P. Fonf, Operator bases and generalized summation bases, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1986 (11), 16-18 (in Russian).

[7] V. I. Gurarii and M. I. Kadec, On permutations of biorthogonal decompositions, Istituto Lombardo, 1991.

[8] E. Indurain and P. Terenzi, A characterization of basis sequences in Banach spaces, Rend. Accad. dei XL 18 (1986), 207-212.

- [9] M. I. Kadec, Nonlinear operator bases in a Banach space, Teor. Funktsii Funktsional, Anal. i Prilozhen. 2 (1966), 128-130 (in Russian).
- [10] M. I. Kadec and A. Pełczyński, Basic sequences, biorthogonal systems and norming sets in Banach and Fréchet spaces, Studia Math. 25 (1965), 297-323 (in Russian).
- [11] G. W. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52 (1946), 322-325.
- [12] P. Mankiewicz and N. J. Nielsen, A superreflexive Banach space with a finite dimensional decomposition so that no large subspace has a basis, Odense University Preprints, 1989.
- [13] A. Markushevich, Sur les bases (au sens large) dans les espaces linéaires, Dokl. Akad. Nauk SSSR 41 (1943), 227-229.
- [14] A. M. Olevskiĭ, Fourier series of continuous functions with respect to bounded orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 387-432.
- [15] R. I. Ovsepian and A. Pełczyński, On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions of uniformly bounded orthonormal systems in L², Studia Math. 54 (1975), 149-159.
- [16] A. Pełczyński, All separable Banach space admit for every ε > 0 fundamental total and bounded by 1+ε biorthogonal sequences, ibid. 55 (1976), 295-304.
- [17] A. Plans and A. Reyes, On the geometry of sequences in Banach spaces, Arch. Math. (Basel) 40 (1983), 452-458.
- [18] W. H. Ruckle, Representation and series summability of complete biorthogonal sequences, Pacific J. Math. 34 (1970), 511-528.
- [19] —, On the classification of biorthogonal sequences, Canad. J. Math. 26 (1974), 721-733.
- [20] I. Singer, Bases in Banach Spaces II, Springer, 1981.
- [21] S. Szarek, A Banach space without a basis which has the bounded approximation property, Acta Math. 159 (1987), 81-98.
- [22] P. Terenzi, Representation of the space spanned by a sequence in a Banach space, Arch. Math. (Basel) 43 (1984), 448-459.
- [23] —, On the theory of fundamental norming bounded biorthogonal systems in Banach spaces, Trans. Amer. Math. Soc. 299 (1987), 497-511.
- [24] —, On the properties of the strong M-bases in Banach spaces, Sem. Mat. Garcia de Galdeano, Zaragoza, 1987.

DIPARTIMENTO DI MATEMATICA DEL POLITECNICO PIAZZA LEONARDO DA VINCI 32 20133 MILANO, ITALY

> Received December 1, 1990 (2752) Revised version December 6, 1991, December 23, 1992, and June 30, 1993

Operators in finite distributive subspace lattices II

by

N. K. SPANOUDAKIS (Iraklion)

Abstract. In a previous paper we gave an example of a finite distributive subspace lattice $\mathcal L$ on a Hilbert space and a rank two operator of $\operatorname{Alg} \mathcal L$ that cannot be written as a finite sum of rank one operators from $\operatorname{Alg} \mathcal L$. The lattice $\mathcal L$ was a specific realization of the free distributive lattice on three generators. In the present paper, which is a sequel to the aforementioned one, we study $\operatorname{Alg} \mathcal L$ for the general free distributive lattice with three generators (on a normed space). Necessary and sufficient conditions are given for 1) a finite rank operator of $\operatorname{Alg} \mathcal L$ to be written as a finite sum of rank ones from $\operatorname{Alg} \mathcal L$, and 2) a realization of $\mathcal L$ to contain a finite rank operator of $\operatorname{Alg} \mathcal L$ with the preceding property. These results are then used to show the curiosity that the product of two finite rank operators of $\operatorname{Alg} \mathcal L$ always has the above property.

1. Introduction. This paper is a continuation of [7], of which we shall assume familiarity and whose notation we follow.

Briefly, if \mathcal{L} is a subspace lattice on a normed space \mathcal{X} , a general question is whether every finite rank operator of Alg \mathcal{L} has the FRP, i.e. whether it can be written as a finite sum of rank one operators from Alg \mathcal{L} . The question is more natural in the case of completely distributive \mathcal{L} , as Alg \mathcal{L} then has a large supply of rank one operators [4]. Indeed, in the special case of a nest \mathcal{L} the answer is affirmative [1, 6] and so is the case when \mathcal{L} is a complete atomic Boolean subspace lattice [5, 3]. (In some of these results \mathcal{X} was assumed a Hilbert space.) For general completely distributive lattices the answer was again shown to be affirmative if the underlying space was finite-dimensional [5] but the question was finally settled negatively by Hopenwasser and Moore [2] in infinite dimensions. In the same paper they give an affirmative answer if \mathcal{L} is a finite width (see [2] for the definition) commutative subspace lattice. Their example of a completely distributive subspace lattice \mathcal{L} for which Alg \mathcal{L} fails the FRP has an infinite number of elements. This then left open the case of finite distributive subspace lattices \mathcal{L} , which was settled negatively in [7]. There, a specific realization of the free distributive lattice \mathcal{L}_3 was

¹⁹⁹¹ Mathematics Subject Classification: Primary 47D30.