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Abstract 

Assuming the existence of a secure probabilistic encryption scheme, we show that every language 

that  admits an interactive proof admits a (computational) zero-knowledge interactive proof. This 

result extends the result of Goldreich, MiCali and Wigderson, that, under the same assumption, 

all of NP admits zero-knowledge interactive proofs. Assuming envelopes for bit commitment, 

we show t h t  every language that  admits an interactive proof admits a perfect zero-knowledge 
interactive proof. 

1. Introduction 

Suppose Bob is polynomially time-bounded, but Alice has unlimited computational resources. If 
q5 is a satisfiable boolean formula, Alice can certainly convince Bob of this fact; she could send 

Bob a message y describing a satisfying t ru th  assignment for 4, and Bob could check tha t  y does 

indeed specify a satisfying t ru th  assignment. In other words, the language L of satisfiable boolean 
formulas is in NP.  

The interaction between Alice and Bob in this example is very simple: Alice sends a single 
message to  Bob, and no other  messages are sent between the two. If q5 is satisfiable, there is some 

message y that Alice might send which will convince Bob to accept. But if q5 is not satisfiable, 

then no message that  Alice might send will convince Bob to  accept. 

In the paper of Goldwasser, Micdi, and Rackoff [GMR], the authors extend the scenario 

above in two ways, to arrive at the  notion of an interactive proof f o r  the language L. First, 

the interaction between Alice and Bob is allowed to be more complicated, with Alice and Bob 

exchanging multiple messages. Secondly, Alice and Bob are taken t o  be probabilistic, and Bob 

may occasionally accept or reject erroneously. I t  is required that if an input is in L,  then Alice 
can behave in such a way tha t  Bob will almost always accept; but if an input is n o t  in L ,  then, 
no mater what messages Alice sends, Bob will almost certainly reject. 

A different notion of provability “beyond NP” was independently proposed by Babai [Bab]. 

This notion is called an A r t h u r - M e r l i n  protocol. Babai’s model is similar to that of [GMR], 
but is seemingly more limited, because the verifier is required to reveal to the prover all of his 

coin flips (right after making them). Though this loss of privacy seems an important restriction, 

Goldwasser and Sipser [GSJ show that ,  in fact, the models are equivalent with respect to  language 
recognition. 

Let IP be the class of languages tha t  admit interactive proofs. Clearly N P  5 I P ,  for 
an NP-interaction is a special type of IF‘-interaction, in which the prover (Alice) sends the one 

and only message, and t h e  verifier (Bob) never errs. However, IP may be a much larger class 

of languages. For example, there is a n  interactive proof known for graph nonisomorphism, even 

though there are not known t o  be succinct certificates for establishing that a pair of graphs are 

not isomorphic. 

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 ’88, LNCS 403, pp. 37-56, 1990. 

0 Spnnger-Verlag Berlin Heidelberg 1990 
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In this paper, we are concerned with zero-knowledge interactive proofs. A zero-knowledge 
interactive proof for a language L is an interactive proof for L for which, on any input in L,  
the prover divulges to the  verifier no significant amount of information ezcept t h a t  the  input 

is in L. (The notion of zero-knowledge we refer t o  has sometimes been called c o m p u t a t i o n a ~  
zero-knowledge, to distinguish i t  from two other notions of zero-knowledge that appear in the 

literature, perfect zero-knowledge and 5tati5tical zero-knowledge. [Fo]) For example, a zero- 

knowledge interactive proof t h a t  4 is a satisfiable boolean predicate convinces the verifier tha t  # 
is satisfiable, but not, say, by exhibiting a satisfying truth assignment. 

Though the models of [Ba] and [GMR] are equivalent with respect t o  language recognition, 

they are likely n o t  the  same with respect to  zero-knowledge; zero-knowledge interactive proofs 

frequently make use of t h e  verifier's ability to have secret coins. 

It might seem that  requiring a n  interactive proof be zero-knowledge is generally too much 

to  hope for; one might expect t h a t  relatively few languages with interactive proofs admit zero- 

knowledge interactive proofs. This was shown to probably not be the case in a paper of Goldreich, 

Micali, and Wigderson [GMWl]. Here the authors show that, assuming the existence of a secure 

probabilistic encryption scheme, every language in NP admits a zero-knowledge interactive proof. 

We generalize this result to establish that, under the same assumption, every language that  

admits an interactive proof admits a zero-knowledge interactive proof. 

A brief note on the history of this theorem. The result was stated in [GMWl], attributed t o  

Ben-Or; this proof was never published. A published sketch of a proof appears in t h e  CRYPTO- 
87 paper of Chaum, DamgHrd, and van de Graaf [CDG]. However, the result seems to require a 

stronger assumption, such as a pair of claw-free trapdoor functions. We have been learned [I] that  

Russell Impagliazzo and Moti Yung independently and by different methods had a proof of this 

theorem, which will appear in  journal-form shortly [Yu]; their work is sketched in [m- 
In this paper, we will point out  some subtleties involved and formally prove the theorem. We 

then discuss the "physical model" in which a bit can be committed by putting it in a n  envelope, 
and we show how to obtain perfect zero-knowledge proofs for IP under this model. T h e  technique 
used here is different from the method that  employs encryption. (The proofs of N and (CDG] 
can be adapted to t h e  envelope model, aa well, aa pointed out by [Br] and [Yu].) 

The paper is organized as follows. Section 2 gives the preliminaries needed to understand 

the main theorem, including both definitions and well-known or technical results. T h e  reader 
familiar with this area might skim or skip this section. Section 3 is devoted to the  proof of the 

main theorem. Section 4 shows how t o  obtain perfect zero-knowledge proofs for languages in IP 
in the model in which a bit can be committed by putting it in an envelope. The remainder of this 
section is a n  informal overview of t h e  proof of the main theorem. 

1.1. Overview of the construction 

We wish to show that ,  if ( P - V )  is a n  interactive proof system for the language L, then P and 

V can be modified t o  P' a n d  V', such that  (P' H V') is an interactive proof system for L, but 
P' U zero-knowledge ooer L. 

Suppose (P++ v) is a n  interactive proof system for the language L. We would like to carry 

out the "same interaction" in  a way that  betrays essentially no information to V. To d o  this, 
we could have P encrypt each message that  it sends to V. That is, P uses a secure encryption 

function, E.  On the  i t h  round, when P "would have" sent to V the string yi, P instead sends to  

v the string E ( y i ,  di), a random encryption of y;. (We assume that E(s ,  s) = E ( y ,  t )  implies 

3 = y, and that from E(z,s) and s one can efficiently compute I. Security is with respect t o  
nonuniform poly-time computation.) 

There are two immediate difficulties. First, how can V be expected to  compute his responses 

to  P ,  since he doesn't understand what P has sent? Second, how can V be convinced t o  accept 
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the string I if, as far as he can tell, P has sent him complete gibberish? 

The first problem-that V won't know what to  do with the messages he's received-is 
answered as follows. By the  result of Goldwasser and Sipser [GS], there is an A r t h u r - M e r l i n  
protocol, ( M H A ) ,  for the  same language, L. In ( M  * A ) ,  Arthur sends only his coin flips, SO 

Arthur needn't understand the messages he's received in order to  respond. 

The second problem-that Arthur can't tell whether or. not he ought accept-is answered 
as follows. If Arthur could guess the  encryption keys, dl,d2,. .., he would have no problem 

knowing whether or  not to accept, for he could decrypt each message sent by Merlin and accept 

or reject based on the same predicate he would have used had the conversation been carried out 

unencrypted. Of course, Arthur can't be expected to guess d1, d2,. . ., but the statement "If you 

guessed d l ,  dz, . . ., you'd accept z based on this interaction" is in NP. Since, by [GMWl], all of 

NP can be proven in zero-knowledge, there is a way for Merlin to  convince Arthur of the  validitity 

of this statement t h a t  is in zero-knowledge. 

The construction just  given has the following defect: 

To show tha t  ( M - A )  is a zero-knowledge proof system for L, we need to argue tha t  a n y  
A* learns essentially nothing by interacting with M. Suppose A' cheats by flipping a biased coin 
in place of his random tape,  with bias, say, p = 3/4. If A' several times interacts with on a 

common input z E I), and if M usually convinces A* to  accept, then, intuitively, A' has learned 
something: that most strings taken from this distribution lead to  accepting I when used for A's 
random coins. This  is "real knowledge," for it is entirely possible that even though hf usually 

convinces A to accept if A uses a fair coin, n/f  usually fails to convince A to accept if A uses a 

3/4-biased coin. 

(If we tried to prove t h a t  M is zero-knowledge, here's where we'd get stuck. T h e  simulator 

MA* simulates the  behavior of a "virtual prover," I", interacting with A*. On common input 

z E L, P* sends random encryptions of the appropriate length string of 0's. When this phase of 
the interaction is finished, we append a simulated proof that Arthur would accept if he correctly 

guessed d r , d z , .  . .. B u t  i t  is not always appropriate to append this simulated proof! For in the 
real interaction, (M c-, A*), A* sometimes rejects strings in L. Quite possibly, A* has chosen a 
distribution of strings for which A would wually reject strings in L. So if Pa always appends 

the simulated proof that Arthur  would accept, the resulting view may significantly differ from 

the real view of the interaction. But  P" has no way t o  know if it ought or ought not send the 
simulated proof.) 

One possible fix is to use the result of Goldreich, Mansour, and Sipser (GMS], which says 

that we may, without loss of generality, take ( M  * A) to be one-sided. That  is, we may 
w u m e  that  regardless of t h e  coins that  A employs on I E L, A will be convinced t o  accept I. 
(Consequently, i t  will always be  appropriate for P* t o  convince A' to accept in the  simulated 
interaction.) This is t h e  course t h a t  we shall follow. 

Another possible fix is to use a "coin flip into the well" for A's coins ([Bl]). To make this pro- 

posal work, it is necessary tha t  the  coin flips that are agreed to are statist ically ind is t inguishable  
([Fo]) from truly random coin Rips. 

It is important tha t ,  in  our  formulation, independent encryption functions are, effectively, 
used on each round of t h e  interaction. For example, we can not prove that it will be zero-knowledge 

for the prover t o  choose a public key encryption algorithm, E, with decryption algorithm D, send 

8 to the verifier, and then send a random encryption of y, under E, when yi  would otherwise be 

sent. (The verifier is convinced via the assertion, "If you guessed D, you'd accept the correspond- 
ing unecrypted conversation.") 

(Here is the problem with such a scheme: Merlin, having received strings ~ 1 , .  . . , ~i from 

A', computes yi  by a probabilistic function of ( z , z ~ , .  . . , z;). Thus y; is drawn from a probability 
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space R, which A' has some influence over. The encryption function is secure, SO (21,. . . , Zi) 
can be only slightly correlated to D. But a weak correlation of (2, zl, . . . , zi) to D may result 
in Ri being strongly correlated to D,  for M is not necessan'ly polynomial time. In  fact, 

there is no reason to assume t h a t  R, is not precisely the space that A' wants it to be. But  we 

mustn't allow A' to have such strong influence over Ri; what if A* forces R; to be the  space, 

say, with unit probability mass on D? Then Merlin sends Arthur E ( D )  ( a  random encryption 

of the decryption function). This possibly compromises the the encryption function. In general, 
we worry that A' may be able to select a space R; for Merlin such that taking y; from R, and 
encrypting yi under E compromises E.) 

In any case, requiring a public key cryptosystem is a stronger assumption than t h e  com- 

mitment scheme E ( m g ,  rand) t h a t  we require. 

2. Preliminaxies 

2.1. Interactive proof systems 

The definition we give for an interactive proof system is essentially that  of Goldwaaser, Micali, 

and Rackoff [GMR]; see this paper for a more complete discussion of interacting Turing machines 
and interactive proofs. 'It does not significantly effect the model if one assumes that  the  prover 

never halts, the verifier sends the  first message, and communication is done on a single communi- 
cation tape. We build these assumptions into the definition: 

An interactive proof system, (P w V), consists of a pair of probabilistic Turing machines, p 
and v, with common alphabet C. P and V each have distinguished start and quiescent states. 

V has distinguished accept and reject states, out of which there are no transitions. P and v 
operate on various one-way infinite tapes: 

P and V have a w m m o n  read-only input tape. 
P and V each have a private random tape, and a private work tape. 
P and V have a common communication tape. 
v is po lynomidy time-bounded. This means that there is a polynomial p for which, on 

inputs of length n, v experiences at most p ( n )  state transitions before it accepts or  rejects. 

v does not transition when it is quiescent, and P is running. 

p is finite expected time. This  means that there is a function f such that ,  on  inputs of 

length n, P's expected computation time from start to quiescent states does not exceed 
f(n), regardless of the  messages P has received. 

There is a polynomial r such that  P never writes more than r (n )  characters (including 
blanks) on t h e  communication tape when the common input is of length n. 

Execution begins with P in  its quiescent state and V in its start state. V's entering its quiescent 

state arouses P, causing i t  to transition to its start state. Likewise, P's entering its quiescent 

state causes v to transition to its start state. Execution terminates when V enters its accept or 

reject state. 

If p and v are  given random tapes Q,T E C", respectively, and are then run on input 

5 E c', with work tapes  initially empty, then the final state that V enters is well-defined, and 

we say that (P- * V,)(z) accepb or rejects accordingly. If we omit mention of u and 7, then 

we may speak of the  "probability t h a t  ( P + + V ) ( z )  accepts," P r [ ( P w V ) ( z )  accepts]. 

Definition. (P* V) is an interactive proof system for the language L if, for some 0 5 E < 
1/2, we have both: 

completeness : 

soundness: (VP') z $ L Pr[(P* -v)(z) accepts] 5 E. 

z E L ==+ P r [ ( P - V ) ( z )  accepts] 2 1 - E ,  and 
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(P H V) is a one-sided interactive proof system if, in place of completeness, we have: 
perfect completeness: 

That  is, a one-sided interactive proof always accepts z when z E L, regardless of the 

contents of the random tapes. 

The number E in  this definition is called the error  probability. By the standard method 

of running the protocol multiple times, we may take the error probability t o  be any constant in 

( O , l ) - o r  even any error probability of the form e(n) = 2-9(”) ,  where p is a polynomial. 

In order to extend our  discussion to speak of knowledge, we consider the possibility that  

V’s work tape initially contains %ome knowledge.” Suppose P and I/ are given random tapes 

O,T E c”, respectively, and are run on input z E C*, with s E C’ initially placed on V’S work 
tape. Then not only is t h e  final state of V well-defined, but so are: 

The number of rounds, 2m, for which P and V interact. (The number of rounds is the 
number of messages sent between A and B.) 

0 The i t h  message sent from V to P, zi. (A message is a prefix of the communication tape, 
from its left end to the  first blank). 

b The i t h  message sent from P to V ,  yi. 

0 The (finite) prefix TO of T t h a t  V reads. 

z E L + Pt[(P H V ) ( s )  accepts] = 1. 

- 
That is, (p, V,O, T, 5 ,  S )  determine the  number m and strings 2’= 11;. . . ; I=;, y = y i ;  . . . ; ym;, 
as above. We define from these the public history of the interaction and the view of the  interac- 

tion: 

Interpret the right hand side of each of these definitions as the binary encoding of the  specified 
string, where ‘[I, I ; ’  and I , ’  are  new (formal) symbols. 

Informally, the public history is t h e  interaction as it would be observed from t h e  “outside;” 

the view is the interaction as seen from V’s perspective. 

If we omit mention of Q and T ,  then (P V)(z, s) and (P yicu! V ) ( z ,  s) are probability 

V) and ( P  * V) (no mention of z or s) are families of probability spaces. spaces. (P 

2.2. Arthur-Merlin protocols 

In the definition for an interactive proof, the verifier was not compelled to reveal his coins 

flips (the prefix-of his random tape tha t  he uses) to the prover. If the verifier does reveal his 

coin flips at each round, there is no reason for him to send anything else, since the prover himself 

could as well compute anything else the verifier would have sent. A seemingly weaker notion of an 

interactive proof, introduced by Babai [Baj [BaM], is obtained by limiting the verifier’s messages 
in this way. 

Definition. An interactive proof for L, (M w A), is an Arthur-Merlin protocol if for some 

polynomials T and I, any interaction between M and A on an input of length n takes exactly 

r ( n )  rounds, each message sent being of length Z(n). Moreover, the r(n) messages sent by A, 
2 1 , .  . . , I ~ ( ~ ) ,  are precisely the prefix TO = 11 . . . zr(n) of A’s random tape that A consumes. 

The first condition alone is easily seen not to weaken the model from that of a n  interactive 
proof system. Surprisingly, the second condition does not weaken the model either: 
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Theorem 2.1. If (P w V) is an interactive proof system for L, then there is a one-sided, 
Arthur-Merlin protocol (M w A) for L.  

The result without "one-sided" is due to  Goldwasser and Sipser [GS]; it was extended to 

proofs of perfect completeness by Goldreich, Mansour, and Sipser [GMS]. Recently, J. Kilian [K] 
discovered a much simpler argument for Theorem 2.1. 

2.3. Zero-knowledge 

c, E c' (n E N), C = {C,,} is a poly-size famiIy of circuits if there are polynomials p 
and p such tha t  Ic,( 5 p(n), and C, encodes (via some fixed universal Turing machine) a 

(deterministic) algorithm which, on input x E C', requires a t  most q( 1.1) steps before it outputs 
a bit, 0 or 1. 

If c is an algorithm that  outputs a bit, and R is a probability space, then we may speak of 
"the probability t h a t  C outputs  a 1 on input drawn from R," p g  = zPEC. P T R ( { ~ } )  * c(b). 

We define zero-knowledge in terms of families of probability spaces indexed by two variables, 
which are treated differently. 

Deflnition. Let R = {R(z,s)} and S = {S(z,s)} be families of probability spaces, indexed 

by c' X C'. Then R and S are  indistinguishable over L if, for any poly-size family of circuits 
{cn}, any polynomial q, and all sufficiently long x in L, 

for all s E C'. If R and S are indistinguishable over L,  we write R ZL S to denote this. 

Deflnition. P is zero-knowledge over L if, for any V, there exists an expected polynomial-time 

algorithm M v  such that (P * V) EL Mv.  

Definition. (P * V) is a zero-knowledge interactive proof system for  L if (P t+ V) is an 
interactive proof system for L, and P is zero-knowledge over L. 

We have defined indistinguishability with respect to poly-size families of circuits. In the  

proof of the main theorem, i t  will be  convenient to think of indistinguishability with respect to 

poly-size families of probabilistic polynomial time algorithms. As with circuits, this is a non-  
unifom concept; there may be no algorithm which, on input n, outputs the expected poly-time 

algorithm c,. By a n  averaging argument, and exploiting nonuniformity, it is easy to see that 

the notion of indistinguishability is unchanged if we define indistinguishability with respect to 

poly-size families of circuits, or with respect to poly-size families of probabilistic polynomial time 
probabilistic algorithms. 

2.4. Preliminary results 

It is frequently convenient to assume that, when P and V interact, the interaction takes place 
for a fixed number of rounds, messages are of a fixed length, and V uses a fixed number of coin 
flips per round. T h e  following proposition says that there is no loss of generality in making these 
assumptions. The  proof is straightforward and has been omitted. 

Proposition 2.2. If (P c--) v) is a (zero-knowledge) (one-sided zero-knowledge) interactive 

proof system for L, then there exists an I", V', and polynomials T ,  I, t, such that (f" t+ v') is 

a (zero-knowledge) (one-sided zero-knowledge) interactive proof system for L, and on each input 
of length n, the  interaction runs for exactly r ( n )  rounds, each message exchanged of length l(n), 

0 and v' ffipping precisely t(n) coins for each message that it sends. 
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With respect to language recognition, we may further assume that  the prover is determin- 

istic. This observation (actually, tha t  PSFACE was enough for the prover), was first made by 

Feldman [Fe]. 

Proposition 2.3. I f  ( P  t) V )  is an interactive proof system for L, then there is a determinis t ic  

P’ for which (P‘ H V )  is an interactive proof system for L. If (P H V )  was an Arthur-Merlin 

The next proposition depends on the fact that the “composition” of zero-knowledge inter- 

active proofs remains zero-knowledge. A proof of Proposition 2.4 can be found in the paper of 

Tompa and Woll [TW]. 

Proposition 2.4. If L admits a (one-sided) zero-knowledge interactive proof, then L admits a 

(one-sided) zero-knowledge interactive proof with error probability E for any 0 < e 5 1/2. 0 

To state the next lemma-which conceptually simplifies the argument of the main result- 

we define the composition of two interactive proof systems, (Pi - V1) and (Pz * vz). Let US 

assume that  the former always uses r(I.1) rounds on any input I, and that each message is of 

length l(111). (By Proposition 2.2, this entails no loss of generality.) ((Pz o Pi) * (k; 0 K)) is 

defined as follows: Initially, Pz o PI and Vz o V1, acting on common input z, behave like PI and 

V1, respectively, acting on  common input 2. This continues for the first r( 1x1) rounds. However, 

Pz o PI and Vz o Vl each record the  public history of the interaction during these r(Iz1) rounds. 

After that, Pz o Pi checks that  the public history of the interaction is a public history tha t  could 

arise in a (9 H V1) interaction on 3. If so, Pz o PI behaves like Pz acting on input of the public 

history of the preceeding interaction; if not, all future messages of Pz o PI are the empty string. 

Vz o Vl continues by behaving like Vz, acting on input of the public history of the preceeding 

interaction. 

Lemma 2.5. Suppose (Pz t+ Vz) o (PI * V1) is an interactive proof system for L. Suppose Pi 

is zero-knowledge over L, and Pz is zero-knowledge over L’, where L’ = (PI & &)(L) is the 

set of all public histories that  might arise in a (PI  u V1) interaction about a string in L. Then 

Pz o Pi is zero-knowledge over L. 

Proof: Let rl be t h e  polynomial such that  (PI H Vl) uses rl(lzl) rounds on any input I, and 

let 1 be the polynomial such t h a t  each of these messages is of length l(l.1). 
Let w be any polynomial-time probabilistic algorithm that interacts with Pz o PI.  We may 

assume that  (Pz oP1 HW) uses r(I.1) rounds on any input x, where T is a polynomial exceeding 

rl pointwise. 

We must exhibit a n  expected polynomial time machine 1CI (of two arguments) for which 

Begin by constructing from W machines W1 and W z  as follows. W1, on input (I,$), 

behaves exactly like W would behave on ( I , s ) ,  but only for rl(lzl) rounds. After that ,  w1 
immediately accepts (or rejects). 

wz takes as input a pair ( z , ~ ) ,  where we assume s = [ ? , S , r , G ] ,  and ?is  of t h e  form 

yi; . . . ; ym;. 8 is t h e  view of part of a computation of W .  Wz runs W ,  to resurrect the  s ta te  W 
would be in after the  conversation indicated by s. After that, W z  behaves like W ,  starting from 

this state. 

protocol, then so will be (P‘ * V). 0 

The technical lemma we need is 

(Pz 0 P1 yieul W )  M .  

v iew  
Since Pi is zero-knowledge over L,  there is an expected poly-time such that  (Pi - 

W1) =L MI.  
view 

Since PZ is zero-knowledge over L’, there is an expected poly-time Mz such tha t  (P2 - 
Wz) =LI Mz. 
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M is constructed by ycomposing" MI and M2. On input ( x , s ) ,  M first runs M I ,  t o  
runs Mz(A, 

M ( z ,  S) can be  described as t h e  probability space resulting from performing t h e  following 

compute a string which, without loss of generality, looks like [z ,s ,~1, f1] .  Next, 

[Z,S,TI,&]), producing a string [A, [ z , s , t 1 ,Y ; ] ,~z ,&] .  M outputs [z,s1t1~z,$ig~1. 

experiment: 

Ezperiment M: 

R(z,s) = (Pz 0 9 * W)(Z,S) can  be viewed as the probability space associated with the 
following experiment: 

[ z , s , q l l  + Ml(G8). 
[z, s,72, ~ 2 )  + Mz( 4 [z, S,TI, GI)- 
O U T P U T  [ ~ , ~ , t 1 t z , Y ; Y ; ] .  

[.,s,ri,Q'i] + (pi Vi)(Z,s)+ 

Ezperiment R: [5,s,72,f21 + (P2 = vz)(A,[Z,s,.rl,yi]). 
OUTPUT [ Z , S , T ~ T ~ , Y ; ~ ~ ] .  

We now have two families of probability spaces, R of "real" prover-verifier interactions, and of 

simulated interactions. Let's introduce one more, H, of "hybrid" interactions, with the following 

experiment used to define the  probability space H ( z ,  8):  

1 5 , 9 , T l , g l ]  + (Pl = V1)(.,s). 
Ezperiment H :  [z, s, 72, Y21 + M2(h, [z, 3, T1, fll). 

OUTPUT [ z , s , T ~ T ~ , ; ~ & ] .  

We now argue t h a t  R = L  M .  Suppose that this is not the case. Then there is some 
poly-size family c = { cn} and some polynomial q such that 

for infinitely many (3, s,) E L x C'. Then either 

or 

for infinitely many ( s , ~ , )  E L X c'. We show that both of these cases are impossible. 

C u e  1. ((1) holds infinitely often.) Choose an (z,sz) for which (1) holds. Single out t h e  coin 

flips used by v1, and the  messages y1,. . . , y p I ( ~ I ~ )  that Pi might send to V1 in the interactions 

defining R(Z,8,) and H(z,s , ) .  There is a partrculur sequence of coin flips 0 for V1 to use, and 
a particular vector of messages t = y1 . . . yT,(lzl) for P1 to  use, such that  

where p: r , r ( Z , d t )  is the probability that  c, outputs 1 when Experiment R is run with CT and 7 

used for vi 's coins and pi 's messages, respectively; likewise for pc" Consequently, we may 
%, r ( Z , J r ) '  
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'hardwire" into C,, the  values we obtain from (Pi ++ Vi) interacting on (z, s , )  using d and 7 ,  

to  obtain a circuit which distinguishes (Pz H Vz)(z, sz) from M~(z, sz) by a t  least 1/(2q(lZl). 

The existence of the family of circuits modified as specified here contradicts (Pz H vz)(., -) 

Case 2, when (2) holds infinitely often, is handled analogously. 0 
M d . ,  .). 

For completeness, we s ta te  the  following trivial proposition: 

Proposition 2.6. Let L' C L.  If P is zero-knowledge over L, then P is zero-knowledge over 
L' . 0 

2.5. Secure probabilistic encryption 

The prover in our protocol will need the ability to securely commit a bit, and to  convincingly 

decommit it. We formalize this by saying that a secwe probabilistic encryption scheme is a 

function E : C x C' + C' such t h a t  

(1) E is computable in polynomial time. 

(2) Unique decryption: E ( P , s )  = E(P',y) implies p = 3'. 
(3) Let En(P) be t h e  probability space obtained by setting P r ( y )  = 2-" I{z E c" : 

E ( p , z )  = y}l. We require t h a t  for any poly-size family of circuits C = {C,,}, for any 
polynomial q,  and for all sufficiently large n, 

(Recall p g  is the probability tha t  circuit C outputs 1 on input drawn from R. Note that  to  

achieve the  unique decryption condition with conventional encryption schemes, "certified primes" 

must be used [GK][AH].) We write {E,(O)} =N {E,(l)} to  denote the security condition. 

Without loss of generality, there is a polynomial q such that IE(p,z)I = q(1~1) for all 

x E C'. 
To encrypt a bit /3 with security parameter n, select a random n-bit string I and send 

E(P, z). To decommit, reveal z. T h e  unique decryption condition makes it impossible that  the 

commited bit could b e  1 - p. Also, from x and E(P, x) one can easily compute p. 
To encrypt a string m = . . . pc with security parameter n, send E(P1, ~ 1 ) .  . . E(PL,  Z t )  

for random n-bit strings 51,. . . , zl. The encryption will be denoted E,,(m, z), where z = 
5 1  . . . z,, and the corresponding probability space is denoted En(m). 

A secure encryption scheme exists if there are unapproximable predicates [GM], or if there 

are injective one-way functions [Ya][L][G]. (If f is injective one-way, then there are poly-time 

computable functions f' and a b such that  f'(z) = f'(y) implies b(z)  = b(y) E (0, I}, and no 

poly-size circuit family can predict b ( x )  given f(z) by better than 1/2 + n-', for any constant 

C. Given such f' and b, E as we have described it can readily be constructed.) 

Lemma 2.7. Assume the existence of a secure probabilistic encryption scheme. Let {yn} be a 

collection of strings, where ly,( = l(n), for some nonconstant poIynornial I .  Then 

The crucial property we need of a secure probabilistic encryption scheme is the  following: 

Proof: Suppose to the contrary that  there is a poly-size family C = {C,} and a polynomiai q 

such that  
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for infinitely many n E N. Pick a particular n for which this holds. Define the strings !/;, for 

0 5 Z 5 n, by yh = ~ ~ [ l . . z ] O ' ( ~ ) - ~ .  Note y! = O'fn) ,  and 2"' = y,. There exists, then, a j ,  
0 5 j < I(n), such t h a t  

1 

Note that  y i  and y;+' agree at all positions except the . ( j  + 1)-s t  where y i  is 1 and yi+;+' is 0. 
Consequently, we may hardwire into c, the values of at  each position except the ( j  -I- 1)-st, 
t o  obtain a coin-flipping circuit which distinguishes encyptions of 0 from encryptions of 1 by at 

least 1/( I(n)q(n)). Converting to  a deterministic circuit, we contradict condition (3) about  our 
encryption scheme. 0 

2.6. Zero-knowledge proofs for all of N P  

The following lemma and theorem are  due t o  Goldreich, Micali, and Wigderson [GMWl]. The  

proof of the  first of these is omitted. 

L e m m a  2.8. If secure probabilistic encryption is possible, then the language of (encodings of) 
3-colorable graphs admits a (one-sided) zero-knowledge interactive proof. 0 

Theorem 2.9. If secure probabilistic encryption is possible, then any language in  NP possesses 
a (one-sided) zero-knowledge interactive proof. 

Proof: Take L E N P ,  and let M be a nondeterministic Turing machine for L. Fix a canonical 

transformation Q t h a t  takes any (M, x) (the encoding of a nondeterministic Turing machine and 

an input X) to a graphs G. Q is poly-time computable, and has the property that  M accepts 2 

iff Q(M,  S )  is 3-colorable. 
TO prove z E L = L ( M )  in  zerc-knowledge, both the prover and the verifier compute the 

graph G = v ( M ,  x), and engage in  a zero-knowledge interactive proof (using Lemma 2.8) that  
G is 3-colorable. 0 

3. Proof of the main theorem 
We now prove the main theorem'of this paper: 

Theorem 3.1. Assuming a secure probabilistic encryption scheme exists, every language that  

admits an interactive proof admits  a zero-knowledge interactive proof. 

Proof: Suppose L admits an interactive proof. Then, by Theorem 2.1, L admits a one-sided,  
Arthur-Merlin interactive proof (M H A). By Proposition 2.3, M may be assumed to be 
deterministic. By Proposition 2.4, we may take the error probability of ( M  t+ A) to be  less than 

l/5. 
By Proposition 2.2, (&I-A) may be assumed t o  always use ~ ( n )  rounds, each message of 

length I(n), when M and A interact with common input z of length n. ( r  and I are polynomials.) 

we will construct from M and A a zero-knowledge, one-sided interactive proof system 
( P - V )  for L. 

Suppose Arthur's random tape contains a given infinite string. On input z of length n, 
Arthur only uses the  (I(n) . r (n))-bi t  prefix of this string, $1 ..-zT(,,), where I z ; ~  = I(n). Arthur 

sends Merlin 11,. . . , zr(,,)., receiving (interleaved with theses queries) the messages y1, . * . , Y,.(~). 

Then Arthur accepts or rejects according to  the deterministic, poly(n)-time computable predicate 

 PA(^, 21,. . . , zr(n), YI,. . . , Y<,,)) 
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that  he possesses. 

To transform (M w A) into (P H V), a zero-knowledge interactive proof system for L ,  we 

will have the prover, P, behave like M ,  and the verifier, V ,  behave like A,  with the following 

exceptions: The prover will encrypt each message y, that he sends t o  the verifier, and then 

convince the verifier t h a t  he (V)  would accept if he knew the corresponding encryption keys. 

That is, the  protocol runs in  two phases. In the first phase, if P and v share input 2 of 

length n, then on round i, when Merlin "would have" sent to Arthur the string y i ,  P instead 

randomly selects a n  nZ(n)-bit string d; and sends to V the string Q;  = E n ( y i ,  d i ) .  For the  second 

phase, after all r (n)  rounds of the  first phase are completed, the prover decides whether or not 

A would have accepted t h e  corresponding unencrypted conversation, a fact which P can easily 

discern using PA. If A would have accepted, then P convinces V that A would have accepted. 

That is, P convinces V of the validity of the NP-assertion 

(3  dl,-..,d,.(n),yl,...,yr(n)) [ ( E n ( Y i , d i ) = Q i  for dl i) A 

J ' A ( z , ~ I , .  . . , z r ( n ) , ~ ~ , .  . . , y rn j1 .  

P convinces V of this assertion by computing a graph G which is 3-colorable if and only if 

the preceding assertion holds, and then convincing V that G is 3-colorable using the  method 

of [GMWl]. Enough rounds are used in this protocol t o  convince V that G is 3-colorable with 

probability a t  least 4/5. Note G can be computed by a deterministic poly(n) time algorithm, p, 

so both P and V "know" G after the first r (n )  interactions. 

Let cp be t h e  canonical map (appears in the proof of Theorem 2.9) that  takes a tuple 

(2, ZI , ,  . . , ZT(,,), al, . . . ,a,.(,,)) to agraph  G which is 3-colorable iff there is a guess y1,. . . , Yr(n), 

d l ,  . . . , dr(,,) for which a,  = E ( y i ,  d i )  and A would accept the corresponding unencrypted con- 

versation according to PA. We may assume that  IE(G)I is always a power of 2. Though we 

include details of Phase 2 for completeness, it can be viewed as a black box that  accepts the  pub- 

lic conversation with error probability < 1/5 whenever M would have accepted the corresponding 

unencrypted conversation. 

Protocol for the prover, P (on input z of len&h n) 
If z 6 L, all messages to t h e  verifier are A. Otherwise . . . 
On rounds 15 i 5 t ( n ) :  

- Wait to  receive a message zi from the verifier. 

- If lZil # l(n), dl future messages to the verifier are A .  Otherwise . . . 
- Compute y i  t M ( z , z ~ , .  . . , z i ) .  

- Randomly select di E En'("). 
- Send ( ~ i  = En(y;, d i )  to the  verifier. 

- Compute t h e  graph G = p(z, 21,. . . ,z,.(,), C Y ~ ,  . . . , a r ( n ) )  , V ( G )  = (1,. . . , v}. 
- Compute a random (proper, vertex) 3-coloring of G, 0, : V ( G )  + {01,10,11}. 
- Randomly select d i ,  . . . , d: E C2". 
- Send En(Bi( l), df ), . - . , E,,(Bi(v), d l )  to  the verifier. 

- Receive a n  edge { j ,  k} from the verifier. 

- Send (q-', 4-l) to the  verifier. 

- Select a random 3-coloring of G, Bi. 
- Randomly select d; , . . . , d i  E C2". 
- Send -&(6i(l), df ):. . . , En(8;(v), d i )  to the verifier. 

PHASE 1 . . . 

On round i = T(n) + 1: PHASE 2 . . . 

For rounds i + r ( n )  + 2 to 00: 

All future mvsages  are  A if receive something not of this form. 



Protocol for the verifier, V (on input x of length n) 

On round 1: PHASE 1 ... 
- &ad off first l(n) bits of random tape into 2,. 

- Send xi to  the prover. 

- Receive cri-1 from the  prover. 

- &ad off next l(n) bits of random tape into T,. 

- Send x; t o  the prover. 

- Receive a,(,) from the prover. 

- Send A to the prover. 

On rounds 2 5 i 5 r(n): 

On round z = r (n )  + 1: 

PHASE 2 . . . On round z = r ( n )  + 2: 
- Compute G = y ( z , z I , . .  . ,zr(,,),al,.  ..,a,(,,)) , V ( G )  = {I,. . . ,v}. 
- Receive (a; , . . . , a:) from the prover. 

- If not of this form, reject. 

- Randomly select a n  edge {j, k} E E(G) .  
- Send ( j , k }  to t h e  prover. 

- Receive ($-I, di-') from the prover. 

- If not of this form, or if it is not the case that for distinct u ,  u E {01,10,11} is 

For rounds i + r ( n )  + 3 to r ( n )  + 3 + 2m: 

= 

En(u, d;-'), = E,,(U, &I),  reject. 

- Receive a;, . . . , at from the  prover. 

- If not of this form, reject. 

- Randomly select { j ,  k} E E(G), and send {j, k} t o  the prover. 

accept.  

We have three things to check: that  V accepts all strings in L; that v usually rejects 

strings not in L, even if P is replaced by some other  probabilistic algorithm; and tha t  P is 

zero-knowledge over 1;. 
The first two of these claims are easy. Choose z E L, where / T I  = n. Then for any strings 

XI,. . . , rr(") E c'("), we know that  A interacting with M would accept when A sends messages 

(XI,. . . ,zr(,,)). Since t h e  interactive proof for graph 3-colorability is one-sided, P will always 

always be able t o  convince V tha t  A would accept (x, 51,. . . ,z,(,), a1,. . . , ar(,)) if A knew 

the corresponding endcyption keys. So, in fact, we retain perfect completeness. 

Suppose v is interacting with a corrupt prover, P', and the common input is Z, a string 

of length n, where I $! L. The probability that V will accept a string which A would not have 

accepted when given the  corresponding unencrypted messages is a t  most 1/5. But for any x # L, 
A accepts with probability a t  most 1/5. Thus V fallaciously accepts T with probability a t  most 

215, so the  proof system is sound. 

we now show that P is zereknowledge over L. By Lemma 2.5, if we prove that  P is 

zero-knowledge for the  first phase of the interaction, we will be done: the whole interartion is 

the composition of ( P  c+ v) restricted to the first phase, with (P H v) restricted to the  second 

phase, and the second phase is zero-knowledge over the output of the first phase. 

Let Pi be the  protocol that  carries out the first phase of the interaction. Inquiries beyond 

the r(n)- th  are answered with the empty string. 



49 

Let w be a probabilistic poly-time algorithm that interacts with Pi. We may assume that  

W flips exactly t (n )  coins on each round, where t is a polynomial, and n is the length of the 
common input. 

We may assume t h a t  (PI ci W )  always uses exactly r (n)  rounds, each message of length 
l(n), when the common input is of length n. 

M w  simulates a Kvirtual prover," Pl, interacting with W. Mw uses its coins at odd 

positions for Pi's coins, and its coins at even positions for W's coins. M w ,  after simulating the  

interaction, outputs the  view of this interaction. Note that Mw is polynomial time. 

Here is the protocol for $1: 

On rounds 1 5 i 5 r(n): 

- Wait t o  receive a message 5; from the verifier. 

- If I ~ i l  # [(n), all future messages are A. Otherwise . , . 
- Randomly select di E En'("). 
- Send E,(O'("), d;) to the verifier. 

- Send A to t h e  verifier. 

On future rounds: 

We argue that  (Pi ++W)(., .) EL Mw(. ,  .). The auxiliary string plays no role in  the  proof 

(other than to be given t o  W), so we omit further mention of it. Denote the space (PI -W)(Z) 
by S'r(lzl), and hfw(x) by &(x). Assume for contradiction that these families of spaces are 
computationally distinguishable over L. That  is, there exists a polynomial size family of circuits 
C! = { c,} and a polynomial h such that  

for infinitely many x in L. 
A "probability watk" is now used. Let Sj(s) be the probability space obtained by using 

the real prover, pi, for the first j rounds with V ,  and the virtual prover, for the  remaining 

rounds. That  is, sj(x) is the  probability space defined by the interaction between w and the 

following prover, Pi. 
" 

On rounds 1 5 i 2 r(n):  

- Wait to receive a message xi from the verifier. 

- If 1z;I # l(n),  all future messages are A. Otherwise 

M j z , x l , .  . . ,zi), 
O ' ( 4 ,  otherwise. 

i f i  5 j ;  - Compute yi  = 

- RandomIy select di E En'("). 
- Send E n ( y i ,  d i )  t o  the  verifier. 

- Send A t o  the verifier. 
On future rounds: 

~~ ~ ~ 

Observe that  this agrees with our previous definition of So(s) and S,(I~D(Z), and tha t  the 

defining algorithms for s,(x) and s,+l(x) differ in behavior only on the ( j  + 1 ) - s t  round, at 

which point s, uses pi while S,+l uses PI .  
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By the triangle inequality, there are infinitely many z in L for which there is a n  associated 

i, 0 5 i < r ( Iz l ) ,  such tha t  

Using c, we construct a poly-size family of expected polynomial time algorithms, c' = 
{CL}, and an infinite collection of strings {z,}, Iz,I = Z(n), such that CA effectively distinguishes 

the probability space En(%,) from the  probability space E,(O'(")). 
Choose I E L,  111 = n, and z ,  for which the bound in (1) holds. We show how to modify 

C, to  obtain c;. Let 

where E ,  2 1 / r(n)h(n) .  
Consider the first i + 1 rounds between a prover and W .  An f(n) = (i + l ) t (n)-bi t  prefix, 

Q, of w's random tape, and strings a], . . . , ai that the prover sends to W determine (1) t h e  first 

i + 1 messages, ~ 1 , .  . . , zi+l, that  W sends; (2) W's state after this portion of the conversation; 

and (3) the string y;+1 t h a t  the  prover will next encrypt and send to  W (recall tha t  the  prover 

is deterministic on each round up  to the point a t  which it encrypts). 

Let s;O(z) be the  

where W's random tape 

- 
probability space obtained by having Pi interact with W on input 5, 

has prefix Q. Then 

Similarly, for &+I. 

Now, by the  triangle inequality, 

so there is a particular u E Cf(,) which achieves 

Fix such a Q. For this u, the  prover induces a certain distribution on the first z messages 

it sends W ,  a = a1 . . . ai,  la1 = g ( n )  = d(n)q(n), where q(n) is the number of bits needed 

to encrypt a bit under E. Let A, be the probability that the prover's f i r s t i  messages will be a, 
A, = 1. Define S"'"(X) as the  probability space obtained by having Pi interact with W on 

5 ,  where W has random tape  prefixed by Q, and pi's initial responses are a. Then 

Similarly, for Si+l, 
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Now, as before 

E n  5 

so there is a particula 

Now u and a = a1 . . . a, determine x l ,  . . , ,xitl and yi+l such that if the interaction 

determined by u and Q is executed, and then d E En'(") is selected a t  random, and then, either 

case 1: E n ( y i + l , d )  is sent to W ,  or 

case 2: E,(O'("), d )  is sent t o  W ,  

and then, and W are  allowed to continue their interaction (which will last another r ( n )  - i - 1 
rounds)-if all this is done, then the probability space associated with case 1 and the probability 

space associated with case 2 are distinguishable by C, by at least E,. 

ck is a probabilistic polynomial time algorithm that has c and Q "hardwired in." ck begins 

by bringing the s ta te  of W up t o  the s ta te  it would be in if its random tape began with U ,  and 

it received messages ~ l ,  . . . , cyi from the  prover. The messages 3 1 , .  . . , x,+l that W would send 

are determined during this process, and they are recorded. Ck expects a string ~ i + l  as input. 

This input is fed to  w as its ( i  + 1)-st message from the prover. From now on, ck uses its real 

random tape, and comes up with a query x,+2 for W to have made. However, answers its own 

queries using pi. This  continues until CA has constructed a complete conversation, ((21, al), 

. . . , ( x ~ ( , ) , Q , J , ) ) ) ,  together with associated coin flips for W (which is u with some random 

( t ( n ) ( r ( n )  - z - 1)-bit string appended). Ck constructs the associated view of the conversation, 
and feeds this t o  c, to obtain a bit, 0 or 1. Ck outputs this bit. 

The poly(n) length of Q and u guarantees that  CL is expected polynomial time. And 

by our construction. 

Set 2, = y;+l. T h e  family of probabilistic polynomial time algorithms C' = {c:} (indexed 

by the same infinite set of naturals as in (1)) so constructed constitutes a poly-size family of 

probabilistic polynomial algorithms that  distinguishes {(En(zn)} from { (E,(O'(R))} by at least 

en. By our remark t h a t  distinguishability by polynomial size families of probabilistic polynomial 

time algorithms implies distinguishability by poly-size families of circuits, we have contradicted 

Lemma 2.7. Our original assumption-that (PI H W )  is distinguishable from Mw-is therefore 

in error. 

That  P itself is zero-knowledge follows from Lemma 2.5. The second phase of the inter- 

action depends only on the public history of the first phase of the interaction. Recall that ,  by 

one-sidedness, whenever 5 E L, A would accept when interacting with M ,  so the graph G gener- 

ated following the interaction will always be 3-colorable. Since the second phase of the interaction 

is precisely the graph-isomorphism protocol applied to  a deterministic poly-time computable func- 

tion of the public history, Lemmas 2.8 and 2.6 tell us that the second phase of the interaction is 

zero-knowledge over the  possible public histories. 0 
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4. Notarized Envelopes: Description and Implement ation 

The interactive proof that  a graph is 3-colorable ([GMWl]) can be implemented in  perfect 

zero-knowledge using envelopes for committing strings. For each vertex, the prover puts into 
a vertex-labeled envelope a slip of paper giving the color of that vertex. These envelopes are 

placed before the verifier. T h e  verifier chooses an edge and the prover allows the verifier to open 
the envelopes for the edge’s endpoints. As a consequence of this protocol, all of NP can be 

implemented with envelopes in perfect zero-knowledge. 

It is natural to ask if every language in IP can be proven in zero-knowledge using envelopes 

for commitment. T h e  proof of the preceding section does not immediately give a solution t o  this 

problem. In this section, we answer this question in the affirmative. 

4.1. Introduction to  notarized envelopes- 

We now consider a stronger type of commitment scheme, known as notarized envelopes. Nota- 

rized envelopes allow one to commit and decommit a sequence of bits, b l ,  . . . , b,, just  as with 

ordinary envelopes. However, with notarized envelopes one can additionally prove any single Np 
assertion, P(b1,. . . , bn), during or after the commital stage. In our implementation using or- 

dinary envelopes, this proof is in perfect zero-knowledge. If P(b1,. . . , b,) does not hold (or a 

poly-time bounded commitor does not have a witness of this fact), then the verifier will reject 

with probability at least l/nc, where c is a constant which depending on P. This probability 

may be amplified arbitrarily by standard techniques. 

A notarized envelope scheme may be thought of as a set of three protocols: A commital  pro- 

tocol, a decommital protocol, and a zero-knowledge proof protocol. Nearly all of the  complexity 

of our implementation comes from the zero-knowledge protocol. 

4.2. An implementation of notarized envelopes 

Our reduction from notarized envelopes to ordinary envelopes is essentially a simplified version 

of Kilian’s reduction from notarized envelopes (or, in his terminology, commital wi th  tero-  
know ledge pfoofs)  to oblivious transfer( [Kl]). However, our protocol has somewhat different 

properties from Kilian’s, due t o  the fact that we are using envelopes instead of oblivious transfer. 

Using oblivious transfer, one can noninteractively commit bits with zero-knowledge proofs. Our 

scheme requires a constant number of rounds of interaction. It is not hard to  show tha t  any  imple- 

mentation based on ordinary envelopes must have some interaction, so our solution is optimal up 

to  constant factors. Also, our implementation achieves perfect zero-knowledge, whereas Kilian’s 

only achieves statistical zero-knowledge. 

Commital and Decommital 
We first present our protocols for committing and decommitting a set of bits, b l ,  . . . , b,. In 

our protocols, we adopt t h e  convention that Alice commits the bits, and Bob acts as the  verifier. 

Protocol Commit(b,,. . . , b,) /* Commit b l ,  . . . , b, */ 
1: Alice uniformly chooses bits zl,. . . , xzn subject to 

b; = I; ED I i + n .  

2: Alice commits the zi’s to Bob, using ordinary envelopes. Bob is allowed t o  know which 

Protocol Decommit(i) /* Decommit b; */ 

Clearly, Bob gets no information about any of the b,’s from the commital protocol, and, on 
decommit, Bob only gains infor’mation that bit which is being decommitted. 

envelope is supposed to contain which I,. 

1: Alice opens the envelopes containing z; and I;+,. Bob computes bi = 5; 8 z * + ~ .  
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Zero-knowledge Proofs 
w e  first 

use the simple observation tha t  it suffices to consider predicates, P, which are in NC' ([Kl]). 
Furthermore, given an NC' predicate, P(b1,. . . , b,.,), the predicate P'(z1,. . . , zzn)  defined by 

Our implementation of zero-knowledge proofs is somewhat more complicated. 

~ ' ( z I ,  - * .  1 t 2 n )  = P ( z l e  zn+l,-. . ,zn @ ~ n ) ,  

will also be in NC'. Now, if P'(z1,. . . ,Q,) is in NC', then by a theorem of Barrington [Bal, 
there is a polynomial sized width 5 permutation branching programs (W5PBP) for P'. 

A branching program B may be thought of a a sequence of triples, 

0 1  0 1  
( i l ,  ~ 1 ,  ~ 1 1 , .  . ., (im, Trn, T m ) ,  

and a special element, a. For j E [l,m], we have zj E [l,.], and K ! , K ~  E Sg, where ss is the  

group of permutations on  5 elements. The special element a is also in Ss, and must not be equal 

to  the identity. A branching program, B ,  realizes a predicate P( bl , . . . , b,) if the  product 

m 
when P(b1,. . . , bn) is true; 

when P(b1,. . . , b,) is not true. 
n RJbiJ = { ; 
J = 1  

Here, I represents t h e  identity element for S g .  Given an NC' circuit for P', Barrington shows 

how t o  construct a canonical branching program which realizes P', which we denote by Bpi. 
We can now describe our protocol for giving zero-knowledge proofs of some NC' predicate, 

P. We assume tha t  Alice has committed bits bl,. . . ) b,, generating bits 51,. . . , 
Protocol Prove(zl,. . . , zzn, P )  /*  prove P(bl, . . . , b,) */ 

1: Let Bpt be a canonical W 5 P B P  for P'. We write 

BP. = ((21, . . . , ( i m , r L , & ) , ~ )  

Alice computes t h e  sequence A l ,  . . . , Am b y  

She then uniformly chooses R1,. . . , Rm-l ,  where Ri E S,. For convenience, we define 

& = R, = I. Finally, she computes a new sequence, B1,. . . , B,, defined by 

B; = R;-IAiR;'. 

She then commits Ai, R;, B;,  for i E 11, m], using ordinary envelopes. 

2: Bob uniformly chooses one of the following three types of queries to make of Alice: 

a: Bob asks Alice t o  reveal El,. . . , B,. He rejects if 

m 

i=l  

b: Bob asks Alice to, for some j E [l, m],  reveal A,, R-1, R;, Bi. He rejects if 

Bi # Ri-1 AiR,'. 
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The values of &, Rm are assumed to be I, and thus do not have t o  be revealed. 

C: Bob asks Alice to, for some j [l, m], reveal Aj and 5,;. He rejects if 

z;. 
Aj # ~j ’ . 

Remark: The sequence of Bi’s may be thought of as a randomized version of the  sequence of 

A;%. For any choice of R1, . . . , R,-l (assuming Ro = Rm = I, we have 

m m 

n B i  = U A i .  
i = l  i=l 

Furthermore, it is not hard to show that  if R1,. . . , Rm-l are distributed uniformly, then the 

sequence B1,. . . , Bm will be distributed uniformly over all sequences with the given product. 

We claim t h a t  this protocol constitutes a perfect zero-knowledge proof system for P. First 

we show that this is indeed a proof system. 

Lemma 4.1. If P’(z1,. . . , zzn) does not hold, then Bob will reject with probability at least 

1/3m. 

Proof: TO simplify our argument, we assume that all of the xi’s are defined, that  is, Alice never 

produced any empty or defective envelopes. Clearly, Alice gains nothing by such a tactic. Now, if 

1. JJZ1 Bi = a, 

2. (W E [l,m])Bi = Ri-lAiRz-’, and, 

3. (V j  E [l ,m])Aj = rfij , 
then we have, 

m 

j-1 i=l 

m 

= fl Bj 
j=1 

(by the above remark) 

= a. 

Therefore, if P ’ ( T ~ ,  . . . ,x,) does not hold, one of the above three equalities must not hold. If 

equality (1) does not hold, then test (a) will detect always detect this fact. If equality (2) does 

not hold, then test (b) will detect this fact with probability a t  least l /m.  If equality (3) does 

not hold, then test (c) will detect this fact with probability a t  least l/m. Since each test will be 

invoked with probability 1/3, the  lemma follows. 0 

It is not hard to see tha t  our protocol achieves perfect zero-knowledge. Bob is only allowed 

to  make a single test, either (a), (b), or (c). If he makes test (a), all he sees is a random sequence 

of elements whose product is a. Tests (b) and (c) allow Alice to  get information about  Z i j ,  for 

some value of i. However, this will give him no information about any of the bits bi ,  since each 

is represented as an exclusive-or of two of the xi’s.  

4.3. IP in perfect zero-knowledge with envelopes 

The notarized envelope scheme just described gives us zerclknowledge proofs for all of I P  

Theorem 4.2. Assuming envelopes for bit commitment, every language that admits an inter- 

active proof admits a perfect zero-knowledge interactive proof. 
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Proof: Let language L be  in IP. Let ( M  H A )  be a one-sided Arthur-Merlin protocol for L,  
rejecting strings not in L with probability at least 1/3. W e  assume without loss of generality that  

there exist polynomials r, 2 such that  on input z E L,  where 131 = n, 
1. The protocol (A4 H A) takes r (n)  rounds. 

2.  Each of Arthur’s messages, and Merlin’s responses are l(n) bits long. 

3. Arthur’s decision predicate is in NC’. (This property is not really necessary, but simplifies 

We adopt the following notation. The  string A,  denotes Arthur’s zth message, and Mi de- 

notes Merlin’s i t h  response. We denote by a> the j t h  bit of Arthur’s i t h  message, and by 

rn; the j t h  bit of Merlin’s i th  message. We denote by d(s, Al,  . . . , Ar(n)., Mi,. . , Mr(n)) 
the decision predicate mmputed by Arthur at the end of the protocol. Glven some vector 

A = A l ,  . . . ,Ar(-) ,  and input I, of length n, we define dx,z(M1,. . . , Mr(,,)) to be equal 

to  d ( t , A 1 , .  . . , Ar(,.,), M1,. . . , Mr!nl). Any circuit for A can be trivially transformed into a 
circuit for Ax,+ without increasing its size or depth. 

We now exhibit a modified protocol (M’ c-) A’) which uses envelopes. We claim t h a t  this 

protocol will be in perfect zero-knowledge, and will also be a one-sided “weak” proof system for 

L. By “weak ” we mean tha t  for any I L, A’ will accept with probability a t  most 1 - I / lzlc, 

for some fixed C. 

Protocol (M’ *-) A’)(z) 

our proof slightly.) 

+ 

1: For i E [l, r(n)] Merlin and Arthur execute the following two steps. Arthur sends Merlin a 

random string Ai. Merlin computes his answer, Mi,  and runs protocol commit(mi,. . . , 
mi(n)). The commital protocol will generate Q = 2r(n)Z(n) bits, which we denote by 

2: Let A = A l , .  . . ,Ar(?). The prover executes protocol prove(z1,. . . ,ZQ, Ax,=). A’ 

This protocol is clearly in perfect zero-knowledge, since the commital and proof protocols are  in 

perfect zero-knowledge. Since t h e  protocol is one-sided, the prover will always be able to execute 

protocol prove, so this doesn’t give any information. 

To see that this protocol remains a “weak” proof, we note that if z # L, then with prob- 

ability at least 1/3, dz,,(Mi,.  . . , M,(,,)) will not hold. This is due to the definition of dA,+, 
and the fact that ( M  c+ A )  is a proof system. In this case, there is some c, depending on A, 
such that  A‘ will reject during the  prove protocol with probability at least 1/72‘. Hence, if 

2 $ L, then A‘ will reject with probability at least 1/3nC. This probability of rejection may be 

made exponentially close to  1, maintaining both the one-sideness and the perfect zero-knowledge 

properties, by the-standard trick of running the above protocol many times in succession. 0 

It is interesting t h a t  the above proof never uses the ability to decommit notarized envelopes. 

I], . . ,“Q. - 
accepts iff he doesn’t reject in protocol prove. 
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