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This paper presents a new End-to-End (E2E) verifiable e-voting protocol for large-scale elections, called Direct Recording
Electronic with Integrity (DRE-i). In contrast to all other E2E verifiable voting schemes, ours does not involve any Tallying
Authorities (TAs). The design of DRE-i is based on the hypothesis that existing E2E voting protocols’ universal dependence
on TAs is a key obstacle to their practical deployment. In DRE-i, the need for TAs is removed by applying novel encryption
techniques such that after the election multiplying the ciphertexts together will cancel out random factors and permit anyone
to verify the tally. We describe how to apply the DRE-i protocol to enforce the tallying integrity of a DRE-based election
held at a set of supervised polling stations. Each DRE machine directly records votes just as the existing practice in the real-
world DRE deployment. But unlike the ordinary DRE machines, in DRE-i the machine must publish additional audit data to
allow public verification of the tally. If the machine attempts to cheat by altering either votes or audit data, then the public
verification of the tallying integrity will fail. To improve system reliability, we further present a fail-safe mechanism to allow
graceful recovery from the effect of missing or corrupted ballots in a publicly verifiable and privacy-preserving manner.
Finally, we compare DRE-i with previous related voting schemes and show several improvements in security, efficiency and
usability. This highlights the promising potential of a new category of voting systems that are E2E verifiable and TA-free.
We call this new category “self-enforcing electronic voting”.

1. INTRODUCTION
Background. An electronic voting (e-voting) system is a voting system in which the election data
is recorded, stored and processed primarily as digital information [VoteHere 2002]. Depending on
the implementation, e-voting can be either local or remote. Local e-voting occurs at a supervised
polling station, normally using a touch-screen machine to record votes directly. Such a machine
is often called a Direct Recording Electronic (or DRE) machine [Kohno et al. 2004]. In contrast,
remote e-voting can be conducted at any location, usually through a web browser [Adida 2008;
Adida et al. 2009].

E-voting has already been widely deployed across the world. As shown in USA Today [Wolf
2008], the use of DRE expanded rapidly in the United States following the 2000 national election:
from 12% of the votes cast in that election to 29% in 2004, and to 38% in 2006. India moved to full
DRE voting in their 2004 national election, and Brazil started its first fully DRE-based election in
2002 [Blanc 2007]. In 2007, Estonia became the first country to allow Internet voting for national
elections [Krimmer et al. 2007]. Many other countries have been actively pursuing the implementa-
tion of e-voting [Alvarez et al. 2011; Pieters 2011].

Controversy. However, e-voting has become controversial. In 2004, Kohno et al. critically anal-
ysed a type of e-voting machine that had been widely used in the US, and discovered serious
software vulnerabilities and bugs [Kohno et al. 2004]. The alarming level of security flaws was
especially worrying because the U.S. government had earlier certified the machine to be “trustwor-
thy”. In response to these and other similar findings [Sherman et al. 2006; Jefferson et al. 2004]
regarding other manufacturers’ machines, many people have demanded that e-voting be abandoned
completely. Several U.S. states consequently abandoned the use of e-voting machines in 2008, caus-
ing a rapid decline of DRE usage from 38% in 2006 to 32% in 2008 [Wolf 2008]. Similar problems
have also been reported in other countries, e.g., Germany, Netherlands and Ireland have all sus-
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Fig. 1. An unverifiable (black-box) e-voting system

pended e-voting in 2008-2009 [Alvarez et al. 2011; Pieters 2011]. In 2010, researchers also started
to seriously question the integrity of e-voting machines used for elections in India [Wolchok et al.
2010].

A fundamental problem with many deployed e-voting systems (including the dis-
carded/suspended ones) is that they are unverifiable [Pieters 2011]. Essentially each system works
like a black-box (Figure 1). After voting, the voter has no means of telling whether her vote was
correctly recorded. At the end of the election, the system announces the tallied result for each can-
didate, but any independent verification of this result is impossible.

Typically, a black-box e-voting system comprises three components: a voting interface, a trans-
mission mechanism and a tallying back-end (see Figure 1). The voting interface may be a touch
screen in a local DRE-based election, or it may be a web browser in a remote Internet-based elec-
tion. In either case, a compromised voting interface (touch-screen DRE or a web browser) may
surreptitiously change the voter’s choice; the transmission of electronic votes (either off-line or
on-line) may be intercepted and the votes modified; and the back-end may maliciously change the
tally to support some particular candidate regardless of the actual vote count. In summary, there are
many opportunities for an attacker to tamper with the electronic data without the public being aware
of the change.

This can be contrasted with elections that involve votes being recorded on a visible physical
medium such as a printed paper ballot form or a punched card. The processing of such votes can
be easily and effectively monitored (e.g., by multiple independent poll-watchers, both professionals
and amateurs). And these votes can be retained in case of a challenge, and if necessary be recounted.
However, similar direct physical monitoring is not possible in electronic voting.

Government certification of an e-voting system’s hardware and software was perceived by many
countries as the solution to the problem of achieving trustworthy e-voting [Alvarez et al. 2011;
Pieters 2011], but has proved inadequate for several reasons. First of all, it requires people to trust
the probity and competence of the certification authority. Second, it does not solve the fundamen-
tal problem, because a certified black-box is still a black-box (i.e., its operation is unverifiable).
Third, researchers have repeatedly demonstrated that attackers can successfully compromise “cer-
tified” e-voting systems, altering election results without their activities being detected [Sherman
et al. 2006; Kohno et al. 2004]. All these greatly reduce public confidence in such government
certification.

Therefore, for e-voting to succeed in the future, it is important that the voting system be verifi-
able [Adida 2008; Adida et al. 2009]. However, it is worth noting that the idea of verifiable e-voting
is not new; it has existed for over twenty years [Benaloh 1987]. Although progress has been made
in trialling verifiable e-voting protocols in practice [Chaum et al. 2008a; Adida et al. 2009], so far
the impact on real-world national elections has been limited. In practice, many countries around the
world are still using unverifiable (black-box) e-voting systems.

E2E verifiability. To explain the limitations of existing verifiable e-voting technology, we first
need to clarify what is meant by being “verifiable”. In general verifiability has two levels of meaning:
individual and universal [Chaum et al. 2008a]. At the individual level, all voters should be able to
verify that their votes have been correctly recorded and have been correctly included into the tally.
At the universal level, anyone in the world should be able to verify the integrity of the tallying result,
based on publicly available audit data. E-voting systems that satisfy the verifiability at both levels
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are generally termed as being End-to-End (E2E) verifiable [Adida 2008]. We refer the reader to
papers by Küsters et al. [Küsters and Vogt 2010] and Popoveniuc et al. [Popoveniuc et al. 2010] for
more formal definitions of E2E verifiability.

Some researchers suggested adding a Voter Verifiable Paper Audit Trail (VVPAT) to a DRE ma-
chine. Most notably, the method proposed by Mercuri [Mercuri 2001] works as follows: when the
voter makes a selection on the touch-screen, the machine prints the selected choice on a paper receipt
in plain text. The voter can visually inspect the receipt under a layer of glass before it is automati-
cally transferred to a secure location. The voter is not allowed to take the receipt home as that would
reveal (to a coercer) how she had voted. Overall, this method improves the individual verifiability
by allowing voters to check if their votes have been recorded correctly. Also, it provides a physical
paper trail that permits a manual recount in case of a dispute. However, the VVPAT method provides
no means for voters to check whether the recorded votes will be securely transported to the tallying
unit and whether the votes will be tallied correctly. Therefore, a DRE system based on VVPAT alone
is not E2E verifiable.

Thus, the dual, and potentially conflicting, challenges faced by the designers of any voting system
are to ensure the system is publicly verifiable and meanwhile to preserve the voter’s privacy. To
satisfy the E2E verifiability, it is necessary to provide the voter a receipt, which can be checked
against a public bulletin board [Chaum et al. 2008a]. In order to prevent coercion and vote selling,
the receipt must not reveal any information about how the voter had voted. On the other hand, if the
receipt does not show how the voter had voted, how can she be sure it is a correct record of her vote?
These requirements may seem clearly contradictory, but past research has shown that they can be
met by combining various techniques, e.g., cryptography and voter-initiated auditing [Adida et al.
2009; Benaloh 2007].

To date, many E2E verifiable voting protocols have been proposed. Well-known examples in-
clude: Adder [Kiayias et al. 2006], Civitas [Clarkson et al. 2008], Helios [Adida 2008; Adida et al.
2009], Scantegrity [Chaum et al. 2008b], Scantegrity II [Chaum et al. 2008a], Prêt à Voter [Ryan
et al. 2009], MarkPledge [Adida and Neff 2006] and Chaum’s visual cryptographic scheme [Chaum
2004]. All these protocols rely on there being multiple independent Tallying Authorities (TAs) to
perform and control the tallying process in a publicly verifiable manner. Hence, we choose to cate-
gorise them as “TA-based E2E verifiable e-voting”.

Protocols in this category generally work as follows (Figure 2): the voter, using a voting interface,
casts a vote and obtains a receipt. The receipt is encrypted under a set of tallying authorities’ public
keys (or one joint public key). At the end of the election, the system publishes all the receipts on a
public bulletin board (e.g., a mirrored public web site), so that voters can check if their votes have
been recorded. However, individual voters are unable to decrypt their receipts to confirm their votes
have been correctly recorded. Instead they are provided with some other (indirect) way of gaining
confidence that this is the case (through voter-initiated auditing, as we will explain in Section 2).

Since all the data on the bulletin board is encrypted, the tallying authorities are needed to perform
the decryption and tallying process. This process can be done in a publicly verifiable manner, so
that the TAs do not need to be trusted for the integrity of the tallying result. However, they need to
be trusted to some extent for the secrecy of individual votes. The common mitigating measure is to
put the TAs under a k/n threshold control, where n is the total number of TAs and k is the threshold.
Only if more than a threshold k number of TAs are corrupted will they be able to decrypt each indi-
vidual vote. Furthermore, it is normally assumed that the TAs are selected from different parties with
conflicting interests, hence they supposedly lack the incentive to collude. (Nonetheless, it is impor-
tant to ensure the TAs use independent software, because “if all trustees (TAs) use tallying software
from a single source, then this software might collude without the trustees’ knowledge.” [Karlof
et al. 2005])

Implementing E2E verifiability. Although many TA-based E2E verifiable voting protocols have
been proposed, only a few have actually been implemented in practice. The Helios voting system is
notable for being the first web-based implementation of an E2E verifiable voting system. Initially,
Helios (v1.0) used mix-net based tallying [Adida 2008], and later it (v2.0) was changed to using
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Fig. 2. TA-based e-voting with E2E verifiability
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Fig. 3. Self-enforcing e-voting with E2E verifiability

homomorphic tallying [Adida et al. 2009]. In 2009, a customized variant of Helios 2.0 was adopted
by the Université catholique de Louvain (UCL) in a campus election to elect the university president.

As highlighted in the Helios paper [Adida et al. 2009], the practical implementation of tallying
authorities has proved to be “a particularly difficult issue”. To ensure the fairness in the repre-
sentations, the tallying authorities were chosen from various groups (students, administrative staff
and so on) with different backgrounds (not just computer science). However, it turned out that the
chosen authorities did not have the required technical expertise to perform complex cryptographic
operations. Hence, a group of “external experts” (whose identities are not mentioned in the Helios
paper [Adida et al. 2009]) were invited to first perform the key generation on behalf of the tallying
authorities. The whole procedure included purchasing brand new laptops, removing the hard disk
drives, disabling wireless network cards, booting up the machines using standard linux live-CDs
and loading the key generation code (written in Python) through the USB sticks. Subsequently, the
tallying authorities’ private keys were generated and stored on the USB sticks, which were then dis-
tributed to the authorities. In the mean time, all of the generated private keys were centrally backed
up by one trusted third party (a notary public). After the election, “a similar procedure was followed
when those keys were used for decryption” [Adida et al. 2009]. Clearly, the tallying authorities’ fur-
ther dependence on “external experts” and a single trusted third party for backup has significantly
complicated the trust relationships in the election management.

Removing TAs. A few researchers have investigated how to remove tallying authorities in elec-
tronic voting. Kiayias and Yung first studied this in 2002 with a boardroom voting protocol [Kiayias
and Yung 2002], followed by Groth in 2004 [Groth 2004] and Hao-Ryan-Zieliński in 2010 [Hao
et al. 2010]. Among these boardroom voting protocols, the Hao-Ryan-Zieliński’s solution [Hao
et al. 2010] is so far the most efficient in every aspect: the number of rounds, the computation load
and the message size. In general, a boardroom voting protocol works by requiring voters to coop-
eratively interact with all other voters in a network in a number of rounds. In the best case [Hao
et al. 2010], only two rounds of interactions are needed. The tallying result is usually computed
by voters through exhaustive search. Essentially, the voting is totally decentralized and run by the
voters themselves. A decentralized boardroom voting protocol, such as Kiayias-Yung’s [Kiayias
and Yung 2002], Groth’s [Groth 2004], or Hao-Ryan-Zieliński’s [Hao et al. 2010], can provide the
theoretically-best protection of ballot secrecy. In order to learn a voter’s secret choice, the attacker
must compromise all other voters to form a full collusion against the voter [Kiayias and Yung 2002;
Groth 2004; Hao et al. 2010].

A boardroom voting protocol is considered different from an E2E verifiable voting protocol for
a number of reasons. First of all, they differ on the scales. The former is usually designed for
small-scale voting in a boardroom, while the latter is normally for large-scale country voting. Us-
ing exhaustive search to determine the tally may be straightforward in boardroom voting, but it
may prove expensive if the election is a large-scale one (especially for multi-candidate elections).
Second, the system infrastructures are different. The former is decentralized; voters use their own
trusted computing hardware/software to interact with all other voters through a fully connected net-
work. There is no voter-receipt (as there is no entity to issue receipts) and there is no central bulletin
board to check receipts [Hao et al. 2010]. The latter is centralized; there is little interaction between
voters. People vote through some common voting interface (e.g., touch-screen DRE). A voter nor-
mally gets a receipt, which can be compared against a central bulletin board. Third, the security
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requirements are completely different. For example, in a boardroom voting protocol [Kiayias and
Yung 2002; Groth 2004; Hao et al. 2010], a voter can trivially prove to a coercer how she had voted
by revealing the ephemeral secret generated during the protocol. Furthermore, any arbitrary voter
can easily disrupt a multi-round voting procedure by simply dropping out half-way in the protocol.
While coercion, vote selling and voter disruption might not be considered serious issues in a small
boardroom, they are important considerations in the design of an E2E verifiable voting system.

The scope of this paper is to focus on E2E verifiable voting systems for large-scale elections.
Existing boardroom voting protocols are clearly unsuitable for any country-scale elections. How-
ever, they are still relevant to our study as they demonstrate that it is possible to remove TAs albeit
only in the setting of a small-scale election. To the best of our knowledge, no one has investigated
the feasibility of removing tallying authorities for large-scale elections. Indeed, existing E2E ver-
ifiable e-voting protocols designed for large-scale elections universally require involving external
tallying authorities in the tallying process [Kiayias et al. 2006; Clarkson et al. 2008; Adida 2008;
Adida et al. 2009; Chaum et al. 2008b; Chaum et al. 2008a; Ryan et al. 2009; Adida and Neff 2006;
Chaum 2004].

Contributions. We initiate a study on whether it is feasible to remove the dependence on external
tallying authorities in an E2E verifiable voting system. Along this direction, we propose to replace
the tallying authorities and the decryption system in Figure 2 by a public algorithm. We define
the resultant system as a “self-enforcing e-voting” system (see Figure 3). Because the algorithm is
public, the tallying process is fully verifiable without any TA involvement. The main contributions
of this paper are summarized below:

— We present the first E2E verifiable voting protocol that is TA-free. Our protocol is called Direct
Recording Electronic with Integrity (DRE-i). Its “self-enforcing” property is realized by integrat-
ing a cancellation formula [Hao and Zieliński 2006] into the homomorphic tallying process: the
encryption of votes follows a well-defined structure such that after the election multiplying the
ciphertexts together will cancel out random factors and permit anyone to verify the tally. A similar
tallying method was used in a previous Hao-Ryan-Zieliński boardroom voting protocol [Hao et al.
2010], but ours does not require exhaustive search. Although the two protocols share the same
mathematical formula for cancelling random factors, they are designed for completely different
election scenarios and have different security requirements.

— We effectively combine the basic DRE-i with several additional engineering designs to make it
an overall secure and practical system, suitable for a DRE-based election at polling stations. The
first is to seamlessly integrate the voter’s initiated auditing into the natural confirm/cancel voting
experience on a touch-screen DRE. As a result, the system is user-friendly to a voter who does not
understand cryptography at all. Furthermore, we provide a fail-safe mechanism to allow graceful
recovery of partially corrupted audit data in a publicly verifiable and privacy-preserving way.
Finally, we support a distributed computation of secret keys to distribute trust and improve system
availability. (Advantages of our system over previous ones will be detailed in Section 4.)

2. A SELF-ENFORCING E-VOTING PROTOCOL
In this section, we describe a self-enforcing e-voting protocol called Direct Recording Electronic
with Integrity (DRE-i). In particular, we show how to apply the DRE-i protocol to enforce the
tallying integrity of DRE-based local voting at the polling station. (It is possible to implement DRE-i
for remote voting [Hao et al. 2012; Hao et al. 2013], but to avoid confusion, we will focus on local
voting in this paper.) For the simplicity of discussion, we will consider a single-candidate election
first, and then extend it to multiple candidates.

2.1. User roles
In an E2E verifiable e-voting protocol, there are generally three user roles as defined below [Adida
et al. 2009].

(1) Ordinary voter: Someone who directly participates in the voting.
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(2) Auditor: Someone who audits the system by performing real-time checks on the system during
the voting process.

(3) Universal verifier: Anyone in the world who has the technical expertise to verify the audit data
published by the voting system.

2.2. Integrity requirements
We also adopt the commonly accepted integrity requirements for an E2E verifiable voting proto-
col [Adida et al. 2009; Chaum et al. 2008b; Chaum et al. 2008a].

(1) Ballot format integrity: Everyone, including third party observers, should be able to verify that
every encrypted ballot has the correct format to represent exactly one vote.

(2) Ballot casting integrity: All voters should be able to convince themselves that their cast ballots
are recorded to the correct candidates.

(3) Ballot transmission integrity: All voters should be able to verify that their recorded ballots
have been correctly transmitted to the tallying process.

(4) Ballot tallying integrity: Everyone, include third party observers, should be able to verify that
the tallying result is correctly obtained from the recorded ballots.

Obviously, the integrity requirements must be satisfied without compromising the voter’s privacy.
In particular, the receipt that permits a voter to verify the integrity of the voting system must not
reveal how she had voted. We will explain in Section 3 that this holds true in DRE-i.

2.3. Trust assumptions
There are many other requirements to make a secure e-voting system. Since the satisfaction of those
requirements is generally assumed in the literature [Kiayias et al. 2006; Clarkson et al. 2008; Adida
2008; Adida et al. 2009; Chaum et al. 2008b; Chaum et al. 2008a; Adida and Neff 2006; Chaum
2004], we make the same assumptions, namely:

(1) User enrolment: Only eligible users can be enrolled in the voter registration.
(2) User authentication: Only authenticated voters are allowed to vote during the election.
(3) One-man-one-vote: Each authenticated voter is allowed to vote just once.
(4) Voting privacy: Voting happens in a private space that no one else can observe.
(5) Anonymity: The voting machine that is used does not know the real identity of the voter.
(6) Public bulletin board: There is a publicly readable, append-only bulletin board (e.g., a mirrored

public website), on which the legitimate voting system can publish audit data for verification
(the authenticity of data can be ensured by the use of digital signatures).

If voting takes place in a supervised environment (say a polling station), it is relatively easy to
meet the above assumptions. For example, the polling station staff can authenticate voters based on
their ID documents or even biometrics. After successful authentication, the voter is free to take a
single random authentication token, say a smart card. The voter then enters a private booth and uses
the token to authenticate herself to the machine and starts voting [Kohno et al. 2004]. To ensure
one-person-one-vote, the polling station can publish a list of the names of the people who voted, so
that anyone can verify that the number of voters matches the number of cast votes [Chaum et al.
2008a]. Observers at a polling station can also independently count how many people have actually
voted.

2.4. Three Stages of Voting
The DRE-i protocol consists of three phases: setup, voting and tallying. The following sections
explain each phase in detail.

2.4.1. Setup phase. We describe the protocol in a multiplicative cyclic group setting (i.e., DSA-
like group), though the same protocol also works in an additive cyclic group (i.e., ECDSA-like
group). Let p and q be two large primes, where q | p− 1. Z∗

p is a multiplicative cyclic group and

https://www.usenix.org/jets/issues/0203


7

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 3 • July 2014

www.usenix.org/jets/issues/0203

Table I. Setup phase before election

Ballot Random Restructured Cryptogram Cryptogram
No public key public key of no-vote of yes-vote
1 gx1 gy1 gx1 ·y1 , 1-of-2 ZKP gx1 ·y1 ·g, 1-of-2 ZKP
2 gx2 gy2 gx2 ·y2 , 1-of-2 ZKP gx2 ·y2 ·g, 1-of-2 ZKP
. . . . . . . . . . . . . . .
n gxn gyn gxn ·yn , 1-of-2 ZKP gxn ·yn ·g, 1-of-2 ZKP

Note: Data in the first three columns are published on a public bulletin board before the
election. They serve as commitment so that the values cannot be later changed. Data in
the last two columns are kept secret; they are either computed on-demand during voting or
pre-computed before the election.

Gq its subgroup of prime order q. Let g be the generator of Gq (any non-identity element in Gq can
serve as a generator). We assume the Decision Diffie-Hellman (DDH) problem [Stinson 2006] in
Gq is intractable. The parameters (p,q,g) are publicly agreed before the election starts. Unless the
contrary is stated explicitly, all the modular operations are performed with respect to the modulus
p. Hence, we omit the explicit “ mod p” for simplicity.

First of all, the DRE machine generates a private signing key, say using DSA or ECDSA [Stinson
2006], and publishes the public key on the bulletin board. A tamper-resistant module is used to
securely manage the private signing key, in line with industry standard practice [Anderson 2008].
The private signing key is generated on-board in the secure memory of the module and never leaves
the protected boundary of the module.

Subsequently, the DRE machine computes a table as shown in Table I. The table contains n rows
with each row corresponding to a ballot, so there are n ballots in total. The number n is the product
of the total number of the eligible voters and a safety factor (> 1). The safety factor, say 10, is
defined so as to allow the generation of extra ballots for auditing purposes (as we will explain later).

Each row in Table I corresponds to a ballot with encrypted data (cryptograms) to represent can-
didate choices. In a single-candidate election, the choices are “Yes” and “No”. All rows are con-
structed to satisfy four properties. First, given any cryptogram in any row, one can easily verify that
it is an encryption of one of the two values: “Yes” or “No” (which translate to 1 and 0 in the imple-
mentation). Second, given only a single cryptogram from any selected row, one cannot tell whether
it is “Yes” or “No”. Third, given both cryptograms (unordered) from any selected row, anyone will
be able to easily tell which is “Yes” and which is “No”. Fourth, given a set of cryptograms, each of
which was arbitrarily selected, one from each row, one can easily check how many “Yes” values in
total are in the set. In the following, we will explain how these four properties are fulfilled and how
they are useful in building a self-enforcing e-voting system.

The system fills the table as follows. For each of the n ballots, the system computes a random
public key gxi , where xi ∈R [1,q−1]. When this has been done for all the ballots, the system com-
putes gyi = ∏ j<i gx j/∏ j>i gx j for every ballot. Here, we call the obtained gyi a restructured public
key, because it is constructed by multiplying all the random public keys before i and dividing the
result by all the public keys after i. Note that anyone is able to compute gyi based on the published
gxi values.

The “Yes”/“No” value in each ballot is encoded in the form of Ci = gxiyi ·gvi where vi = 0 for “No”
and 1 for “Yes”. The no-vote, gxiyi , is indistinguishable from random based on the DDH assumption
(detailed proofs can be found in Section 3). Clearly, the yes-vote, gxiyi ·g, is indistinguishable from
random too. However, if both no-vote and yes-vote are published, then it is trivial to distinguish
which is “No” and which is “Yes” (because the latter is the former multiplied by g).

In addition, the system needs to compute a 1-out-of-2 Zero Knowledge Proof (ZKP) for each
yes/no value. This is to ensure that the value of the vote is indeed in the correct form of Ci =
gxiyi · gvi where vi ∈ {0,1}. In other words, the value vi can only be one of: 0 and 1. We adopt the
standard 1-out-of-n ZKP technique (also known as the CDS protocol) due to Cramer, Damgård and
Schoenmakers [Cramer et al. 1994]. Although the original CDS protocol is designed for ElGamal
encryption, it is directly applicable here if we regard gyi as a public key. (The only difference is

https://www.usenix.org/jets/issues/0203


8

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 3 • July 2014

www.usenix.org/jets/issues/0203

Fig. 4. A simple single-candidate voting interface. The receipt has two parts: the first includes the printout in Step 1 with
a digital signature and the second includes the printout in Step 2 with a signature that covers the entire transcript.

that the public key in ElGamal encryption is statically fixed, while in our case, it is dynamically
constructed from gxi values for each ballot.) Here, we use n = 2. The original three-move interactive
CDS protocol can be made non-interactive by applying the standard Fiat-Shamir heuristics [Fiat
and Shamir 1987]. The same CDS technique has been widely used in previous e-voting protocols to
ensure the published ciphertext is well-formed.

As shown in Table I, the cryptogram of the no-vote contains gxiyi and a 1-out-of-2 ZKP; similarly,
the cryptogram of the yes-vote comprises gxiyi ·g and a corresponding 1-out-of-2 ZKP.

Similar to the private signing key, all xi secrets are generated on-board in the module and are
stored within the module’s secure memory. The corresponding public keys (gxi ) are published on
the bulletin board before the election; they serve as commitment so the values cannot be changed
later. To ensure authenticity, all commitment data published on the bulletin board should be digitally
signed. Let us assume n = 105 and a group setting of 2048-bit p and 256-bit q. The total size of xi
secrets is 3.2 MB. Hence, it is possible to store the xi secrets entirely in the module’s memory. (As
an example, a high capacity smart card can have 16 MB non-volatile memory.)

In order to optimize the performance in voting, one may choose to pre-compute all the cryp-
tograms (last two columns in Table I) before the election. In that case, the secrecy of pre-computed
cryptograms needs to be protected at the same level as the xi secrets. If the size of the cryptograms
is more than what the module’s memory can accommodate, one solution, as commonly adopted
in industry, is to generate a master key on-board in the module and use the master key to encrypt
blobs of data in an authentic manner, so that the encrypted blobs can be stored outside the module
and be reloaded back to memory when needed [Anderson 2008]. This is a typical trade-off between
memory and speed. Reloading the blob to memory will involve some decryption work, but since it
is only a symmetric-key operation, it can be very fast.

2.4.2. Voting phase. As stated before, we assume the eligible voter has been properly authenti-
cated. She first obtains a random authentication token, enters a private voting booth, uses the token
to authenticate herself to the machine and starts voting. The voter is prompted to select a choice on
a touch screen DRE (see Figure 4). To cast her ballot, the voter follows two basic steps below.

In step one, the voter selects a choice on the screen. Meanwhile, the machine prints the following
data on the paper: the ballot serial number i, and the cryptogram of the selected choice. (The ballot
serial number i may be incremental or randomly assigned; there is no significant difference from the
protocol’s perspective as long as the number is unique.) The printed data serve as a commitment,
as it cannot be changed. The commitment transcript is digitally signed by the machine to prove
its authenticity. As explained earlier, the machine’s public key is publicly announced before the
election, so the signature is universally verifiable.
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Table II. Ballot tallying.

No Random Restructured Published Votes ZKPs
i pub key gxi pub key gyi Vi

1 gx1 gy1 Valid: gx1 ·y1 a 1-of-2 ZKP
2 gx2 gy2 Valid: gx2 ·y2 ·g a 1-of-2 ZKP
3 gx3 gy3 Dummy: gx3 ·y3 , gx3 ·y3 ·g two 1-of-2 ZKPs
. . . . . . . . . . . . . . .

n gxn gyn Dummy: gxn ·yn , gxn ·yn ·g two 1-of-2 ZKPs

Note: This entire table is published on the public bulletin board. A vote can be
either valid or dummy. Ballot No. 1 shows an example of a valid “No” vote, and
No. 2 shows an example of a valid “Yes” vote. Tallying involves multiplying all
the Vi values (only including the “No” votes for the dummy case).

In step two, the voter has the option of either confirming or cancelling the previous selection. If
she chooses to confirm, the system will print a “finish” message on the paper, and a valid encrypted
vote has been cast. On the other hand, if she chooses to cancel, the DRE machine will reveal the
selected choice in plain text ("Yes" or "No"), and also print the other cryptogram on the paper.
In this case, a dummy vote has been cast. The touch screen will return to the previous step and
provide another unused ballot. Voters are entitled to cast as many dummy votes as they wish1, but
are allowed to cast only a single valid vote.

The confirm/cancel option in step two serves to provide ballot casting assurance, namely: the
voter needs to gain confidence that her actual vote has been recorded as she intended. For example,
a corrupted machine might cheat by swapping the “No”/”Yes” cryptograms. The solution here is
to have the machine initially commit to a value, and then give the voter an option to challenge the
machine to reveal the commitment so that if the machine has cheated, it will be caught once the
voter chooses to audit. Successful cheating on any large scale without being detected is extremely
unlikely. Our auditing procedure is consistent, in spirit, with Benaloh’s idea of voter-initiated chal-
lenges [Benaloh 2007], but it has been more tightly integrated into the overall cryptographic system
starting with the initial setup.

The commitment transcript, signed by the machine, for the entire voting session can be printed
on a single piece of paper, which forms the voter’s receipt. The data on the receipt is also available
on the public bulletin board. The voter is free to take home the receipt and compare it against the
bulletin board, so gaining a degree of trust in the bulletin board’s contents. (This is just as in other
verifiable e-voting protocols [Kiayias et al. 2006; Clarkson et al. 2008; Adida 2008; Adida et al.
2009; Chaum et al. 2008b; Chaum et al. 2008a; Adida and Neff 2006; Chaum 2004]). When all the
voters have cast their votes, or the election time limit is up, the system will publish both the yes-vote
and no-vote cryptograms for the remaining unused ballots and mark them as “dummy” votes.

2.4.3. Tallying phase. Tallying the ballots involves multiplying together all the published cryp-
tograms Vi (for dummy votes, using only the no-vote; see Table II). Thus, we have:

∏
i

Vi = ∏
i

gxiyigvi = ∏
i

gvi = g∑i vi

The key to the tallying process is the fact that ∑xiyi = 0 (a cancellation formula first introduced
in 2006 in the design of an anonymous veto protocol [Hao and Zieliński 2006]; we refer the reader
to that paper for the proof). Thus, all random factors cancel each other out. Here, we combine
this cancelation technique with the conventional homomorphic encryption to build a self-enforcing
e-voting protocol. Compared with the existing mix-net or homomorphic aggregation based tallying
methods, the new method has the distinctive feature of not requiring any secret keys (hence no TAs).

The term ∑i vi is the total number of the “yes” votes. Note that we do not need to compute the
exponent of g∑i vi (although this is doable by exhaustive search). Because the DRE system records
the ballots directly, it announces the count of “yes” votes, β, right after the election, as is current

1In practice, a reasonable upper limit would be enforced.
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practice in DRE-based elections. Anyone can verify whether gβ and g∑i vi are equal. This takes only
one exponentiation. Also, anyone can count the number of dummy votes from the bulletin board,
which we denote as λ. Thus, the tally of “no” votes is α = n−β−λ.

There are several ways to extend a single-candidate election to multiple candidates. One straight-
forward method is to have a Yes/No selection for each of the candidates [Hao et al. 2010]. Another
method involves defining more efficient encoding values for candidates [Cramer et al. 1996]. These
are standard techniques to extend a single-candidate election to a multiple-candidate election, while
the underlying voting protocol remains unchanged.

3. SYSTEM ANALYSIS
In this Section, we analyze the DRE-i protocol with regard to security, efficiency, usability and
dependability.

3.1. Security analysis
First of all, we show the encryption of the “No” vote is semantically secure: in other words, the value
gxiyi for the ith ballot is indistinguishable from random. As explained earlier, the system selects
random values xi ∈R [1,q−1] for i = 1, . . . ,n. The value yi is defined from: gyi = ∏ j<i gx j/∏ j>i gx j ,
hence yi = ∑ j<i x j −∑ j>i x j. Given that xi is random, yi �= 0 holds with an overwhelming probability
(i.e., 1−1/q). Furthermore, yi is random over [1,q−1] and it is independent of xi, the value gxiyi will
be uniformly distributed over non-identity elements in G [Stinson 2006]. Therefore, the term gxiyi

is indistinguishable from random based on the DDH assumption as long as the xi values are kept
secret. All the gxiyi values (i ∈ [1,n]) are related by the constraint that ∏i gxiyi = 1. In the following,
we will prove that such a structural relationship does not reveal any information other than the tally.

ASSUMPTION 1 (DDH VARIANT). For a generator g and a,b ∈R [1,q − 1], given a tuple
(g,ga,gb,C) in which C is either gab or gab+1, it is hard to decide whether C = gab or C = gab+1.

LEMMA 3.1. Assumption 1 is implied by the DDH assumption (i.e., the problem is at least as
hard as the DDH problem).

PROOF. Consider the following tuples:

(g,ga,gb,gab), (g,ga,gb,R), (g,ga,gb,R′g), and (g,ga,gb,gabg),

for random a, b, R, and R′. DDH guarantees that the first and second tuples are indistinguishable.
The second and third tuples have the exact same distribution and hence are indistinguishable. DDH
also guarantees that the third and fourth tuples are indistinguishable. Hence, the first and fourth
tuples, i.e. (g,ga,gb,gab) and (g,ga,gb,gab+1) are indistinguishable.

Definition 3.2 (Bare Bulletin Board). A bare bulletin board is a bulletin board without the
ZKPs and digital signatures.

In the following analysis, we will first consider a bare bulletin board for simplicity, assuming
the underlying ZKPs and digital signature schemes are secure primitives. The ZKPs serve to prove
that the ciphertexts published on the bulletin board are well-formed, and they do not reveal any
information about the plaintext votes. The digital signatures serve to prove that all data published
on the bulletin board are authentic; they are not related to the secrecy of votes.

LEMMA 3.3. Consider two DRE-i elections in which all the votes are exactly the same except
for two votes vi and v j which are swapped between the two elections. Under Assumption 1, the bare
bulletin boards of these two elections are indistinguishable to an adversary that has the capability
to determine an arbitrary number of votes other than vi and v j.

PROOF. If the adversary is one of the voters, he is able to define his own vote. To make it general,
we assume a more powerful adversary who can define an arbitrary number of votes except two: vi

https://www.usenix.org/jets/issues/0203


11

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 3 • July 2014

www.usenix.org/jets/issues/0203

Table III. The simulated bare bulletin boards in the proof of Lemma 3.3.

k gxk gyk gxkyk ·gvk k gxk gyk gxkyk ·gvk

1 gx1 1/∏k>1 gxk gx1y1 ·gv1 1 gx1 1/∏k>1 gxk gx1y1 ·gv1

...
...

...
...

...
...

...
...

i ga ∏k<i gxk/∏k>i gxk (ga)σi ·g/C i ga ∏k<i gxk/∏k>i gxk (ga)σi ·g/C

...
...

...
... ⇔

...
...

...
...

j gb ∏k< j gxk/∏k> j gxk (gb)σ j ·C j gb ∏k< j gxk/∏k> j gxk (gb)σ j ·C
...

...
...

...
...

...
...

...

n gxn ∏k<n gxk gxnyn ·gvn n gxn ∏k<n gxk gxnyn ·gvn

Note: The two tables are identical except that C = gab in one table and C = gab+1 in the other. They are
indistinguishable as long as the two C values are indistinguishable.

and v j. Let us assume w.l.o.g. that i < j. If vi = v j, the lemma holds trivially. In the following we
give a proof for vi �= v j.

Let us assume there is an adversary A that first chooses an arbitrary number of the votes other
than vi and v j, and eventually distinguishes the two elections. Given a tuple (g,ga,gb,C), where
a,b ∈R [1,q− 1] and C equals either gab or gab+1, we now construct an algorithm S that uses A to
break Assumption 1. The algorithm S sets up the bulletin board with the generator g as below. Let
I = {1, . . . ,n}\{i, j}.

First, S chooses n−2 random values xk for all k ∈ I. S sets gxi ← ga, gx j ← gb, and calculates gxk

for all k ∈ I. Note that we implicitly have xi = a and x j = b. Let s1 = ∑k<i xk, s2 = ∑i<k< j xk, and
s3 =∑k> j xk. S also calculates s1, s2, and s3 and then computes σi = s1−s2−s3 and σ j = s1+s2−s3.
Figure 5 illustrates the relations between xk values and a, b, s1, s2, and s3.

x1, x2, . . . , xi−1, xi , xi+1, . . . , xj−1 , xj , xj+1, . . . , xn−1, xn
∑

k<i

xi = s1
∑

i<k<j

xi = s2
∑

k>j

xi = s3a b

Fig. 5. xi values used in the simulation

Now given all gxk , all gyk can be computed accordingly. Note that we implicitly have:

yi = ∑
k<i

xk −∑
k>i

xk = s1 − (s2 +b+ s3) = σi −b

y j = ∑
k< j

xk − ∑
k> j

xk = (s1 +a+ s2)− s3 = σ j +a

A chooses a set of votes {vk}k∈IA for the set of indexes IA ⊆ I. Let us consider some arbitrary
set of votes {vk}k∈I\IA . S can calculate gxkyk for all k ∈ I, since it knows xk and gyk . Hence, it can
calculate gxkyk gvk for all k ∈ I. For k = i, j, S sets

gxiyigvi ← (ga)σi ·g/C and gx jy j gv j ←
(

gb
)σ j

·C .

Now the calculation of the entire bare bulletin board is complete. Table III shows the simulated bare
bulletin board.
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In the case that C = gab, we have:

gxiyigvi ← (ga)σi ·g/C = (ga)σi ·g/gab = ga(σi−b)g = gxiyig and

gx jy j gv j ←
(

gb
)σ j

·C =
(

gb
)σ j

·gab = gb(σ j+a) = gx jy j ,

which means that in our bare bulletin board vi = 1 and v j = 0.
In the case that C = gab+1, we have:

gxiyigvi ← (ga)σi ·g/C = (ga)σi ·g/gab+1 = ga(σi−b) = gxiyi and

gx jy j gv j ←
(

gb
)σ j

·C =
(

gb
)σ j

·gab+1 = gb(σ j+a)g = gx jy j g ,

which means that in our bare bulletin board vi = 0 and v j = 1.
S then gives A the constructed bare bulletin board as input. If A is able to distinguish which

of the above two cases the given bare bulletin board corresponds to, S will be able to successfully
distinguish the two cases for C and hence break Assumption 1.

THEOREM 3.4 (MAIN THEOREM). We term the votes that are determined by the adversary
“the adversarial votes” and the rest “the non-adversarial votes”. Under the DDH assumption and
that the ZKP primitive used in the protocol is secure, the DRE-i bulletin board does not reveal
anything about the secrecy of the votes other than the tally of non-adversarial votes to an adversary
that is able to determine an arbitrary number of votes.

PROOF. We first restrict our attention to the bare bulletin board and consider the additional ZKP
and digital signatures later. To prove that the bare bulletin board does not reveal anything other than
the tally of non-adversarial votes, we prove that given only a tally of non-adversarial votes tH and a
set of adversarial votes {vk}k∈IA , a bare bulletin board can be simulated which is indistinguishable
from any other bare bulletin board with the same non-adversarial vote tally and given adversarial
votes. We do this in two steps: first, we show how to simulate a random bare bulletin board with the
same tH and given adversarial votes; and second, we show that such a random bare bulletin board
is indeed indistinguishable from any other bare bulletin board with the same non-adversarial vote
tally and given adversarial votes.

Step 1. Given the adversarial votes {vk}k∈IA , we randomly choose the rest of the votes {vk}k/∈IA
such that their tally is tH. Choosing random values for xk for all k, we can simulate a bare bulletin
board with {vk}k∈IA as the adversarial votes and {vk}k/∈IA as the non-adversarial votes.

Step 2. Consider any two possible bare bulletin boards BB and BB′ with the same non-adversarial
vote tally and given adversarial votes as above. First note that BB and BB′ have the same adversarial
votes, they have the same adversarial vote tally tA , and since they have the same non-adversarial
vote tally tH as well, they have the same total tally t = tH+ tA . We know that any two bulletin boards
with the same total tally (and hence BB and BB′) differ on an even number of votes. Let this vote
difference between BB and BB′ be 2d. This means that with d swaps, one can get from one bare
bulletin board to the other. Lemma 3.3 guarantees that in all these d steps, under Assumption 1,
the two bare bulletin boards involved are indistinguishable to an adversary choosing {vk}k∈IA . Note
that the adversarial votes remain fixed between the swaps. Furthermore, Assumption 1 is implied
by DDH according to Lemma 3.1. Hence, a standard hybrid argument implies that the original bare
bulletin boards (BB and BB′) are indistinguishable under the DDH assumption.

A secure 1-of-2 ZKP [Cramer et al. 1994], by definition, does not reveal any information more
than the one-bit truth of the statement: whether the ciphertext is a correct encryption of one of the
two values. Hence, it does not reveal the secrecy of the encrypted value. The digital signatures serve
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to prove that all data published on the bulletin board are authentic; they are not related to the secrecy
of votes. Hence, we conclude that the theorem holds for the full bulletin board.

The Theorem 3.4 guarantees the highest possible privacy level for DRE-i. To see this, note that
the election tally is public in any election, and hence an adversary controlling a number of adver-
sarial votes inevitably finds out the non-adversarial vote tally. The above theorem ensures that this
inevitable knowledge is the only knowledge the adversary gains and in this sense proves the highest
privacy level for DRE-i.

A corollary of the above theorem can be stated as below for a passive adversary that does not
determine any votes, but only observes the bulletin board.

COROLLARY 3.5 (PRIVACY AGAINST PASSIVE ADVERSARIES). Under the DDH assumption
and that the ZKP primitive used in the protocol is secure, the DRE-i bulletin board does not reveal
anything about the secrecy of the votes other than the tally of the votes to a passive adversary.

Although we have proven that encrypted votes in DRE-i are protected at the highest possible
level, it is important to note that breaking encryption is not the only way to compromise ballot
secrecy. There are other potentially more effective attacks, and security is determined by the weakest
link in the chain. For example, an untrustworthy voting interface is one weak link in the chain; a
corrupted interface can trivially disclose the voter’s secret choice [Karlof et al. 2005; Estehghari and
Desmedt 2010]. The setup phase is another potentially weak link. Existing E2E verifiable voting
Protocols [Kiayias et al. 2006; Clarkson et al. 2008; Adida 2008; Adida et al. 2009; Chaum et al.
2008b; Chaum et al. 2008a; Adida and Neff 2006; Chaum 2004] generally require a secure setup
phase, in which TAs securely generate and distribute key shares. If the setup phase is compromised
by attackers, then the secrecy of the vote will be breached. These issues also apply to DRE-i. On
the other hand, in DRE-i even if the setup phase is completely corrupted, the tallying integrity will
remain unaffected. This property is claimed for existing E2E verifiable protocols [Chaum et al.
2008a; Adida et al. 2009]. We now explain how this also holds for DRE-i.

We will show DRE-i satisfies all the four integrity requirements as defined in Section 2.2, even if
the setup phase is compromised. The use of the CDS technique (i.e., the 1-out-of-n Zero Knowledge
Proof) ensures the correct format of the ballot [Cramer et al. 1994], and fulfills the first requirement.
The second requirement is satisfied by the voter-initiated auditing (i.e., voter challenge), which is
adopted in most verifiable e-voting protocols. The third requirement, that on transmission integrity,
is satisfied by the voter being able to check the receipt against the public bulletin board. The fourth
requirement, that on tallying integrity, is fulfilled by using homomorphic aggregation combined
with the random-factor cancelation, so that anyone is able to verify the tally based on the audit data
published on the public bulletin board without relying on any TA. In summary, if an insider attacker
attempts to compromise the integrity of the election at any stage, this will most likely be caught by
the public because the protocol is E2E verifiable [Adida et al. 2009; Chaum et al. 2008a].

Finally, it is important to ensure that a receipt does not reveal the voter’s choice to a coercer. This
is a property formally defined as “receipt-freeness” [Delaune et al. 2006]. Previous E2E verifiable
voting protocols [Kiayias et al. 2006; Adida 2008; Adida et al. 2009; Chaum et al. 2008b; Chaum
et al. 2008a; Adida and Neff 2006; Chaum 2004] generally satisfy this requirement. We explain our
protocol conforms to it too. As explained earlier, if the voter chooses to confirm her vote, the receipt
does not leak any information about the choice made. If, on the other hand, the voter opts to cancel
her vote, the receipt will reveal the selected choice, but the vote will be declared to be a dummy. A
dummy vote is of course useless to a would-be coercer.

3.2. Performance evaluation
In DRE-i, we pre-compute all random factors used for encryption before the election with the com-
mitment published on the bulletin board. This pre-computation strategy, combined with the can-
cellation technique, is one key to realizing the “self-enforcing” property of the voting system. The
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same strategy also permits pre-computation of all cryptograms, hence optimizing the performance
during voting.

We evaluate the system performance by starting from ballot generation. As shown in Table I, we
need to compute gyi for each ballot. At first glance, this is very expensive, taking approximately n
multiplications to compute gy1 (recall that n is the total number of ballots, which may be hundreds
of thousands). However, note that gy2 = gy1 ·gx2 ·gx1 . More generally, gyi = gyi−1 ·gxi ·gxi−1 for i > 1.
Thus, computing gyi , for i = 2,3, . . . ,n, incurs negligible cost.

For each ballot i, exponentiation is the predominant cost factor. It takes one exponentiation to
compute gxi , one to compute gxiyi and four2 to compute the 1-out-2 ZKP [Cramer et al. 1996] for
each no/yes vote, totalling ten exponentiations.

In the ballot casting stage, the computational cost incurred by the DRE machine is small. If
we opt for the option of pre-computing all cryptograms before the election, the delay imposed of
voting would be almost negligible, since the machine merely needs to print out the pre-computed
cryptogram according to the voter’s choice and sign it with the digital signature key. Obviously,
pre-computing the cryptograms would mean we need to do more preparation work for an election,
but that seems a worthwhile trade-off.

The data published on the bulletin board is universally verifiable. Anyone is able to check that
the published random public keys gxi lie within the prime-order group, and that the values of gyi are
correctly computed. To verify the ZKP for the published vote Vi, it is necessary to first validate the
order of Vi. This requires an exponentiation (for both the valid and dummy cases); it takes a further
four exponentiations to verify the 1-out-of-2 ZKP [Cramer et al. 1994; Cramer et al. 1996]. In total,
it takes roughly 5 exponentiations to verify a ZKP. In principle, it suffices for at least one person to
verify all the ZKPs in a batch (those who lost the election would be motivated to verify the tally).

3.3. Usability
As explained earlier in Section 2.1, there are three types of users in an e-voting system: ordinary
voters, auditors and universal verifiers. In the DRE-i protocol, the auditing is voter-initiated, so an
ordinary voter is also an auditor. Of course this does not preclude employing dedicated auditors in
an election to perform auditing by casting dummy votes. A universal verifier is anyone in the world
who has the technical expertise to verify all data on the public bulletin board in a batch operation.

For an e-voting system to be practically useful, it needs to be “usable”. However the notion of
“usability” can be abstract and elusive. Here, we define a “usable” cryptographic e-voting system
as one that can be used independently by ordinary voters and auditors without requiring any cryp-
tographic knowledge or relying on any trusted software. This is because in practice most people
have no knowledge of cryptography and cannot distinguish trustworthy software from untrustwor-
thy software.

The DRE-i protocol assumes a minimum technical background about the voter who may wish to
audit the system. The auditing process has been seamlessly integrated into the natural confirm/cancel
selection. Every voter can easily audit the ballot by simply choosing the “cancel” button. If a ballot
is canceled, the voter just needs to verify that the printed candidate choice (in plain text) on the
receipt is the same as that she chose previously. If not, she should lodge a protest immediately. This
can be done without requiring any cryptographic knowledge. Of course, the voter needs to know
how to open a web browser and check the bulletin board. This basic computer skill is also assumed
in other verifiable e-voting protocols [Kiayias et al. 2006; Clarkson et al. 2008; Adida 2008; Adida
et al. 2009; Chaum et al. 2008b; Chaum et al. 2008a; Adida and Neff 2006; Chaum 2004].

One may be concerned about the authenticity of the receipt and how to verify this. The data on
the receipt should be authentic; otherwise, a dishonest voter may modify the receipt to support a
protest that the data fail to match that on the bulletin board. Obviously, if we wish to assume the
official receipt paper is physically unforgeable and any tampering with the printed data on the receipt
will be visibly evident, then such an attack will not work. However, the assumption of the physical

2This is estimated based on using a simultaneous computation technique [Menezes et al. 1996].

https://www.usenix.org/jets/issues/0203


15

USENIX Journal of Election Technology and Systems (JETS)

Volume 2, Number 3 • July 2014

www.usenix.org/jets/issues/0203

unforgeability is difficult to realize. In most cases, a digital signature would be needed, as in other
e-voting protocols. With DRE-i, the voter does not have to verify the signature cryptographically;
all she needs to do is to ensure the data on the receipt matches that on the bulletin board. A universal
verifier will be able to verify all data on the bulletin board in a batch. We assume there is a facility
provided at the polling station, say before the exit of the station, to allow voters to check the bulletin
board. If the data is found not to match, the voter should raise the matter immediately.

3.4. Dependability and fault tolerance
In DRE-i, the integrity of the election tally depends on the accuracy and completeness of the au-
dit data. The DRE machine directly records votes just as the existing practice in real-world DRE
deployment. At the end of the election, the machine reports the tally that it counts internally. But
unlike the ordinary DRE machines, in DRE-i, the machine must publish additional audit data to al-
low public verification of the tally. If the audit data is corrupted (say some ballots are lost), then the
integrity of the tally will be lost and the universal verification will fail. In that case, the system es-
sentially degenerates to the existing unverifiable DRE-based e-voting. Here, we have considered the
assurance of tallying integrity in the most stringent case, ensuring that every vote must be counted.

In a practical election, it is desirable to handle system faults gracefully. When the audit data have
been found to be partially corrupted, instead of merely degenerating to unverifiable e-voting, we can
extend the DRE-i protocol to provide a fail-safe feature.

Fail-safe DRE-i. Consider a case where a small subset L of ballots are found missing from (or to
be corrupted on) the public bulletin board. (The number of the missing ballots should be insufficient
to change the election outcome; otherwise, the act of error recovery may not be meaningful.) We
assume the DRE machine still maintains the xi secrets in the protected memory of the tamper-
resistant module. To allow the tallying verification to proceed, one trivial solution is to re-publish
the cryptograms of the subset L of ballots as if they were “dummy” votes. The no-votes (gxiyi for
i ∈ L) are then included into the tallying process, hence allowing the tally of the remaining ballots
to be verified. However, if a voter holds a receipt of a missing ballot, the secrecy of that ballot will
be lost. Hence, instead of publishing individual cryptograms, it is more secure to publish just one
aggregate value: namely, A = ∑i∈L gxiyi together with some cryptographic proofs to show that A is in
the correct format (details can be found in Appendix A). Thus, the information leakage is minimal.
An attacker in possession of some (not all) receipts cannot learn anything about the missing ballots.
In the worst case when the attacker is able to collect all receipts of the missing ballots, the only
thing he can learn is the tally of the missing ballots, not any individual vote.

Distributed DRE-i. The fail-safe mechanism works on the condition that the xi secrets are avail-
able. If the DRE machine is physically damaged or lost, such an error recovery procedure may no
longer be possible. In order to ensure system robustness, it is desirable to implement DRE-i in a
distributed way, as we explain below.

Figure 6 shows one possible implementation of the DRE-i system using a distributed client-server
architecture. The system consists of touch-screen DRE clients and a back-end server cluster. The
DRE client interacts with the voter and records the vote directly as usual. The server cluster consists
of n servers and implements a k/n threshold control. The setup phase works based on a proactive
secret sharing scheme [Herzberg et al. 1995]. Each server generates a random polynomial of degree
t − 1 and distributes n shares to all servers. All n polynomials are then added up with no single
server knowing the aggregate secret. Let the aggregate secret be xi. The process can be repeated for
all xi where i = 1, . . . ,n. Subsequently, the server cluster jointly compute gxi by performing secret
reconstruction on the exponent [Herzberg et al. 1995], such that no single server learns the exponent
xi. To finish the setup phase, the server cluster publishes all the gxi values on the bulletin board as
commitment. During the voting phrase, the DRE client queries the shares from k honest severs in
the server cluster through secure channels and reconstructs the xi secret. With xi, the client is able
to compute the cryptogram and print the receipt accordingly. The DRE client erases the transient xi
secret immediately after its use.
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Fig. 6. A distributed implementation of the DRE-i system
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• Prêt à Voter (2009 ): Scanner

• DRE-i: touch-screen 
or InternetE-voting protocols

Centralized e-voting

Decentralized e-voting

TA-based

Self-enforcing

Fig. 7. Categorization of e-voting protocols

A further practical strategy in distributing the implementation of DRE-i is to divide the national-
scale tallying into a set of smaller-scale tallying processes, each implementing an independent
DRE-i system. This is consistent with many real-world elections where tallies are calculated at
relatively small (say county or precinct) scales and then added up.

4. RELATED WORK AND COMPARISON
In this section, we compare DRE-i with previous DRE-based voting protocols in a local supervised
voting environment.

4.1. Categorization of e-voting
First of all, we take a broad view at the existing e-voting protocols. There are generally two cate-
gories of cryptographic voting protocols: decentralized and centralized (see Figure 7). The former
includes boardroom voting protocols due to Kiayias-Yung [Kiayias and Yung 2002], Groth [Groth
2004] and Hao-Ryan-Zieliński [Hao et al. 2010]. The latter includes a wide range of E2E verifiable
protocols: e.g., Adder [Kiayias et al. 2006], Civitas [Clarkson et al. 2008], Helios [Adida 2008;
Adida et al. 2009], Scantegrity [Chaum et al. 2008b], Scantegrity II [Chaum et al. 2008a], Prêt à
Voter [Ryan et al. 2009], MarkPledge [Adida and Neff 2006] and Chaum’s visual cryptographic
scheme [Chaum 2004]. Existing E2E verifiable voting protocols are often designed to use differ-
ent voting interfaces: e.g., a web browser [Kiayias et al. 2006; Adida 2008; Adida et al. 2009], an
optical scanner [Chaum et al. 2008b; Chaum et al. 2008a; Ryan et al. 2009], and a touch-screen
DRE [Adida and Neff 2006; Chaum 2004]. They are also designed to suit two different scenarios:
local voting [Chaum et al. 2008b; Chaum et al. 2008a; Ryan et al. 2009; Adida and Neff 2006;
Chaum 2004] and remote voting [Kiayias et al. 2006; Clarkson et al. 2008; Adida 2008; Adida et al.
2009]. All these E2E verifiable protocols require external tallying authorities to decrypt and tally
the submitted votes. Hence, they belong to the category of “TA-based e-voting” (see Figure 7).

The proposed DRE-i protocol provides the same E2E verifiability, but without involving any
external tallying authorities. This puts DRE-i in a new category, which we call “self-enforcing
e-voting”.
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Table IV. Comparison between DRE-i and ordinary (black-box) e-voting in local DRE-based voting.

DRE-i Ordinary (black-box) DRE machine
External tallying authorities Not required Not required

Ballot casting assurance Voter-initiated auditing No assurance
Transmission integrity Check receipt with Public Bulletin Board No assurance

Tallying integrity Accurate audit data No assurance
Ballot secrecy Voting interface, setup and DRE not leaking Voting interface

random factors (or pre-computed cryptograms)
Voter privacy Anonymity Anonymity

Receipt Yes, but cannot be used for coercion No receipt
Availability Dependent on system robustness Dependent on system robustness

Tamper-resistant module Needed for key management Not required
Crypto-awareness of voter Not required Not required

Crypto-awareness of auditor Not required Public auditing is impossible
Crypto-awareness of verifier Required Universal verification is impossible

Notes: Major differences are highlighted in bold face.

4.2. Comparison with unverifiable DRE
We first compare DRE-i with the unverifiable (or black-box) DRE machines that have been widely
deployed around the world. The results of the comparison are summarized in Table IV. We explain
the main differences below.

Integrity. The primary advantage of DRE-i lies in the additional “-i” in the name: i.e., its integrity.
In DRE-i, a voter can verify that her ballot is recorded to the correct candidate through voter-
initiated auditing (i.e., ballot casting integrity). She can further verify that the recorded ballot is
correctly transmitted to the tallying unit by checking the receipt against the public bulletin board
(i.e., transmission integrity). Finally, every voter is able to verify the integrity of the tally based on
the public audit data published on the bulletin board (i.e., ballot tallying integrity). These essential
verification procedures are missing in the currently deployed DRE machines.

Ballot secrecy and voter privacy. In both systems, the touch-screen interface can violate the
secrecy of the vote. However, it does not know the voter’s real identity. Hence, the voter’s privacy is
protected through anonymity. In DRE-i, the system requires an additional setup phase, which pre-
fixes random factors used for encryption. The secrecy of the random factors needs to be securely
protected, as well as the pre-computed cryptograms (if the pre-computation option is enabled).

Receipt. In DRE-i, the machine prints out a receipt, which the voter can verify against a public
bulletin board. The receipt does not reveal how a voter had voted, but allows the voter to check if
her vote has indeed been included into the tallying process. By contrast, the ordinary DRE machine
does not provide any receipt. If the ballot is missing or miscounted, the voter would not be able to
know.

Tamper-resistant module. In DRE-i, a tamper-resistant module (e.g., smart card or TPM chip)
is needed to securely manage sensitive key material, including the private signing key, the xi se-
crets and pre-computed cryptograms (if any). This follows the standard industry practice for key
management [Anderson 2008]. However, an ordinary DRE machine normally does not require a
tamper-resistant module, as no cryptography is used.

Usability. As compared to the ordinary DRE, the usability in DRE-i degrades slightly due to
the additional opportunity provided to the voter to check the receipt against the bulletin board. On
the other hand, the receipts allow public verification of the tallying integrity, which is not possible
with ordinary DRE machines. Hence, the trade-off seems worthwhile for the improved assurance
on integrity.

4.3. Comparison with previous DRE-based E2E verifiable schemes
Next, we compare DRE-i with two previous DRE-based E2E verifiable voting protocols: Mark-
Pledge [Adida and Neff 2006] and Chaum’s visual crypto scheme [Chaum 2004]. The results of this
comparison are summarized in Table V.
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Table V. Comparison between DRE-i and related E2E verifiable voting protocols for local DRE-based voting

DRE-i Local DRE-based protocols [Adida and Neff 2006; Chaum 2004]
External tallying authorities Not required Required

Ballot casting assurance Voter-initiated auditing Voter-initiated auditing
Transmission integrity Check receipt with Check receipt with

Public Bulletin Board Public Bulletin Board
Tallying integrity Accurate audit data Accurate audit data, and

TA not losing keys
Ballot secrecy Voting interface, setup, DRE not leaking Voting interface, setup, DRE not leaking

random factors (or pre-computed cryptograms) random factors and TA not leaking private keys
Voter privacy Anonymity Anonymity

Receipt-freeness Yes Yes
Availability Dependent on system robustness Dependent on system robustness and

TA not losing keys
Tamper-resistant module Needed for key management Needed for key management

Crypto-awareness of voter Not required Required
Crypto-awareness of auditor Not required Required
Crypto-awareness of verifier Required Required

Note: Major differences are highlighted in bold face.

Integrity. DRE-i provides the same E2E verifiability as MarkPledge [Adida and Neff 2006] and
Chaum’s scheme [Chaum 2004], but without involving any external tallying authorities. To guaran-
tee the tallying integrity, all three protocols require the audit data as published on the bulletin board
be accurate and complete. In MarkPledge [Adida and Neff 2006] and Chaum’s scheme [Chaum
2004], when the election is finished, the audit data published on the bulletin board must be first
decrypted by external tallying authorities before any verification is possible. This requires that the
tallying authorities’ private keys be available at the decryption and tallying phase; otherwise, the
tally cannot be verified.

Ballot secrecy and voter privacy. In all three protocols, if the voting interface is corrupted, the
secrecy of the ballot is lost. In addition, if the setup process (be it the pre-computation procedure in
DRE-i or the secret sharing setup in TA-based e-voting) is compromised, the secrecy of the ballot is
lost too. In DRE-i, all random factors are pre-determined before the election with commitment pub-
lished on the bulletin board. The secrecy of the pre-determined random factors needs to be securely
protected, which can be realized by storing them in the secure memory of a tamper-resistant mod-
ule [Anderson 2008]. In MarkPledge [Adida and Neff 2006] and Chaum’s scheme [Chaum 2004],
the random factors are generated by the DRE machine on the fly during the encryption of ballots.
Similarly, the secrecy of those random factors needs to be protected. It is critically important that
the random factors are generated honestly from a secure random number generator. If the random
number generator is corrupted, all random factors are effectively leaked. Consequently, the secrecy
of all encrypted votes is trivially lost (which is orthogonal to the security of the TAs’ private keys).
In DRE-i, the choice of pre-computing random factors before the election is based on the assump-
tion that the environment in the setup phase is more controllable than that in the field deployment on
the election day, hence the random number generator is less likely to be corrupted. Finally, Mark-
Pledge [Adida and Neff 2006] and Chaum’s scheme [Chaum 2004] assume the external TAs do not
leak their private keys; otherwise, the secrecy of the votes is compromised.

Availability. All three protocols depend on the robustness of hardware and software to ensure
availability of functionality. In MarkPledge [Adida and Neff 2006] and Chaum’s scheme [Chaum
2004], the tallying process is entirely reliant on the external tallying authorities. All data is en-
crypted under the authorities’ keys and there is usually no mechanism of directly recording votes
by the machine. However, this dependence on external authorities may lead to an additional, in
fact a catastrophic, failure mode. Human nature being what it is, when a security system critically
depends on a few selected human beings as authorities, they may form the weakest link in the sys-
tem [Anderson 2008]. Suppose that when the national voting is finished, tallying authorities claim
that their private keys are lost [Karlof et al. 2005] (e.g., as victims of targeted attacks or as the au-
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thorities claim such is the case). All the data on the bulletin board will be useless, and the whole
election may have to be aborted as a result. (Recall that in the Helios election [Adida et al. 2009],
all the tallying authorities’ private keys were centrally backed up at a trusted third party to ensure
availability.)

Tamper-resistant module. In DRE-i, a tamper-resistant module is required to securely man-
age sensitive key material, including the private signing key, the pre-determined random factors
and the pre-computed cryptograms (if any). In MarkPledge [Adida and Neff 2006] and Chaum’s
scheme [Chaum 2004], a tamper-resistant module is also required, for safeguarding the private
signing key, and additionally, for protecting the ephemeral random factors that are generated as
part of the encryption process. Because of the pre-generation of random factors, DRE-i requires
more memory in the tamper-resistant module than the other two schemes.

Usability. In MarkPledge, the voter needs to supply a “short-string challenge” [Adida and Neff
2006], which demands special cryptographic knowledge. To address this limitation, the designers
of the MarkPledge system suggest having a trusted third party at the polling station to issue the
challenges on the voters’ behalf. Unfortunately, this means a voter will not be able to independently
perform auditing. In Chaum’s visual crypto scheme [Chaum 2004], the voter needs to choose one
of the two transparencies for auditing. However, this implicitly assumes that voters understand how
visual cryptography works. In practice, not many voters can grasp the concept of visual cryptogra-
phy [Karlof et al. 2005]. As explained in Section 3.3, by design, DRE-i is free from these issues. In
all three protocols, a universal verifier who has necessary computing expertise is required to verify
the audit data published on the bulletin board in one batch operation.

4.4. Comparison with alternative designs
The design of the DRE-i protocol is motivated by the observation that since the touch-screen DRE
learns the voter’s choice directly and generates random factors for encryption on its own, the in-
volvement of external tallying authorities does not seem strictly necessary for realizing the E2E
verifiability. It is worth stressing that there are several ways to construct a “self-enforcing e-voting”
protocol and DRE-i is just one of them. While it is beyond the scope of this paper to discuss all
possible alternative designs, we will briefly describe one scheme and then compare it with DRE-i.

In order to avoid the involvement of external tallying authorities, one straightforward solution is
to adapt the existing TA-based e-voting protocols by merging the functions of the DRE with those
of the TAs. For instance, the system may use a single TA and keep the private key in the protected
memory of the tamper-resistant module in the DRE machine. All votes are encrypted under the TA’s
public key on the fly using the standard ElGamal encryption [Kiayias et al. 2006; Clarkson et al.
2008; Adida 2008; Adida et al. 2009] with ciphertext printed on the receipt and also published on
the bulletin board. At the end of the election, the DRE machine decrypts the published ciphertext in
a verifiable way.

The DRE-i protocol is better than the above alternative design in two main aspects. The first
is efficiency. In DRE-i, the ciphertext for the no-vote (gxiyi ) and the yes-vote (gxiyi · g) consists of
a single group element. It takes merely one exponentiation to compute it. By comparison, using
the standard ElGamal encryption, it takes two exponentiations to encrypt a vote and the resultant
ciphertext consists of two group elements. Second, in DRE-i, all the random factors used in the
encryption are fixed before the election with commitment published on the bulletin board, while
they are determined on the fly during voting in the alternative design. Our assumption is that the
environment in the setup phase is more controllable than that in the field deployment on the election
day. Furthermore, the publication of all random public keys (gxi ) before the election gives the public
an opportunity to verify the distribution of the values, gaining some measure about the random-
ness. Another practical advantage of pre-fixing the random factors is to allow pre-computing the
cryptograms, thus reducing the latency in voting.
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5. CONCLUSION
E2E verifiable e-voting protocols have been extensively studied in the past twenty years, but the
real-world deployment of those protocols has been limited. Our hypothesis is that a key obstacle
to the practical deployment is the existing E2E verifiable voting protocols’ universal dependence
on a set of trustworthy tallying authorities to administer the tallying process. Previous trial expe-
rience has shown that implementing such authorities is not an easy task in practice. In this paper,
we focus on studying local touch-screen DRE-based elections. First of all, we observe that since the
DRE machine learns the voter’s choice directly and generates its own random factors for encryption,
the involvement of external tallying authorities does not seem strictly necessary for achieving the
E2E verifiability. Based on this observation, we propose a self-enforcing e-voting protocol called
DRE-i, which provides the same E2E verifiability as previous schemes but without involving any
tallying authorities. By comparing DRE-i with related voting systems, we demonstrate encourag-
ing improvements in several aspects, including security, efficiency and usability. This shows that
“self-enforcing e-voting”, as a new paradigm, has promising potential for further research. In future
research, we plan to extend our study to remote e-voting and also to accommodate more complex
voting schemes, such as Single Transferable Vote (STV).
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A. FAIL-SAFE DRE-I AND SECURITY PROOFS
We use the same domain parameters, (p,q,g), as those defined in Section 2. Assume at the end
of the election, a subset L of ballots are found to be missing (or corrupted) on the bulletin board.
To allow the public to verify the tally of the remaining ballots, the DRE publishes A = g∑i∈L xiyi and
proves non-interactively that A is in the right format without revealing the secrecy of each individual
gxiyi term as follows.

(1) DRE chooses r ∈R [1,q−1] and publishes Xi = (gxi)r and Zi = (gxiyi)r for all i ∈ L.
(2) DRE publishes ZKPs of Equality (based on Chaum-Pedersen’s technique [Chaum and Pedersen

1993]) for all i ∈ L to prove that the discrete logarithm of Xi with respect to base gxi is equal
to the discrete logarithm of Xj with respect to base gx j , where j is the index in L immediately
greater than i. These ZKPs guarantee that for any i, j ∈ L (i �= j), Xi = (gxi)r and Xj = (gyi)r

have the same exponent r.
(3) DRE publishes ZKPs of Equality [Chaum and Pedersen 1993] for all i ∈ L to prove that

(Xi,gyi ,Zi) forms a DDH tuple. This is equivalent to proving that the discrete logarithm of
Zi with respect to base gyi is equal to the discrete logarithm of Xi with respect to base g. These
ZKPs guarantee that for all i ∈ L, Zi = (gxiyi)r has the same exponent r.

(4) DRE publishes a ZKP of Equality [Chaum and Pedersen 1993] to prove that the discrete loga-
rithm of ∏i∈L Zi with respect to base A is equal to the discrete logarithm of an arbitrary Xi (i∈ L)
with respect to base gxi . It suffices to choose i to be the first index in L. This ZKP guarantees
that A is indeed represented in the form of g∑i∈L xiyi .

These published data guarantee that A is in the correct representation. Therefore A can be sub-
sequently included into the tallying process to rectify the effects of missing ballots. Among the
published data, the ZKP of Equality does not leak anything more than one bit information about the
truth of the statement: the two discrete logarithms are equal [Chaum and Pedersen 1993]. However,
the process also involves publishing additional data: Xi and Zi for all i ∈ L. In the following, we will
prove that the Xi and Zi values will not affect the secrecy of each individual gxiyi . In other words,
the result in Theorem 3.4 still holds. We consider the extreme case when the available data to an
adversary is the maximum: i.e., L is a whole set rather than a subset (obviously, |L| > 1). We will
prove Theorem 3.4 holds even in this extreme case. First of all, we define a variant of the DDH
assumption as below.

ASSUMPTION 2 (3DDH VARIANT). For a generator g and randomly chosen a, b, and c, given
a tuple (g,ga,gb,gc,gac,gbc,gabc,C) in which C is either gab or gab+1, it is hard to decide whether
C = gab or C = gab+1.

LEMMA A.1. Assumption 2 is implied by the DDH assumption.

PROOF. First, note that Steiner, Tsudik, and Waidner [Steiner et al. 1996] have proven that DDH
is equivalent to the generalized DDH assumption. An instance of the generalized DDH assumption is
the three-party DDH assumption (3DDH) which states that for a generator g and randomly chosen
a, b, and c, given a tuple (g,ga,gb,gc,gab,gac,gbc), it is hard to distinguish gabc from random.
An equivalent formulation of the 3DDH assumption is as follows: for a generator g and randomly
chosen a, b, and c, given a tuple (g,ga,gb,gc,gac,gbc,gabc), it is hard to distinguish gab from random.
This can be easily seen by considering gc as the generator in the original formulation.

Now we prove that the latter formulation of 3DDH implies Assumption 2. Similar to the proof of
Lemma 3.1, consider the following tuples:
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(g,ga,gb,gc,gac,gbc,gabc,gab),

(g,ga,gb,gc,gac,gbc,gabc,R),

(g,ga,gb,gc,gac,gbc,gabc,R′g), and

(g,ga,gb,gc,gac,gbc,gabc,gabg),

for random a, b, c, R, and R′. 3DDH guarantees that the first and second tuples are indistinguish-
able. The second and third tuples have the exact same distribution and hence are indistinguishable.
3DDH also guarantees that the third and fourth tuples are indistinguishable. Hence, the first and
fourth tuples, i.e. (g,ga,gb,gc,gac,gbc,gabc,gab) and (g,ga,gb,gc,gac,gbc,gabc,gab+1) are indistin-
guishable.

LEMMA A.2. Consider two failsafe DRE-i elections in which all the votes are exactly the same
except for two votes vi and v j which are swapped between the two elections. Under Assumption 2, the
bare bulletin boards of the above two elections are indistinguishable to an adversary that determines
an arbitrary number of the votes other than vi and v j.

PROOF. Let us assume w.l.o.g. that i < j. If vi = v j, the lemma holds trivially. In the following
we give a proof for vi �= v j.

Let us assume there is an adversary A that first chooses an arbitrary number of the votes other
than vi and v j, and eventually distinguishes the two elections. We construct an algorithm S that uses
A to break Assumption 2.

Given a tuple (g,ga,gb,gc,gac,gbc,gabc,C), where C equals either gab or gab+1, S sets up the
bulletin board with the generator g as follows. Let I = {1, . . . ,n}\{i, j}.

gxk and gyk are set up in the same way as the proof of Lemma 3.3. First, S chooses n−2 random
values xk for all k ∈ I. S sets gxi ← ga, gx j ← gb, and calculates gxk for all k ∈ I. Note that we
implicitly have xi = a and x j = b. Let s1 =∑k<i xk, s2 =∑i<k< j xk, and s3 =∑k> j xk. S also calculates
s1, s2, and s3 and then computes σi = s1 − s2 − s3 and σ j = s1 + s2 − s3.

Now given all gxk , all gyk can be computed accordingly. Note that we implicitly have:

yi = ∑
k<i

xk −∑
k>i

xk = s1 − (s2 +b+ s3) = σi −b

y j = ∑
k< j

xk − ∑
k> j

xk = (s1 +a+ s2)− s3 = σ j +a

Next, S simulates gxkr and gxkykr as follows. It sets gxir ← gac and gx jr ← gbc; that is, we implicitly
have r = c. For all k ∈ I, it sets gxkr ← (gc)xk . Then it sets

gxiyir ← (gac)σi /gabc = ga(σi−b)c and gx jy jr ←
(

gbc
)σ j

·gabc = gb(σ j+a)c .

In general, for any k = 1, . . . ,n, we define σk = ∑ �<k
��=i, j

x�−∑ �>k
��=i, j

x�. Now we have:

∀k ∈ I : yk = ∑
�<k

x�− ∑
�>k

x� =±a±b+ ∑
�<k
��=i, j

x�− ∑
�>k
��=i, j

x� =±a±b+σk ,

where depending on k, we have either a plus or a minus sign in front of a and b and σk is known.
Hence {gxkykr}k∈I can be simulated as

gxkykr ←
(

g±acg±bc (gc)σk
)xk

= gxk(±a±b+σk)c .
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Table VI. The simulated bare bulletin board in the proof of Lemma A.2

k gxk gyk gxkr gxkykr gxkyk gvk

1 gx1 1/∏k>1 gxk (gc)x1
(
(gc)σ1 /

(
gacgbc))x1 (gx1 )y1 gv1

...
...

...
...

...
...

i ga ∏k<i gxk/∏k>i gxk gac (gac)σi /gabc (ga)σi ·g/C

...
...

...
...

...
...

j gb ∏k< j gxk/∏k> j gxk gbc (
gbc)σ j ·gabc (

gb)σ j ·C
...

...
...

...
...

...

n gxn ∏k<n gxk (gc)xn
(
gacgbc (gc)σn

)xn (gxn )yn gvn

S sets up the last column of the bare bulletin board similar to the proof of Lemma 3.3. A chooses
a set of votes {vk}k∈IA for the set of indexes IA ⊆ I. Let us consider some arbitrary set of votes
{vk}k∈I\IA . S can calculate gxkyk for all k ∈ I, since it knows xk and gyk . Hence, it can calculate
gxkyk gvk for all k ∈ I. For k = i, j, S sets

gxiyigvi ← (ga)σi ·g/C and gx jy j gv j ←
(

gb
)σ j

·C .

Now the calculation of the entire bare bulletin board is complete. Table VI shows the simulated bare
bulletin board.

In the case that C = gab, we have:

gxiyigvi ← (ga)σi ·g/C = (ga)σi ·g/gab = ga(σi−b)g = gxiyig and

gx jy j gv j ←
(

gb
)σ j

·C =
(

gb
)σ j

·gab = gb(σ j+a) = gx jy j ,

which means that in our bare bulletin board vi = 1 and v j = 0.
In the case that C = gab+1, we have:

gxiyigvi ← (ga)σi ·g/C = (ga)σi ·g/gab+1 = ga(σi−b) = gxiyi and

gx jy j gv j ←
(

gb
)σ j

·C =
(

gb
)σ j

·gab+1 = gb(σ j+a)g = gx jy j g ,

which means that in our bare bulletin board vi = 0 and v j = 1.
S then gives A the constructed bare bulletin board as input. If A is able to distinguish which

of the above two cases the given bare bulletin board corresponds to, S will be able to successfully
distinguish the two cases for C and hence break Assumption 2.

THEOREM A.3 (MAIN THEOREM). Under the DDH assumption and that the ZKP primitives
used in the protocol are secure, the failsafe DRE-i bulletin board does not reveal anything about the
secrecy of the votes other than the tally of non-adversarial votes to an adversary that determines an
arbitrary number of votes.

PROOF. Similar to the proof of Theorem 3.4, whereas now we rely on Lemmas A.1 and A.2
instead.

A corollary of the above theorem can be stated as below for a passive adversary that does not
determine any votes, but only observes the bulletin board.
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COROLLARY A.4 (PRIVACY AGAINST PASSIVE ADVERSARIES). Under the assumptions that
DDH is intractable and the ZKP primitives used in the protocol are secure, the failsafe DRE-i
bulletin board does not reveal anything about the secrecy of the votes other than the tally of the
votes to a passive adversary.

https://www.usenix.org/jets/issues/0203

