
DOI: 10.1007/s00454-001-0042-y

Discrete Comput Geom 26:387–410 (2001) Discrete & Computational

Geometry
© 2001 Springer-Verlag New York Inc.

Every Set of Disjoint Line Segments Admits a Binary Tree∗

P. Bose,1 M. E. Houle,2 and G. T. Toussaint3

1 School of Computer Science, Carleton University,
Ottawa, Ontario, Canada K1S 5B6
jit@scs.carleton.ca

2 Basser Department of Computer Science, The University of Sydney,
Sydney, NSW 2006, Australia
meh@cs.usyd.edu.au

3 School of Computer Science, McGill University,
Montreal, Quebec, Canada H3A 2A7
godfried@cs.mcgill.ca

Abstract. Given a set ofn disjoint line segments in the plane, we show that it is always
possible to form a tree with the endpoints of the segments such that each line segment is an
edge of the tree, the tree has no crossing edges, and the maximum vertex degree of the tree
is 3. Furthermore, there exist configurations of line segments where any such tree requires
degree 3. We provide anO(n logn) time algorithm for constructing such a tree, and show
that this is optimal.

1. Introduction

Given a set of disjoint line segments, determining whether the set admits certain com-
binatorial structures has received considerable attention. One of the best-studied such
structures has been the simple circuit or polygon through a set of line segments. The
question of deciding whether a set of disjoint line segments admits a simple circuit is
conjectured to be NP-complete, since Rappaport [12] has shown that deciding whether
a set of line segments allowed to intersect at their endpoints admits a simple circuit is an
NP-complete problem. For certain special cases, however, polynomial-time algorithms
have been obtained. Avis and Rappaport [1] gave anO(n4) time andO(n2) space al-
gorithm to decide whether a set of disjoint line segments admits a simple monotone

∗ The research by P. Bose was supported by NSERC.



388 P. Bose, M. E. Houle, and G. T. Toussaint

circuit. Rappaport et al. [13] have shown that the decision problem is inO(n logn)
when every line segment in the set has at least one endpoint on their convex hull (such
a configuration is known as aconvexly independentset of line segments). Although
not every convexly independent set of line segments admits a simple circuit, Mirza-
ian [7] has shown that such a set always admits a simple polygon such that the line
segments are either part of the boundary of the polygon or form internal diagonals.
Mirzaian’s result does not hold for arbitrary sets of disjoint line segments, as was shown
by Urabe and Watanabe [17], and later by Gr¨unbaum [6], but it is conjectured that the
result is true if the line segments are also allowed to form external diagonals of the
polygon.

The simple circuit is not the only structure to have been investigated. ElGindy and
Toussaint [5] have shown that every set of line segments can be triangulated. Later,
O’Rourke and Rippel [10] proved the hamiltonicity of the visibility graph of certain
restricted classes of line segments.

The structures with which this paper is concerned are trees that span a set of disjoint
line segments such that each line segment is an edge of the tree and the tree has no
crossing edges—such a tree will be referred to as anencompassing tree. The problem of
determining whether a set of line segments admits an encompassing tree was first studied
by Bose and Toussaint [3], who showed that a set of disjoint line segments always admits
an encompassing tree, and that the encompassing tree of minimum total edge length has
maximum degree 7. Subsequently, Rivera-Campo and Urrutia [14] proved that a disjoint
set of line segments always admits an encompassing tree with maximum degree 4.

A natural question to ask is:Given a set of disjoint line segments, is there always
an encompassing tree with maximum degree less than4? Figure 1 shows that there
exist configurations that do not admit an encompassing tree with maximum degree 2.
However, we show that a set of disjoint line segments always admits an encompassing
tree with maximum degree 3 (a binary tree), and that such a tree can be computed in
optimal2(n logn) time.

The encompassing tree construction relies heavily on a convex subdivision of the plane
induced by the set of line segments. The construction of the subdivision is discussed in
Section 2, and the special structure of the subdivision is examined in Section 3. In
Section 4 it is shown how the subdivision may be used to construct an encompassing tree

Fig. 1. No encompassing tree with maximum degree 2.



Every Set of Disjoint Line Segments Admits a Binary Tree 389

of degree 3 inO(n logn) time. In Section 5 we present a proof of anÄ(n logn) lower
bound for the problem. Closing remarks and open problems can be found in Section 6.

Most of the geometric and graph theoretic terminology used in this paper is standard,
and for definitions we refer the reader to [9], [2], and [11].

2. The Convex Subdivision

The goal of the next three sections is to develop an algorithm to construct an encom-
passing treeG (as defined earlier) for a set ofn disjoint line segmentsS. To simplify
the description of the algorithm, and to avoid degeneracies, we assume throughout the
paper that

• no segment ofS is horizontal (that is, parallel to thex-axis),
• no three endpoints of segments ofSare collinear, and
• of the lines obtained by extending the segments to infinity in either direction, no

three intersect in a common point.

The first of these assumptions is easily realized—if horizontal segments are present, a
simple reorientation of the coordinate axes can be performed inO(n) time. The second
and third assumptions can be realized using a perturbation scheme; however, we do not
address these issues here.

To arrive at an algorithm for computing a degree-3 encompassing tree ofS, we first
construct a convex subdivision derived from the segments ofS. Instead of subdividing
the entire plane, we find it convenient to place a bounding box around the set of line
segments, and to subdivide the interior of the box into convex regions. In so doing, we
ensure that the subdivision has no unbounded regions or edges.

Conceptually, the subdivision is obtained by extending each segments along the
unique line containing it. The extensions take the form of two rays, one oriented “up-
wards” (increasing iny-coordinate) and the other oriented “downwards” (decreasing in
y-coordinate). Each ray is allowed to continue until it intersects an obstacle or another
ray, at which point it is possibly truncated.

The rules governing these intersections are as follows:

1. If the intersection is determined by a rayr and an edgeb of the bounding box,
thenr is truncated at that intersection point: it does not continue beyondb.

2. If the intersection is determined by a rayr and a segments of S, thenr is truncated
at that intersection point: it does not continue beyonds.

3. If the intersection is determined by two raysr1 andr2 of the same orientation,
then one ray is allowed to continue, and the other is truncated. We assume thatr2

intersectsr1 from the right (as viewed fromr1). If the rays are upward-oriented,
thenr2 is truncated; if they are downward-oriented,r1 is truncated.

4. If the intersection is determined by an upward-oriented rayru and a downward-
oriented rayrd, thenru is allowed to continue, andrd is truncated.

See Fig. 2 for illustrations of each of these cases.



390 P. Bose, M. E. Houle, and G. T. Toussaint

RULE 1

r

RULE 2

RULE 3 RULE 4

r1

r2 r3
r4

r1

r2

r3

s

r1

r2

b

Fig. 2. Extension ray intersection rules.

These rules are sufficient to guarantee that the resulting subdivision is convex. A
vertex v of the subdivision is either an endpoint of a segment ofS, a corner of the
bounding box, or the truncation point of some ray, but in each of these cases, every angle
incident tov (and interior to the box) is at mostπ by the construction. Thus every region
is a polygon with no interior angle greater thanπ , and is thereby convex.

To construct the subdivision in an efficient manner, we make use of the well-known
sweep-line paradigm. We assume that the reader is generally familiar with this paradigm,
and present only a sketch of the construction here. For more information regarding sweep-
line techniques, see [11].

The sweep is done in two passes: in the first pass a horizontal line is swept from bottom
to top, searching for intersections involving upward-oriented rays only—downward-
oriented rays are ignored. When an intersection is detected, the appropriate rule (1, 2, or
3) is applied.

In the second pass the downward-oriented rays are introduced. A horizontal line is
swept from top to bottom, searching for intersections involving downward-oriented rays.
When an intersection is detected, the appropriate rule (1, 2, 3, or 4) is applied. Note that
the fourth rule guarantees that the subdivision edges introduced in the first pass are not
disturbed, as these edges derive from upward-oriented rays.

Consider the set of line segments (and its bounding box) shown in Fig. 3(a). The
subdivisions obtained after the first and second passes are shown in Fig. 3(b) and (c),
respectively.



Every Set of Disjoint Line Segments Admits a Binary Tree 391

(a) Before (b) After first pass

(c) After second pass

Fig. 3. Constructing the convex subdivision.

3. Properties of the Convex Subdivision

In this section we state and prove a number of facts concerning convex subdivisions
of the kind described in the previous section. We also examine structures to be found
within the subdivision which are central to the description of the algorithm presented in
the following section, both in its motivation and in the proof of its correctness.

We assume throughout that Q is the subdivision for a setSof n line segments in the
plane.

Lemma 1. The number of edges, vertices, and regions of Q is in O(n).

Proof. Follows easily from Euler’s formula [2].

The edges of the subdivision can be of one of three types:

• segment edges, which derive from segments ofS,
• extension edges, which derive from extension rays of segments ofS, and
• box edges, which derive from the sides of the bounding box.

Each extension edge can be thought to have an orientation, namely that of the ray from
which the edge is derived. It can be classified as anupwardextension edge or adownward
extension edge, depending on the orientation of the ray.



392 P. Bose, M. E. Houle, and G. T. Toussaint

Lemma 2. Every cycle in Q(other than the cycle forming the bounding box) contains
an endpoint of some segment in S.

Proof. Assume otherwise: that is, there exists some cycleη that does not consist entirely
of box edges, and that does not contain an endpoint of any segment inS. Note that the
cycle must contain at least one extension edge.

Letη′ = {e0,e1,e2, . . . ,ek−1,ek} be the subsequence ofη consisting of the extension
edges ofη, wheree0 = ek. With respect to the ordering ofη′, each extension edge is
oriented eitherforward or backward.

• CaseI: the edges ofη′ do not all share the same orientation.
In this case there must exist somei such thatei is backward andei+1 is forward.
Clearly,ei andei+1 cannot share a common endpoint—otherwise, two rays would
emanate from one point, in contravention of the rules governing intersections (3
and 4). This implies that there must be at least one non-extension edge betweenei

andei+1 in η. Let e be the non-extension edge occurring immediately beforeei+1

in η.
Let v be the vertex of Q wheree meetsei+1. Vertex v cannot lie on a box

edge, since no extension ray can emanate from the side of the bounding box.
Thereforee must be a segment edge. However,v must then be an endpoint of the
underlying segments in S, since no extension ray can emanate from the side ofs.
This contradicts the assumption.
• CaseII: the edges ofη′ all share the same orientation.

Without loss of generality, we can assume that the extension edges are all forward
edges. The arguments of Case I imply that the cycle must consist entirely of exten-
sion edges—that is,η = η′, and the cycle is the sequenceη itself. The edges ofη′

therefore cannot be all upward; otherwise, each vertex in the cycle would have the
y-coordinate strictly greater than its predecessor, which is impossible. Similarly,
the edges ofη′ cannot be all downward. Therefore there exists somej such thatej

is upward andej+1 is downward.
Letv′ be the vertex whereej meetsej+1. The edgeej+1, being forward, is oriented

away fromv′. Thereforeej (and notej+1) was on the ray that was truncated atv′.
However, this contravenes the fourth intersection rule of Section 2, by which the
downward-oriented ray containingej+1 should have been truncated instead. Thus
no simple cycle may have its extension edges share a common orientation.

Lemma 2 has an immediate implication concerning the structures formed by extension
edges. Let F be the subgraph of Q induced by the extension edges of Q. Since Q cannot
contain cycles consisting entirely of extension edges, F must be aforest; that is, each
connected component of F is a tree. We refer to such trees asextension trees.

By the orientation of its incident edge, we can distinguish between two types of
leaves of extension trees: those whose incident edges are directed away from the leaf,
and those whose incident edges are directed towards the leaf. The former kind correspond
to endpoints of segments ofS; the latter kind can be formed only when an extension
ray meets either the side of a segment or the bounding box. While an extension tree can
have many leaves of the former kind, it turns out that it can have only one of the latter



Every Set of Disjoint Line Segments Admits a Binary Tree 393

kind. We refer to these latter kinds of nodes asrootsof their respective trees, reserving
the termleaf for nodes of the former kind. The following lemma justifies the use of this
terminology:

Lemma 3. If T is an extension tree, then it has exactly one root. Furthermore, the
edges along the path from any node to the root are all oriented towards the root.

Proof. According to the rules governing the intersections of extension rays, each in-
ternal node of the tree has exactly one outgoing edge. From any starting nodex, we
consider the set of nodes reachable fromx via a sequence of outgoing edges. SinceT
has no cycles, and is finite, this sequence must describe a unique path inT of finite
length, oriented towards the terminus. Since the definition states that leaves are incident
to outgoing edges, and roots to incoming edges, the terminus of this path can only be a
root. This root is unique, since every internal node can have only one outgoing edge.

Even though the leaves of an extension tree may lie on many different segments of
the subdivision, the uniqueness of the root allows us to associate each tree with either a
unique segment ofS, or the bounding box. LetT1 andT2 be extension trees rooted on
the same side of a common segments of S, and letr1 andr2 be their respective roots. If
no other extension tree rooted on the same side ofs has its root betweenr1 andr2, then
we say thatT1 andT2 areadjacent. In the same spirit, we say that two trees rooted on
the bounding box are adjacent if it is possible to move along the bounding box from one
root to the other without encountering the root of any other extension tree. See Fig. 4 for
an example of adjacent extension trees.

Consider a segments of S, and the setT = {T1, T2, . . . , Tk} of all trees rooted to
one particular side ofs. We assume that the trees of T are indexed in accordance with
the left-to-right ordering of their roots with respect tos, as viewed towardss from the
side to which the trees attach. Let(v1, v2, . . . , vm) be the sequence of leaves one would
obtain if one reported them as they were encountered during an inorder traversal of all
the trees of T in left-to-right order. With respect to this ordering, we say thatvi is the

v1
v2

v3
v4

v6 v7 v8
v9

r1 r2

Fig. 4. Two adjacent extension trees.



394 P. Bose, M. E. Houle, and G. T. Toussaint

left neighbourof vi+1, thatvi+1 is theright neighbourof vi , and thatvi andvi+1 are
neighbouringleaves (see Fig. 4).

Observation 4. Let v andw be neighbouring leaves with respect to some segment s
of S. Then there exists a path fromv tow in Q that

• passes only through extension edges of trees rooted at s,or segment edges contained
in s, and
• that is entirely contained in the boundary of some cell c of Q.

Observation 5. Letv be a leaf of an extension tree Tv rooted at some segment s of S.
Let sv be the left endpoint of s as viewed from the side to which the extension tree is
rooted. If v has no left neighbour, then there exists a path fromv to sv in Q that

• passes only through extension edges of Tv, or segment edges contained in s, and
• that is entirely contained in the boundary of some cell c of Q.

Note thatv can be identical tosv, in which case the extension tree of whichsv is a
leaf has its root ats. By symmetry, Observation 5 holds whenv has no right neighbour
andsv is the right endpoint.

Observation 4 extends to the case where we consider all trees rooted at the bounding
box. The only difference worth noting here is that whereasv1 has no left neighbour and
vm has no right neighbour in the case outlined above, every leaf of a tree rooted at the
bounding box always has both a left and a right neighbour.

We conclude the discussion of the properties of the convex subdivision with the
following lemma, that shows that all segments ofScan be connected simply by ensuring
that for every cellc, the segments on the boundary of every cellc are mutually connected.

Lemma 6. Let S be a set of n disjoint line segments, and let Q be its underlying convex
subdivision. Let G be any planar graph whose vertex set is the set of endpoints of the
segments in S and whose edge set includes the segments of S. Then G is connected if
and only if for every cell c of Q, the set of segment endpoints on the boundary of c is
connected in G.

Proof. If G is connected, then trivially the set of segment endpoints on the boundary
of any given cell are mutually reachable inG.

If the segment endpoints on the boundary of every cellc are mutually connected in
G, then the fact thatG is connect follows from Lemma 2 (i.e., every cycle in Q must
contain an endpoint ofS) and the fact that the planar dual [2] of Q is connected.

4. Constructing an Encompassing Tree of Degree 3

The degree-3 encompassing tree construction algorithm, ENCOMPASS, can best be de-
scribed as incremental: starting from a single segment ofS, previously unattached seg-



Every Set of Disjoint Line Segments Admits a Binary Tree 395

ments are attached to a growing treeG one by one until no unattached segments remain.
When the algorithm terminates,G is the encompassing tree forS.

In the next subsection we discuss some of the invariants and conventions observed
by ENCOMPASS.

In Section 4.2 we present a key procedure of the overall algorithm, ATTACHTO—one
which given a leaf of an extension tree, attaches to it the segment at which the tree is
rooted.

Procedure ATTACHTO is not in itself sufficient to link up correctly all the segments
into an encompassing tree of degree 3. Although the main algorithm greedily relies on
ATTACHTO to attach as many segments as possible to the growing connected compo-
nent, it sometimes occurs that segments are left unattached even after all opportunities
for applying ATTACHTO have been exhausted. In Section 4.3 we present the procedure
STITCHUP that takes a cell with both attached and unattached segments in its boundary,
and attaches toG those segments that ATTACHTO could not find.

In Section 4.4 we present the main algorithm, as well as its complexity analysis, and
a proof of correctness.

4.1. Preliminaries

Algorithm ENCOMPASSaccepts as its input a set of segmentsSand returns an encompass-
ing treeG of degree at most 3. Whenever in the course of the execution of the algorithm
an edge ofG is created between two segment endpointsv andw, we say that abridge
(v,w) has been created betweenv andw.

The ENCOMPASSalgorithm maintains the following invariants regarding the creation
of bridges:

• A bridge is added only between two mutually visible endpoints.
• Each bridge added to the encompassing tree passes through the interior of exactly

one cell of the subdivision Q, from one segment endpoint on its boundary to another
segment endpoint on the boundary.
• Each endpoint can have at most two bridges attached to it, one through each of the

two cells sharing the endpoint in their common boundary.
• A bridge is never created between two endpoints so as to introduce a cycle intoG.

During the execution of the algorithm, as vertices are visited and bridges created,
the segments, segment endpoints, and cells of Q acquire various labels. The labels also
respect certain invariant conditions, outlined below.

A segment can be labeledunattached, in which case it has not yet been bridged to
any other segment;attached, which indicates that it has been integrated into the final
encompassing treeG; andsemi-attached, which indicates that it has been connected
to other segments by means of bridges, but has not yet been integrated into the final
encompassing tree.Semi-attachedsegments are labeled with the name of a connected
component into which it has been integrated. Initially, all segments areunattached.
Once a segment becomessemi-attached, it will never again becomeunattached. Once
it becomesattached, it will always remainattached. The bounding box as a whole will



396 P. Bose, M. E. Houle, and G. T. Toussaint

sometimes be treated as if it were a segment. It is initialized with the labelunattached,
and will eventually receive the labelattached.

Segment endpoints can be labeledunvisited, pending, or examined. An endpoint is
unvisitedif its segment has not yet been attached to another. Otherwise, if it is a candidate
leaf from which to apply ATTACHTO, then it carries the labelpending. Endpoints labeled
unvisitedorpendinghave no bridges yet attached to them. An endpoint labeledexamined
is one from which a call to ATTACHTO is no longer necessary. Initially, all segment
endpoints areunvisited. Once an endpoint becomespending, it will never again become
unvisited. Once it becomesexamined, it will always remainexamined.

The labels of the cells of Q depend on the labels of the segments having endpoints
contained in its boundary. If these labels are allunattached, then the cell is labeled
unvisited. If the segments are allattached, this implies that all endpoints in the boundary
of the cell are mutually connected by the encompassing tree, and thus the cell acquires
the labelconnected. A cell that is neitherconnectednorunvisited(that is, only “partly”
connected) is labeledpending. Initially, all cells areunvisited. Once a cell becomes
pending, it will never again becomeunvisited. Once it becomesconnected, it will always
remainconnected. When all cells becomeconnected, all segments are inG.

In the descriptions to come, the labels of cells are often not explicitly mentioned.
We assume that every time a segment label is modified, the labels of the two cells upon
which it borders are updated in accordance with the new segment label. This can be done
simply by maintaining an appropriate counter for each cell.

4.2. Connecting the Leaves of Extension Trees

Under the assumption that no two segments are collinear, Observation 4 implies that
subject to other restrictions (such as the invariants outlined in the previous subsection),
a bridge can always be created between any two neighbouring leavesv andw—unless
v andw are opposite endpoints of the same segment ofS, in which case no bridge is
necessary. If endpointv has no left neighbour, then by Observation 5 a bridge can be
created betweenv and the left endpoint of the segment to which the extension tree of
v is rooted (and similarly ifv has no right neighbour). Algorithm ENCOMPASStakes
advantage of this by means of its procedure ATTACHTO.

Procedure ATTACHTO(x,dir) accepts a leafx of an extension tree that is already
contained in some connected component (that is, eithersemi-attachedor attached), and
a directiondir (“left” or “right”). If Tx is the extension tree of whichx is a leaf, then
the behaviour of ATTACHTO depends on whetherTx is rooted at some segments∗ of S,
or at the bounding box. In the former case, ATTACHTO only proceeds ifs∗ is unattached
by traversing the trees rooted ats∗ towards one of the endpoints ofs∗ (determined by
dir), linking the leaves when necessary as it goes along. This process is guaranteed
to reach the targeted endpoint ofs∗, since each of the trees traversed are all rooted
ats∗.

The manner in which a leaf is linked depends on the labeling of the segment of which
it is an endpoint. Leta be the current leaf in the sequence, belonging to componentGa,
and letb be the next leaf in the sequence. Letsa andsb be the segments of whicha andb
are endpoints, respectively. Ifsb is unattached, ATTACHTO introduces a bridge between



Every Set of Disjoint Line Segments Admits a Binary Tree 397

a andb, integratessb into Ga by assigning it the same label assa, and then continues the
procedure fromb.

If sb is notunattached, then it belongs to some connected componentGb. If Gb = Ga,
then instead of bridging froma to b (and introducing an unwanted cycle intoGb = Ga),
the procedure simply proceeds onward fromb without creating a bridge.

If Gb 6= Ga, then the introduction of a bridge froma to b forces the two components
to be merged. IfGb = G, then all segments ofGa are immediately relabeled to that of
G, namelyattached. Similarly if Gb = G, all segments ofGb are immediately relabeled
to attached. If neitherGb nor Ga equalsG, then the two components are merged. In all
three cases the procedure continues fromb.

Whenever two components other thanG are to be merged, it would be inefficient
to relabel the segments of one component explicitly to match that of the other; if this
is done, a given edge could potentially be relabeled many times. Instead, an efficient
set union-find data structure U is used to keep track of equivalence classes of seg-
ment labels. Merging components is thus a matter of merging classes of labels. The ex-
plicit relabeling that occurs when a component is merged withG can only be done
once per edge—once a segment receives the labelattached, its label will never change
again.

The procedure by which the leaves of neighbouring extension trees are linked finishes
with the initial leafx ands∗ in the same connected component; several components may
have been merged with each other or intoG in the process. Once segments∗ has been
attached (say at its endpointλ), ATTACHTO is called again starting fromλ. To avoid
creating two bridges atλ in the same cell of Q, the direction of the linking is reversed.
For example, if the call ATTACHTO(x, left) resulted ins∗ being linked tox, then the call
ATTACHTO(λ, right) would be performed.

If λ itself is the last extension tree leaf, then by attachingλ, s∗ is attached. In this
case, since extension treeTλ is rooted at the previously visited segments∗, no further
call to ATTACHTO is made fromλ.

Figure 5 illustrates the process by which segments are attached by showing the bridges
created as a result of a call to ATTACHTO(x, right), assuming the prior creation of bridge
b. Note that in this example, the sequence of calls to ATTACHTO terminates at a nodey
which is simultaneously the target endpoint of its segment, and the last of the leaves of
the extension trees rooted at its segment.

In the case whereTx is not rooted at a segment ofS, but instead is rooted at the bounding
box, the behaviour of ATTACHTO is somewhat different. If ATTACHTO is called when all
segments are yetunattached, the circular nature of the list of neighbours results in the
connection of the entire list. Once the starting point is reached, the process terminates.
For an example of how ATTACHTO handles this special case, see Fig. 6.

ATTACHTO(x,dir)

(1) If x has already been markedexamined, then return. Otherwise, markx as being
examined.

(2) Let Tx be the extension tree of whichx is a leaf, and letrx be the root ofTx. Let
s∗ be the segment at whichTx is rooted.

(3) If s∗ is attachedor semi-attached, then return.



398 P. Bose, M. E. Houle, and G. T. Toussaint

xS

b

y

x

Fig. 5. Bridges created by ATTACHTO(x, right).

(4) (s∗ must be anunattachedsegment.)
If x has no neighbouring leaf in the directiondir, then:
(4a) Letw be that endpoint ofs∗ which lies in directiondir from rx as viewed

from x. If x = w, then return.
(4b) Otherwise:

(4b1) Create a bridge betweenx andw. Mark s∗ with the label ofsx. Mark
the endpoint ofs∗ opposite tow aspending.

(4b2) Letoppdirbe the direction opposite todir. ATTACHTO(w,oppdir).
(5) Else,x has a neighbouring leafy in the directiondir. Let sy be the segment of

which y is an endpoint.
(5a) If sy is unattached, then create a bridge betweenx andy. Mark sy with the

label ofsx, and the endpoint ofsy opposite toy aspending.

x

Fig. 6. Bridges created by ATTACHTO(x, right).



Every Set of Disjoint Line Segments Admits a Binary Tree 399

(5b) Otherwise,sy isattachedorsemi-attached. If the component ofsy is different
to that ofsx, then:
(5b1) Create a bridge betweenx andy.
(5b2) Ifsx isattached, then relabel all segments of the connected component

containingsy asattached.
(5b3) Otherwise, ifsy isattached, then relabel all segments of the connected

component containingsx asattached.
(5b4) Otherwise, bothsx andsy aresemi-attached. Merge the components

containingsx andsy, by making their labels equivalent to each other
within the union-find structure U.

(5c) ATTACHTO(y,dir).

It should be noted at this point that ATTACHTOmaintains each of the invariants listed in
Section 4.1. In particular, the introduction of the bridge at Step (5b1) does not violate the
invariant relating to the number of bridges that may be attached at a particular endpoint:
if y already had a bridge attached to it, the endpoint would have had the labelexamined—
in which case the procedure ATTACHTO would have been called aty before, that would
have resulted ins∗ already having been labeledattachedor semi-attached. A formal
inductive proof of correctness is given later in the paper.

4.3. Stitching Up Cells

Procedure ATTACHTO is not in itself sufficient to link all segments into a tree of de-
gree 3. Even if ATTACHTO is applied such that no more endpoints arepending, some
segments may still beunattached, and some cells of Q may not yet beconnected(see
Fig. 7 for an example). In these situations where ATTACHTO cannot be applied, the pro-
cedure to be outlined in this subsection takes over. Since this procedure, STITCHUP,
relies heavily upon special properties of subdivisions for which ATTACHTO cannot be
applied, we describe STITCHUP without worrying about its applicability at this stage.
Its applicability and usefulness will be established after the overall algorithm has been
described.

c

Fig. 7. No more endpoints arepending, butc is notconnected.



400 P. Bose, M. E. Houle, and G. T. Toussaint

Procedure STITCHUPis called upon cells that are labeledpending: to be precise, those
that have endpoints of bothattachedandunattachedsegments in their boundaries. Ifc
is such a cell, the effect of calling STITCHUP is to attach allunattachedsegments having
one or both endpoints lying on the boundary ofc.

This is done in three phases. In the first phase a clockwise scan is performed around the
boundary ofc, starting from an endpointw0 that is guaranteed to belong to anattached
segment. When the scan encounters anunattachedsegment with both endpoints on
the boundary ofc, it initiates a call to ATTACHTO in one of two ways, depending on
the number of consecutiveunattachedsegments encountered leading up to the current
segment.

Once the first invocation of ATTACHTO has terminated, a number of previouslyun-
visitedendpoints may becomepending. Calls to ATTACHTO are then initiated from each
pendingendpoint, until no furtherpendingendpoints remain. The result of this process is
the creation of a connected component consisting ofsemi-attachedsegments and bridges.
The scan then progresses to the next segment with both endpoints in the boundary ofc,
and the process is repeated to yield another connected component.

It is shown later that when this scan has terminated, each of the previouslyunattached
segments on the boundary ofcwill have been integrated into a connected component. As a
result of the action of ATTACHTO, some components may have merged with each other, or
even with the original component ofattachededges. Furthermore, every survivingsemi-
attachedcomponent shall be shown to contain at least two endpoints on the boundary
of c that are not incident to any bridges passing throughc.

In the second phase of the STITCHUPprocedure, a clockwise scan is again performed,
this time to identify endpoints ofsemi-attachedcomponents not incident to bridges
throughc. When two consecutive such endpoints are discovered from differentsemi-
attachedcomponents, a bridge is introduced, thereby merging the components. Once
the scan is complete, a singlesemi-attachedcomponent remains.

In the final phase the remainingsemi-attachedcomponent (call itG′) is integrated
into theattachedcomponentG, in one of two ways. If the endpointw0 is incident to no
bridge passing throughc, thenw0 may safely be bridged to either of two endpoints of
G′ (call themλ andρ) identified as incident to no bridges passing throughc. Otherwise,
if a bridge throughc is incident tow0, it is replaced by two new bridges connectingG
to G′. The connectivity of the endpoints of the deleted bridge is in a sense “diverted”
through the new bridges and segments of thesemi-attachedcomponent.

Once STITCHUP has terminated for cellc, all segments are again labeled eitherat-
tachedor unattached, and again no endpoint of a segment ofS is left with a label of
pending. We claim, and prove later, that all segments on the boundary ofc that were
previouslyunattachedhave becomeattachedas a result of the call to STITCHUP.

STITCHUP(c)

(1) Let W = {w0, w1, w2, . . . , wk−1, wk} be the sequence of segment endpoints
encountered as one traverses the boundary ofc in clockwise order, wherew0 = wk

is the first endpoint on the boundary ofc to have been marked by the algorithm
asexamined. Let si be the segment of whichwi is an endpoint, for all 0≤ i
≤ k.



Every Set of Disjoint Line Segments Admits a Binary Tree 401

(2) Initialize the union-find structure U to recognize equivalence classes within the
set of labels{1, . . . , k− 1}. Each label is initially in its own equivalence class.

(3) For i ←− 0 tok− 1, do the following:
(3a) If segmentsi is attachedor semi-attached, then seta←− i .

(astores the most recently encounteredattachedorsemi-attachedendpoint.)
(3b) If si is unattachedandsi = si+1, then:

(3b1) (si has both endpoints on the boundary ofc.)
Mark si assemi-attachedwith component labeli —segmentsi is the
first in a new connected component. Markwi andwi+1 aspending.

(3b2) If i − a is even, then initiate ATTACHTO(wi , right).
(3b3) If i − a is odd, then initiate ATTACHTO(wi+1, left).
(3b4) While there are endpoints yetpending, choose such an endpoint (call

it y), and initiate ATTACHTO(y, right).
(4) Setλ←− ρ ←− ∅.
(5) Fori ←− 0 tok−1, do the following. Ifsi is semi-attachedandwi has no bridge

attached to it passing through cellc, then:
(5a) If λ = ∅, then setλ←− i .
(5b) Otherwise, ifρ = ∅, then setρ ←− i .
(5c) Otherwise, ifsi andsρ are in differentsemi-attachedconnected components,

then:
(5c1) Introduce a bridge betweensρ andsi throughc.
(5c2) Using the union-find structure U, merge the components containing

sρ andsi .
(5c3) Setρ ←− i .

(5d) Otherwise, ifsi andsρ are in the samesemi-attachedconnected component,
then setρ ←− i .

(6) At this point, all segments with endpoints on the boundary ofcare eitherattached,
or belong to a commonsemi-attachedconnected component.
(6a) If there is no bridge attached tow0 passing throughc, then introduce the

new bridge(w0, wλ).
(6b) If there previously existed a bridge betweenw0 andw1, then delete the

bridge and replace it with bridges(w1, wλ) and(wρ,w0).
(6c) Otherwise, there previously existed a bridge betweenw0 andwk−1. Delete

this bridge and replace it with bridges(w0, wλ) and(wρ,wk−1).
(7) Relabel allsemi-attachedsegments inSas beingattached.

Note that STITCHUPmaintains each of the invariants listed in Section 4.1; in particular,
a call to STITCHUP cannot result in the connection of more than one bridge throughc at
any endpoint of any segment. The proof of this claim follows the discussion of Algorithm
ENCOMPASSin the next section.

4.4. The Main Algorithm

Having described procedures ATTACHTO and STITCHUP, we are now in a position to
outline the main algorithm. Following this, we prove that it is correct.



402 P. Bose, M. E. Houle, and G. T. Toussaint

ENCOMPASS

(1) From the set of segmentsS, build its associated convex subdivision using the
method outlined in Section 2.

(2) Mark the bounding box and each segment asunattached. Mark each segment
endpoint and each cellunvisited.

(3) Connect the leaves of all trees rooted at the bounding box, as follows:
(3a) Choose such a leaf (call itx). Letsx be the segment of whichx is an endpoint.
(3b) Marksx asattached, and the endpoint ofsx opposite tox aspending.
(3c) ATTACHTO(x, right).
(3d) Mark the bounding box asattached.

(4) While there are endpoints yetpendingdo:
(4a) Choose such an endpoint (call ity).
(4b) ATTACHTO(y, right).

(5) While there are cells yetpendingdo:
(5a) Choose such a cell (call itc).
(5b) STITCHUP(c).

The proof of correctness of Algorithm ENCOMPASSis by induction. It is easily seen
that the first segments are correctly attached toG at Step (3) of ENCOMPASS. For each
remaining segments of S attached at Step (4) or Step (5), we assume inductively that
both Lemmas 7 and 8 hold true befores is attached, and show that both also hold after
s is attached.

The proofs of the lemmas rely on two main facts. First, ATTACHTO and STITCHUP

both maintain the invariants set out in Section 4.1. In particular, any endpoint labeled
unvisitedor pendingis not connected to a bridge. Both ATTACHTO and STITCHUPensure
that when a new bridge is introduced, its endpoints will have acquired the labelexam-
ined. Second, any endpoint with the labelexaminedmust have been given this label by
ATTACHTO.

Lemma 7. Let sv be a segment labeled eitherattachedor semi-attached,and letv be
an endpoint of sv which has becomeexaminedas a result of the application ofATTACHTO

uponv. Let Tv be the extension tree of whichv is a leaf, and let s be the segment of S
at which Tv is rooted. If s wasunattachedat the time thatATTACHTO was invoked onv,
then once this invocation has terminated, s must have correctly been made a member of
the same connected component as sv.

Proof. We assume thats is not in the same connected component assv after the invoca-
tion of ATTACHTO onv has terminated. If the call to ATTACHTO onv did not immediately
result ins being bridged tov, then ATTACHTO attempted to link the neighbouring leaves
of extension trees to an endpoint ofsby means of bridges. If all these leaves were labeled
unvisitedor pending, then clearly the algorithm succeeded in bridging to and attaching
the segments, as no bridges had previously been attached to these leaves. Therefore at
least one of the leaves (call itv′) on the path to the endpoint ofs must have previously
beenexamined. As v′ can only have been given this label by ATTACHTO, the induction
hypothesis implies thatv′ ands are in the same connected component. However, ifv′



Every Set of Disjoint Line Segments Admits a Binary Tree 403

andv are not already in the same connected component, the bridge(v, v′) introduced at
Step (5b1) of ATTACHTO causes the components to be merged. From this contradiction,
the result follows.

Lemma 8. Let c be apendingcell upon which the callSTITCHUP(c) is made, at a time
when all segments of S are labeled eitherattachedor unattached.Then when the call to
STITCHUP terminates:

1. All segments of S are again labeled eitherattachedor unattached.
2. No endpoints of segments of S arepending.
3. c is correctlyconnected.

Proof. Consider the sequence of segment endpointsW = {w0, w1, w2, . . . , wk−1, wk}
encountered as one traverses the boundary ofc in clockwise order, wherew0 = wk is the
first endpoint on the boundary ofc to have been marked by the algorithm asexamined.
Let si be the segment of whichwi is an endpoint, for all 0≤ i ≤ k.

Imagine the boundary ofc as viewed from the interior, in clockwise order starting
fromw0. The extension edge emanating from each endpoint ofW must itself lie on the
boundary ofc. If the extension edge ofwi follows wi when scanning the boundary in
clockwise order, then we say thatwi is aclockwise(CW) endpoint ofW. Otherwise,wi

is called acounterclockwise(CCW) endpoint.
We first show that after the loop of Step (3) has terminated, all segments on the

boundary ofc are eitherattachedor semi-attached. The invariants maintained during the
execution of the loop are:

1. Immediately before the execution of Step (3b1),sj is attachedor semi-attached
for all 0≤ j ≤ a.

2. Immediately after the execution of Step (3b4),sj is attachedor semi-attachedfor
all 0≤ j ≤ i + 1.

3. Immediately after the execution of Step (3b4),sj belongs to the same connected
component assi+1, for all a < j ≤ i .

4. Except during the execution of Steps (3b1)–(3b4), no endpoints of edges are
pending.

5. Immediately after the execution of Step (3b4), ifsi is labeledsemi-attached, then
there exist two endpointswj1 andwj2 of W such that:
• there are no bridges passing through the interior ofc havingwj1 or wj2 as an

endpoint;
• j1 < j2 ≤ i + 1;
• if b is the smallest index such thatsb belongs to the samesemi-attachedcom-

ponent assi , thensj also belongs to this component for allb ≤ j ≤ j2.

Note that when STITCHUP is invoked, no endpoints can be labeledpending. Also note
that in the first iteration of the loop,a is set to 0, sinces0 had beenattachedprior to the
call to STITCHUP.

Consider now the situation ati = p in which segmentsp is found to beunattached
at Step (3a), andsp−1 has the labelattachedor semi-attached. Endpointwp cannot be
CW; otherwise, the sequence of edges on the boundary ofc betweenwp−1 andwp



404 P. Bose, M. E. Houle, and G. T. Toussaint

would consist of extension edges, followed by a single segment edge adjacent towp.
The extension tree of whichwp−1 is a leaf would therefore be rooted atsp. Since the loop
invariant implies thatwp−1 cannot be labeledpending(and therefore must beexamined),
Lemma 7 implies thatsp must beattachedor semi-attached—a contradiction. Therefore
wp must be CCW in this situation.

Let p < q ≤ k be the smallest index such that eitherwq is CW, orsq is attached
or semi-attached. We claim that in factsq must beunattached. Otherwise, we have two
cases:

• wq is CW.
From the definition ofq, we have thatwq−1 is CCW. The only way a CCW endpoint
can be followed by a CW endpoint in CW order about the boundary ofc is if the
endpoints belong to the same segment. However, the assumption thatsq is attached
or semi-attachedimplies thatsq−1 = sq is alsoattachedor semi-attached. This
contradicts the minimality ofq.
• wq is CCW.

Sincewq−1 is also CCW, the sequence of edges on the boundary ofc between
wq−1 andwq would consist of extension edges, preceded by a single segment edge
adjacent towq−1. The extension tree of whichwq is a leaf would therefore be
rooted atsq−1. Since the loop invariant implies thatwq cannot be labeledpending
(and therefore must beexamined), Lemma 7 implies thatsq−1 must beattachedor
semi-attached—again contradicting the minimality ofq.

We are forced to conclude thatwq is CW, and also thatsq−1 = sq. This implies the
following:

• Once anunattachedsegmentsp is discovered at Step (3a), the condition of Step (3b)
will eventually be met at somei ≥ p.
• Segmentsj is unattachedfor all p ≤ j ≤ i + 1.
• Endpointwj is CCW for all p ≤ j ≤ i .

When Steps (3b1)–(3b4) are executed, the effect is to rendersemi-attached(or pos-
sibly evenattached) every segmentsj in the rangep ≤ j ≤ i + 1. To prove that this is
the case, consider the effect of initiating ATTACHTO at endpointwj , wherewj andwj−1

are both CCW. Arguments similar to those appearing above ensure that as a result of the
call to ATTACHTO, segmentsj−1 becomes a member of the same connected component
assj . Endpointwj−1 becomes eitherpendingor examined, depending on the endpoint by
which sj−1 becomes attached. However, Step (3b4) ensures that allpendingendpoints
becomeexaminedbefore the step terminates. Given that both endpoints ofsi = si+1 are
labeledpendingin Step (3b1), and that allwj are CCW andsj are initially unattached
for all p ≤ j ≤ i , all wj in the range must becomeexaminedby the time Step (3b4)
terminates.

When Step (3b4) terminates, the second through fourth loop invariants mentioned
above have been restored. Sincesi+1 = si becomessemi-attached(or possibly even
attached) as a result,a is set toi + 1 in the next iteration of the loop. This guarantees
that the first loop invariant holds for the next execution of Step (3b1), if any. Thus when
the loop terminates, all segments in the boundary ofc are indeed labeled eitherattached
or semi-attached.



Every Set of Disjoint Line Segments Admits a Binary Tree 405

So far we have not justified the separate handling of the cases depending on the parity
of i − a, in Steps (3b2) and (3b3). We claim that this separate handling allows the fifth
loop invariant to be maintained. We assume then thatsi issemi-attachedwhen Step (3b4)
terminates.

If i−a is even, then Step (3b2) preventswi from receiving a bridge through the interior
of c before the termination of Step (3b4)—since all bridges introduced in Step (3b)
merge segments into a common connected component, a second bridge throughwi

would introduce a cycle. In order to identify a second endpoint that receives no bridge
throughc, consider the endpoints whose indices lie in the range{a + 1, . . . , i − 1}.
Any bridges introduced throughc at any of the endpoints in the range must either
link two consecutive endpoints in the range, or must linkwa+1 with wa. We have two
cases:

• wa+1 is not bridged towa.
Since no endpoint can receive more than one bridge, an even number of endpoints
of the range must receive bridges. As the cardinality of the range is odd, there must
be at least one endpoint that receives no bridge throughc. Together withwi , this
leaves thesemi-attachedcomponent ofsi with at least two unused endpoints with
indices in the range{a+ 1, . . . , i + 1}.

Let b be the smallest index such thatsb belongs to the samesemi-attached
component assi = si+1. If b = a + 1, we are done, sincesj is in the component
of si for all a+ 1≤ j ≤ i + 1. Otherwise,b ≤ a. Immediately before the current
iteration of the loop, segmentsb must have been the segment of smallest index of
a differentsemi-attachedcomponent. If so, the fifth loop invariant guarantees the
existence of endpointswj1 andwj2 to which no bridges were incident throughc
before the current iteration whereb ≤ j1 < j2. Sincesj ′ was in the same component
assb for all b ≤ j ′ ≤ j2, then j2 ≤ a. Also since no bridge was introduced at the
current iteration betweenwa andwa+1, the endpointswj1 andwj2 are not incident
to bridges throughc when the current iteration terminates. The fifth loop invariant
is therefore satisfied in this case.
• wa+1 is bridged towa.

If this occurs, the connected component ofsi merges with that ofsa. If sa isattached,
thensi becomesattached, contradicting our assumption thatsi wassemi-attached
at the end of Step (3b4). Ifsa issemi-attached, then the result of the merge is a single
semi-attachedcomponent. By the fifth loop invariant, at least two endpointswj1
andwj2 of W in thesemi-attachedcomponent to whichsa belonged had no bridge
attached to them passing throughc. Let b be the smallest index of the segments in
the component ofsa. As before,b ≤ j1 < j2 ≤ a.

If j2 < a, then the arguments of the previous case apply to show that the fifth
loop invariant continues to hold. Otherwise,j2 = a. Sincesj belongs to the former
component ofsa for all b ≤ j ≤ a, and to the component ofsi for all a+1≤ j ≤ i ,
after the merge,sj belongs to the component ofsi for all b ≤ j ≤ i + 1. Endpoint
wj1 cannot have received a bridge as a result of the merge, and thereforewj1 and
wi satisfy the conditions of the fifth loop invariant.

If i −a is odd, Step (3b3) ensures thatwi+1 will have no bridge attached to it through
c. Considering that the range of indices{a+1, . . . , i } is of odd cardinality, the fifth loop



406 P. Bose, M. E. Houle, and G. T. Toussaint

invariant can be shown to hold using an argument almost identical to that of the case
wherei − a is even.

At this point, we have shown that all five invariants are maintained by the loop of
Step (3). In particular, when the loop terminates, the second, third, and fifth invariants
still hold, and no endpoints of segments inS arepending. Each bridge passing through
c must link consecutive endpoints ofW, since it can only have been introduced via a
call to ATTACHTO. Such bridges cannot interfere with any other bridges that may later
be introduced between free endpoints ofW.

The loop in Step (5) uses the indexρ to maintain the most recently encountered
unbridged endpoint of the currentsemi-attachedcomponent; whenever an unbridged
endpoint of a new component is discovered, a bridge is introduced betweenwρ and the
new endpoint, merging the components. The fifth invariant guarantees that when the first
unbridged endpointwj1 of a new component is discovered, a second unbridged endpoint
wj2 of that component also exists, withj2 > j1. This ensures that the merged component
has an unbridged endpoint that can be used to merge the next component to be discovered
by the loop of Step (5). When the loop terminates, allsemi-attachededges have been
merged into one component, andλ andρ are the minimum and maximum indices of the
original unbridged endpoints taken over allsemi-attachedsegments.

In Step (6) thesemi-attachedcomponent is merged into theattachedcomponent via
endpointsw0, wλ, and (perhaps)wρ . Since there exists noj in the interval{0, . . . , λ}
such thatwj was an unbridged endpoint of asemi-attachedsegment before Step (5), the
bridges(w0, wλ) would intersect no other bridges throughc if introduced; similarly, the
bridges(w1, wλ) and(wρ,wk−1) would intersect no other bridges.

If w0 is not already incident to a bridge throughc, the introduction of bridge(w0, wλ)

correctly merges thesemi-attachedandattachedcomponents. Otherwise, if the bridge
(w0, w1) exists, replacing(w0, w1) by (w1, wλ) and(wρ,w0) correctly splices thesemi-
attachedcomponent into theattachedcomponent betweenw0 andw1. The result is a
single connected component that includes all endpoints ofW.

To conclude the proof, we note that when STITCHUP has terminated, no segments are
semi-attachedand no endpoints arepending.

Lemma 9. ENCOMPASSeventually terminates after taking at most O(n logn) time.

Proof. The construction of the underlying convex subdivision Q can be accomplished
using planar line-sweep techniques, as outlined in Section 2, inO(n logn) time [11]. At
the time of construction, pointers can be established linking the leaves of extension trees
with the segments to which they are rooted, and counters can be set up to allow efficient
modification of the labels of cells.

The total amount of work done in executing procedure ATTACHTO is proportional to
the number of vertices and edges of Q, which by Lemma 1 is inO(n). The first time
ATTACHTO is called on an endpoint, it marks it asexamined; if called on the endpoint
again, it simply exits without doing anything (this can be charged to the neighbour from
which the call was made). The extension edges of Q can be traversed at most once in each
direction when moving from neighbour to neighbour; segment edges can be traversed at
most four times each (twice from each of the two cells it bounds).



Every Set of Disjoint Line Segments Admits a Binary Tree 407

The total work done in executing STITCHUPonc can be divided into three categories:
work involving the union-find structure U; work involving calls to ATTACHTO; and the
remainder of the work. The work involving calls to ATTACHTOhas already been accounted
for. Also, the relabeling of the segments in the final step of STITCHUP can be charged to
the segments themselves—since each segment can becomeattachedonly once, the total
work performed in this step over all calls to STITCHUP is in O(n).

Let kc be the number of subdivision edges on the boundary of cellc; this number
is larger than the number of segment endpoints on the boundary. The total number
of union-find operations is inO(kc), as well as the total time taken which has not
already been accounted for by calls to ATTACHTO, or the relabeling discussed above. If
standard union-find structures are used [4], the time taken to perform these operations
is in O(kc · α(kc)), whereα(kc) is the very slowly growing inverse of Ackermann’s
function. Since STITCHUP can only be performed once per cell, the total time taken by
calls to STITCHUP is in O(

∑
c(kc · α(kc))) ⊆ O(α(n)

∑
c kc). Since each non-box edge

of the subdivision is contained in exactly two cells, and since the number of cells is in
O(n),

∑
c kc is proportional to the total number of edges of Q, which is inO(n). The

total additional time taken by the calls to STITCHUP is therefore inO(n · α(n)).
The overall work performed by ENCOMPASSis accounted for by the total work in-

volved in calls to ATTACHTO, to the additional work performed by STITCHUP, and to
the construction of the convex subdivision. The time taken to construct the subdivision
dominates, and thus the total time taken by ENCOMPASSis in O(n logn).

Lemma 10. When the execution ofENCOMPASSterminates, then G is a degree-3 en-
compassing tree for S.

Proof. Lemma 9 implies that ENCOMPASSdoes indeed terminate.
Assume thatG does not encompass all segments ofS. Then there exists at least one

cell of Q that isunvisited. Since no cell ispending(by Step (5)), all cells that are not
unvisitedmust beconnected. The correctness of Step (3) ensures that all cells bordering
the bounding box are notunvisited; therefore, they must all beconnected.

Let C be the union of all cells that areunvisited. The boundary of C consists of a
collection of disjoint simple cycles in Q. There is at least one cycle in the boundary;
call it C. SinceC cannot contain box segments, Lemma 2 implies that there exists some
segment endpointv on C. Sincev is on the boundary of anunvisitedcell, v must be
labeledunvisited. However,v is also on the boundary of aconnectedcell, and must
therefore be labeledexamined—a contradiction. Every cell must therefore be connected.
Lemma 6 then implies thatG encompasses all segments ofS.

The planarity and degree ofG are a result of the invariants set forth in Sec-
tion 4.1.

Theorem 11. Given a set S of n disjoint line segments in the plane, ENCOMPASScom-
putes a degree-3 planar encompassing tree of S in O(n logn) time and O(n) space.

Proof. Follows from Lemmas 1 and 7–10.



408 P. Bose, M. E. Houle, and G. T. Toussaint

5. Lower Bound

Finally, we show that the problem of finding a degree-3 encompassing tree of a set
of disjoint line segments requiresÄ(n logn) time to solve, using a reduction simi-
lar to that for the convex hull problem [11]. This implies the optimality of Algorithm
ENCOMPASS.

Theorem 12. The problem of sorting n real numbers is O(n)-transformable to the
problem of finding a degree-3 spanning tree of a set of disjoint line segments; thus,
finding a degree-3encompassing tree of a set of disjoint line segments requiresÄ(n logn)
time.

Proof. Given a setS of n positive real numbers,x1, . . . , xn, we show how any en-
compassing tree algorithm can be used to sort them with only linear overhead. For
convenience, lets1, . . . , sn represent the indices of the sorted order of the real numbers
from smallest to largest; that is,xs1 is the smallest of the numbers, andxsn is the largest.
Let m= xsn be the maximum element ofS.

For each numberxi , we construct a corresponding vertical line segment,l i , i.e., we
associate the numberi with the line segment. The line segmentl i is constructed in the
following way. The lower endpoint has coordinates(xi , x2

i − m2 − 1), and the upper
endpoint has coordinates(xi ,−x2

i + m2 + 1). Note that sincem can be computed in
linear time, the construction requires only linear time.

These endpoints are well defined—for all values ofi , the lower endpoint is strictly
below thex-axis, while the upper endpoint is strictly above. All of the lower endpoints
lie on the upward-opening parabolaL: y = x2−m2− 1 and all of the upper endpoints
lie on the downward-opening parabolaU : y = −x2 +m2 + 1. Since the endpoints are
on the boundary of the a convex region (namely that bounded byU , L, and they-axis),
the fact that the segments are parallel means that the endpoints oflsi are visible from the
endpoints of no other edges exceptlsi−1 andlsi+1.

Since the degree-3 encompassing tree consists of visibility edges between line seg-
ments together with the line segments themselves, a simple depth-first traversal of the
tree starting from the leftmost vertex of degree 1 enables us to uncover the sorted order
of the input in linear time from the output delivered by any algorithm.

Although the segments of the proof were chosen to be parallel for the sake of conve-
nience, constructions in which no two segments are parallel can also be used.

6. Conclusion

In this paper we have shown that a set of disjoint line segments always admits an
encompassing tree with maximum vertex degree 3, and that there exist configurations
of line segments such that any encompassing tree of the set has maximum degree 3. We
presented an algorithm to compute a binary encompassing tree inO(n logn) time, and



Every Set of Disjoint Line Segments Admits a Binary Tree 409

showed a lower bound ofÄ(n logn) for the problem establishing the optimality of our
algorithm. There are a number of open problems still to be considered.

1. Is it NP-hard to compute a simple polygon or a simple hamiltonian path through a
set of disjoint line segments? Rappaport [12] has shown that the decision problem
is NP-complete when the line segments are allowed to intersect at their end-
points.

2. Is it possible to compute a simple polygon through a set of disjoint line segments,
where the line segments are either part of the boundary, internal diagonals, or
external diagonals [7]? Urabe and Watanabe [17] have shown that if the line seg-
ments are limited to the boundary and internal diagonals, that it is not always
possible.

3. Is the visibility graph of a set of disjoint line segments hamiltonian [7]? If not, can
anything be said about the longest path in the visibility graph?

Acknowledgments

We thank Hossam ElGindy, Eduardo Rivera-Campo, and Jorge Urrutia for fruitful dis-
cussions on the topic. We thank David Thompson for providing a stimulating research
environment.

References

1. D. Avis and D. Rappaport, Computing monotone simple circuits in the plane, inComputational Morphol-
ogy, G. T. Toussaint (ed.), Elsevier Science/North-Holland, Amsterdam, 1988.

2. J. A. Bondy and U. S. R. Murty,Graph Theory with Applications, Elsevier Science, New York, 1976.
3. P. Bose and G. Toussaint, Growing a tree from its branches,Journal of Algorithms19 (1995), 86–103.
4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, MIT Press, Cambridge, MA,

1990.
5. H. ElGindy and G. Toussaint, Efficient algorithms for inserting and deleting edges from triangulations, in

Proc. International Conference on Foundations of Data Organization, Kyoto, 1985, pp. 163–169.
6. B. Grünbaum, Hamiltonian polygons and polyhedra,Geombinatorics3 (1994), 83–89.
7. A. Mirzaian, Hamiltonian triangulations and circumscribing polygons of disjoint line segments,Compu-

tational Geometry: Theory and Applications2 (1992), 15–30.
8. C. Monma and S. Suri, Transitions in geometric minimum spanning trees,Discrete & Computational

Geometry8 (1992), 265–293.
9. J. O’Rourke,Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.

10. J. O’Rourke and J. Rippel, Two segment classes with Hamiltonian visibility graphs,Computational Ge-
ometry: Theory and Applications4 (1994), 209–218.

11. F. Preparata and M. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New York,
1985.

12. D. Rappaport, Computing simple circuits from a set of line segments is NP-complete, inProc. 3rd ACM
Symposium on Computational Geometry, Waterloo, Ontario, 1987, pp. 322–330.

13. D. Rappaport, H. Imai, and G. T. Toussaint, Computing simple circuits from a set of line segments,Discrete
& Computational Geometry5 (1990), 289–304.

14. E. Rivera-Campo and J. Urrutia, Personal communication, 1992.
15. X. Shen and H. Edelsbrunner, A tight lower bound on the size of visibility graphs,Information Processing

Letters26 (1987), 61–64.



410 P. Bose, M. E. Houle, and G. T. Toussaint

16. T. Su and R. Chang, Computing the constrained relative neighborhood graphs and constrained Gabriel
graphs in Euclidean plane,Pattern Recognition24 (1991), 221–230.

17. M. Urabe and M. Watanabe, On a counterexample to a conjecture of Mirzaian,Computational Geometry:
Theory and Applications2 (1992), 51–53.

18. A. Yao, AnO(E log logV) algorithm for finding minimum spanning trees,Information Processing Letters
4 (1975), 21–23.

Received September14, 1999,and in revised form January17, 2001.Online publication August29, 2001.


