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Abstract. We show that every simpliciald-polytope withd + 4 vertices is a quotient of
a neighborly(2d + 4)-polytope with 2d + 8 vertices, using the technique of affine Gale
diagrams. The result is extended to matroid polytopes.

1. Introduction

Neighborly polytopes are among the most interesting objects in polytope theory. The
usual examples for neighborly polytopes are cyclic polytopes, first discovered by
Carathéodory in 1904. For a long time they were the only neighborly polytopes known
in even dimensions, and one might ask if neighborliness is so restrictive that they are in
fact the only ones. They are not, as has been shown by Gr¨unbaum, and there are lots of
them, as has been shown by Shemer [3]. In fact, it seems that the class of neighborly
polytopes is so rich that it contains all simplicial polytopes as quotients.

Conjecture 1.1(Perles/Sturmfels). Every simplicial polytope is a quotient of an(even-
dimensional) neighborly polytope. Similarly, every matroid polytope is a quotient(con-
traction) of a neighborly matroid polytope of odd rank.

Here we say thatP is a quotient ofP′ if its face lattice is an upper interval of the face
lattice of P′, that is,P has the same combinatorial type as some face figure (or iterated
vertex figure) ofP′.

A partial result was achieved by Sturmfels [4], who proved that the embedding may be
done into an “almost neighborly” polytope. Here we prove Conjecture 1.1 for simplicial
d-polytopes having at mostd + 4 vertices.
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Theorem 1.2. Every simplicial d-polytope with at most d+ 4 vertices is a quotient of
a neighborly polytope of dimension at most2d + 4 and with at most2d + 8 vertices.
Also, every matroid polytope of rank d+ 1 with at most d+ 4 vertices is a quotient of a
neighborly matroid polytope of rank at most2d + 5 and with at most2d + 8 vertices.

2. Gale Duality and Neighborly Polytopes

The main tool used in this paper areGale diagrams, which enable us to get a low-
dimensional representation of high-dimensional polytopes with few (i.e., at mostd+ 4)
vertices. They were introduced by Gale, while Perles explored their full usability, as
described in [2]. For the set-up ofaffine Gale diagrams, some applications and the
detailed description of the connection between Gale diagrams and oriented matroid
duality we refer to [4] and [5]. Here we just review some basic facts. Let us first recall
the definition of a Gale transform.

Definition 2.1. Let V = {x1, . . . , xn} be a configuration ofn points affinely spanning
Rd. By embeddingV into the affine hyperplanex(1) = 1 ofRd+1 we get a collectioñV
of n vectors inRd+1. Then a configuration ofn vectorsV ′ = {x′1, . . . , x′n} ⊂ Rn−d−1 is
a Gale transformof V if its space of linear dependences is the orthogonal complement
in Rn of the space of linear dependences ofṼ .

One can reduce the dimension of the Gale transform by one, by scaling the vectors
such that they lie in a common affine hyperplane (in general position).

Definition 2.2. The affine Gale diagram V′ derived from a Gale transformV ′ =
{x′1, . . . , x′n} in Rn−d−1 is a setV̄ = {x̄1, . . . , x̄n} ⊂ H with x̄i = λi x′i , λi ∈ R\{0}, and
H is an affine hyperplane in general position of dimensionn− d − 2. Herex̄i is called
ablack pointif λi > 0, and awhite pointotherwise.

The main point in Gale diagram theory is the fact that all combinatorial properties of
a vector configuration may be read off the Gale transforms. In particular, we can draw
(on a two-dimensional piece of paper) the affine Gale diagrams of polytopes of arbitrary
dimensiond, provided they have at mostd + 4 vertices. The connection between the
oriented matroid of a vector configuration and its Gale transform (see Chapter 9 of [1]
and Chapter 6 of [6] for detailed discussions) is given by the following theorem.

Theorem 2.3. The oriented matroids of a vector configuration V and its Gale transform
V ′ are dual to each other:M(V)∗ =M(V ′). In particular, the cocircuits of V are the
circuits of V′, and vice versa.

Proof. See Corollary 6.15 of [6].

In particular, this implies that the quotients of a polytope are obtained by deletion of
points from its affine Gale diagram. Now we use this for studying neighborly polytopes
and their quotients.
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Definition 2.4. A d-polytopeP is k-neighborlyif any k vertices form the vertex set of
a face. Ad-polytopeP is neighborlyif any set ofbd/2c vertices forms the vertex set of
a face ofP.

The fact that the simplex is the onlyd-polytope which isk-neighborly fork > bd/2c
gives rise to the above definition. The neighborliness condition is very weak in odd
dimensions, see the cased = 3. Hence we restrict ourselves—as is customary in the
theory of neighborly polytopes—to even dimensions.

The combinatorial property of Gale transforms corresponding to neighborliness is as
follows.

Definition 2.5. A d-dimensional vector configurationV on n = d − 1+ 2k vectors
is balancedif for every hyperplane spanned byd − 1 vectors ofV there are exactlyk
vectors on either side of the hyperplane.

Remark 2.6. Definition 2.5 implies that the vectors ofV are in general position. Also
observe that the dimension of the dual configuration is even.

When using affine(d−1)-dimensional Gale diagrams, it is easy to check balancedness
of the associated vector configuration. Anyd− 1 points have to span a hyperplane, and
there has to be the same number of points on either side, where we count black points
as positive and white points as negative.

As an example for balanced vector configurations we like to mention the Gale trans-
forms of even-dimensional cyclic polytopes. But in fact one can characterize all the
balanced Gale transforms by the following lemma.

Lemma 2.7. The Gale transforms of simplicial neighborly2d-polytopes with n=
2d+k vertices are exactly the balanced(k−1)-dimensional configurations of n vectors.

Proof. We first show that any balanced vector configurationV is the Gale transform of
a neighborly polytope. Observe that any cocircuit has exactlyd+1≥ 2 positive elements
(and the same number of negative elements) due to the balancedness, thus the vector
configuration is indeed the Gale transform of a convex polytope (see Theorem 6.19 of
[6]), which is simplicial because of Remark 2.6. This polytope is neighborly if anyd
vectors define a face, which is the case if the remainingn−d = d+k vectors are positively
dependent in the Gale transform. By the Farkas lemma (as stated in Proposition 1.10 of
[6]) we know that the remaining vectors are either positively dependent or form a cone
C which is not the wholeRk−1. In the second case, we look at a hyperplane spanned by
a facetF of C. All of the remaining vectors lie in the same closed half-space which is
defined byF . But this is a contradiction to the balancedness ofV , since we deleted less
thand + 1 vectors from our configuration, so there has to remain at least one point on
either side.

Now suppose we are given any simplicial neighborly 2d-polytope with 2d+k vertices,
which implies that its vertices are in general position, see [3]. So we know that anyd+k
vectors in its Gale transform are positively dependent and in general position. If the Gale
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transform were not balanced, there would be a set of more thand + 1 points lying on
one side of a hyperplane throughk− 2 points, thus there would be at leastd+ k points
which are not positively dependent, which contradicts our assumption.

3. Embedding Oriented Matroids

Since we are just dealing with the combinatorial properties of Gale transforms, it is
convenient to look at their oriented matroids. The following definition is compatible to
Definition 2.5, in the sense that the oriented matroid of a vector configuration is balanced
if and only if the vector configuration itself is balanced.

Definition 3.1. A rank-(d + 1) oriented matroid onk elements isbalanced(or dual
neighborly) if and only if k−d is even and every cocircuit has exactly(k−d)/2 positive
and the same number of negative elements.

Given that definition, one can reformulate Lemma 2.7 to be valid for matroid polytopes
also, which is proven quite literally.

Lemma 3.2. The dual of any neighborly matroid polytope of rank2d+1with n vertices
is a balanced oriented matroid on n elements of rank n− 2d − 1, and vice versa.

Now we are prepared for the key theorem of this paper, which implies Theorem 1.2.

Theorem 3.3. Any uniform rank-3 oriented matroidM on k elements may be embed-
ded into a balanced rank-3 oriented matroidM′ on2k elements.

Proof. We give a construction sequence that describes the embedding, using the con-
struction methods as described in Section 7.2 of [1]. LetM be a rank-3 oriented ma-
troid on the setE = {e1, . . . ,ek}. Start with a lexicographic extension1 by an ele-
ment ¯̄e1 := [e+1 e+2 e+3 ], obtainingM(1) =M[e+1 e+2 e+3 ] which has the contravariant pair
{e1, ¯̄e1}. Now we perform a lexicographic extension on each of the remaining elements:
For everyei , 2 ≤ i ≤ k, extendM(i−1) by ēi := [e−i e−1 ( ¯̄e1)

−] obtainingM(i ). Every
step in our construction gives one covariant pair{ei , ēi }, 2 ≤ i ≤ k, which is not de-
stroyed by the subsequent operations, because no point is involved twice, in contrast
to the contravariant pair in the first step, which does not exist anymore.The resulting
oriented matroidM′ := M(k) is the one we are looking for. It is uniform because all
lexicographic extensions were done on complete bases.

We have to show thatM′ =M′(E ∪ {¯̄e1, ē2, . . . , ēk}) is dual neighborly. There are
four main cases to check: the cocircuit defined bye1 and ¯̄e1, cocircuits defined byei and

1 For the reader who is not familiar with lexicographic extensions we wish to explain them in the realizable
rank-3 case. LetM be the oriented matroid of a vector configurationV = {x1, . . . , xn}, and chooseα, β, γ ∈
{+1, 0,−1} andi, j, l ∈ {1, . . . ,n}. Then we extendV by a new vector̄x = αxi + εβxj + ε2γ xl with ε > 0
being small, which is a vector very close toαxi and slightly displaced in the directions ofβxj andγ xl . The
oriented matroid ofV ∪ {x̄} is the lexicographic extensionM[i α, j β , l γ ] ofM.
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Fig. 1. The construction of the balanced oriented matroid as described in the proof of Theorem 3.3. (a) shows
the realizable case, whereas (b) shows the general situation.

ēi for 2 ≤ i ≤ k, cocircuits defined byei or ēi andej or ēj for 2 ≤ i < j ≤ k (mixed
cocircuits), and cocircuits defined bye1 or ¯̄e1 andei or ēi for 2 ≤ i ≤ k (completely
mixed cocircuits) (see Fig. 1(a)).

In the first case we havek−1 inseparable pairs of covariant elements by construction,
none being dependent one1 or ¯̄e1, so we havek − 1 = (2k − 2)/2 positive andk − 1
negative signs as desired. The second case is easy as well. Thek−2 remaining covariant
pairs are contributingk− 2 sign pairs, ande1 and ¯̄e1 have different signs with respect to
ei andēi by construction of̄ei , thus giving the missing sign pair.

The mixed cocircuits are a little bit more tricky to handle. First, we getk−3 covariant
pairs of elements{el , ēl } for l 6= i, j . But nowe1 and ¯̄e1 amount to the same sign, because
they were constructed as contravariant elements with respect toE, and since we did
extend the matroid by lexicographic extensions involving at most one of theel1 andel2,
2 ≤ l1, l2 ≤ k, we get the same orientation ofe1 regardless of usingei or ēi . These two
signs get compensated for by the remaining two elements from our pairs{ei , ēi } and
{ej , ēj }, thus completing the two remaining sign pairs.

Finally, we look at the completely mixed cocircuits. The situation is similar to the
one before. We havek− 2 covariant pairs of elements. But now the remaining pointẽ1

of {e1, ¯̄e1} is either on the same side as the remaining pointẽi of {ei , ēi } or on the other
one. Luckily, we chose the direction of construction ofēi such that the point having the
same orientation ase1 and ¯̄e1 is on the opposite side ofẽ1, and the other one, having the
other orientation, is on the same side asẽi (with regard to the hyperplane spanned by the
remaining two points). This completes our proof.

Corollary 3.4. Every uniform matroid polytope of rank d+1with at most d+4vertices
is a quotient of a uniform neighborly matroid polytope of rank at most2d + 1 with at
most twice as many vertices.
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Proof. The cases of matroid polytopes having less thand+ 3 vertices are trivial. If the
matroid polytope has exactlyd + 3 vertices then its dual is a rank-2 uniform oriented
matroid ond+3 elements, i.e., a number of black and white points on the line. Adding at
mostd additional points between adjacent points of the same color gives us an alternating
sequence of black and white points of odd length. This sequence is balanced and we are
done by Lemma 3.2. Given any matroid polytopeM of rankd + 1 havingn = d + 4
vertices, look at its dual oriented matroidM∗. This may be embedded into a balanced
oriented matroidM∗′ having 2n vertices by Theorem 3.3, whose dualM∗′∗ is neighborly
by Lemma 3.2. Since we obtain the originalM oriented matroid by deletion of elements
ofM∗′∗, we foundM to be a quotient ofM∗′∗.

Finally, we complete the proof of Theorem 1.2.

Proof. We may assume that the vertices of the simpliciald-polytope are in general posi-
tion. So the theorem follows from Corollary 3.4 and the fact that a series of lexicographic
extensions does not spoil realizability.

4. Embedding (Pseudo-)Line Arrangements

The above construction is based on a much simpler task. We describe the idea behind it
in order to provide a possible starting point for further investigation.

Definition 4.1. LetA be a (pseudo-)line arrangement in the projective plane. A cell in
the arrangement isevenif it has an even number of sides,oddotherwise. An arrangement
A is goodif it has a two-coloring of the cells with adjacent cells colored differently and
all odd cells having the same color.

A good arrangement has an even number of lines, since otherwise it could not be
two-colored. Also, it is not possible for an arrangement to have only even cells, since
any planar (pseudoline-)arrangement has at least one triangle, i.e., an odd cell. However,
we have the following:

Theorem 4.2. Every planar(pseudo-)line arrangementA may be embedded into a
planar (pseudo-)line arrangementA which is good.

Proof. The proof is essentially the same as the one of Theorem 2.7, omitting the
orientations. In fact, we are creating an arrangement which may be colored in such a
way that one color is covering only cells having four or six edges (or vertices). These
are the ones that are between two co- (resp. contravariant) elements (likeei andēi , see
Fig. 1(b)). The cells of the original arrangement can be found again as the cells which
are adjacent to at most one line of each pair{e1, ¯̄e1} and{ei , ēi }.

The good thing about good arrangements is that they may be given orientations such
that they are balanced. Here we mean by balanced that its oriented matroid is balanced,
which gives:
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Definition 4.3. An arrangementA of oriented (pseudo-)lines in the (Euclidean) plane
is balanced, if any crossing of two lines lies to the right of one half of the other lines and
to the left of the other half. An arrangementA of oriented (pseudo-)lines in the projective
plane is balanced, if we can fix an additional projective line` in general position such that
the Euclidean arrangement we get by deleting` from the projective plane is balanced.

Theorem 4.4. Every good arrangement may be oriented in a way that it is balanced.

Proof. We are given a two-colored arrangement with all cells of white color being
even. Start by fixing the orientation of one line` arbitrarily. Then the other lines have
a fixed orientation by the rule that the orientations along the borders of the white cells
adjacent tò should alternate. This is well defined, it cannot happen that a line is given
two different orientations. Suppose a line`1 other thaǹ forms a border segment of two
white cellsC1 andC2 adjacent tò . The number of border segments from̀1 to ` on
C1 added to the number of border segments from` to `1 on C2 is the number of lines
crossing̀ betweenC1 andC2. If C1 andC2 are on the same side of` this number is even,
giving the same orientation of`1 both times. If they are on opposite sides, then` is also
assigned the same orientation both times, since the first segment ofC2 has the same
orientation as the last ofC1.

Now everywhite cell has the property that the lines on the border are alternatingly
oriented, which will enable us to take any line as the special line`: Consider the triangle
formed by` and two border lines of a white cell and all lines crossing this triangle, and
check whether an even or an odd number of lines crosses at every side of the triangle.
The total number of crossings has to be even (every line going in has to come out again).
By distinguishing all the possible cases we are done.

The oriented arrangement we get is balanced. Take any crossing of two lines, one of
them being without loss of generalitỳ. Then the remaining lines cross` alternatingly,
and we have an even number of them, thus the crossing lies to the right of half the
remaining lines and to the left of the other half.

There is a close relationship of the above to the problem of embedding polytopes
into neighborly polytopes, although we start with an already oriented arrangement in
the second case. Observe that the balanced arrangement corresponding to the neighborly
polytope constructed in Section 3 is also good (but due to the given orientations we
cannot use Theorem 4.2 to assign the orientations).

Problem 4.5. Find a good definition ofgood as in Definition 4.1 which serves for
higher dimensions.
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