
Everything you know about Dynamic Time Warping is Wrong
Chotirat Ann Ratanamahatana Eamonn Keogh

Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA 92521

{ ratana, eamonn }@cs.ucr.edu

ABSTRACT

The Dynamic Time Warping (DTW) distance measure is a

technique that has long been known in speech recognition

community. It allows a non-linear mapping of one signal

to another by minimizing the distance between the two. A

decade ago, DTW was introduced into Data Mining

community as a utility for various tasks for time series

problems including classification, clustering, and anomaly

detection. The technique has flourished, particularly in the

last three years, and has been applied to a variety of

problems in various disciplines.

In spite of DTW’s great success, there are still several

persistent “myths” about it. These myths have caused

confusion and led to much wasted research effort. In this

work, we will dispel these myths with the most

comprehensive set of time series experiments ever

conducted.

Keywords

Dynamic Time Warping. Data Mining. Experimentation.

1. INTRODUCTION
In recent years, classification, clustering, and indexing of

time series data have become a topic of great interest within

the database/data mining community. The Euclidean

distance metric has been widely used [17], in spite of its

known weakness of sensitivity to distortion in time axis

[15]. A decade ago, the Dynamic Time Warping (DTW)

distance measure was introduced to the data mining

community as a solution to this particular weakness of

Euclidean distance metric [3]. This method’s flexibility

allows two time series that are similar but locally out of

phase to align in a non-linear manner. In spite of its O(n2)

time complexity, DTW is the best solution known for time

series problems in a variety of domains, including

bioinformatics [1], medicine [5], engineering,

entertainment [30], etc.

The steady flow of research papers on data mining with

DTW became a torrent after it was shown that a simple

lower bound allowed DTW to be indexed with no false

dismissals [15]. The lower bound requires that the two

sequences being compared are of the same length, and that

the amount of warping is constrained. This work allowed

practical applications of DTW, including real-time query-

by-humming systems [30], indexing of historical

handwriting archives [24], and indexing of motion capture

data [6].

In spite of the great success of DTW in a variety of

domains, there still are several persistent myths about it.

These myths have caused great confusion in the literature,

and led to the publication of papers that solve apparent

problems that do not actually exist. The three major myths

are:

Myth 1: The ability of DTW to handle sequences of

different lengths is a great advantage, and therefore the

simple lower bound that requires different-length

sequences to be reinterpolated to equal length is of

limited utility [18][27][28]. In fact, as we will show,

there is no evidence in the literature to suggest this, and

extensive empirical evidence presented here suggests

that comparing sequences of different lengths and

reinterpolating them to equal length produce no

statistically significant difference in accuracy or

precision/recall.

Myth 2: Constraining the warping paths is a necessary

evil that we inherited from the speech processing

community to make DTW tractable, and that we should

find ways to speed up DTW with no (or larger)

constraints[27]. In fact, the opposite is true. As we will

show, the 10% constraint on warping inherited blindly

from the speech processing community is actually too

large for real world data mining.

Myth 3: There is a need (and room) for improvements

in the speed of DTW for data mining applications. In

fact, as we will show here, if we use a simple lower

bounding technique, DTW is essentially O(n) for data

mining applications. At least for CPU time, we are

almost certainly at the asymptotic limit for speeding up

DTW.

In this paper, we dispel these DTW myths above by

empirically demonstrate our findings with a comprehensive

set of experiments. In terms of number of objective datasets

and size of datasets, our experiments are orders of

magnitude greater than anything else in the literature. In

particular, our experiments required more than eight billion

DTW comparisons.

Before beginning our deconstruction of these myths, it

would be remiss of us not to note that several early papers

by the second author are guilty of echoing them. This work

is part of an effort to redress these mistakes. Likewise, we

have taken advantage of the informal nature of a workshop

to choose a tongue-in-cheek attention grabbing title. We do

not really mean to imply that the entire community is

ignorant of the intricacies of DTW.

The rest of the paper is organized as follows. In Section 2,

we give an overview of Dynamic Time Warping (DTW)

and its related work. The next three sections consider each

of the three myths above. Section 6 suggests some avenues

for future researches, and Section 7 gives conclusions and

directions for future work. Because we are testing on a

wide range of real and synthetic datasets, we have placed

the details about them in Appendix A to enhance the flow

of the paper.

2. BACKGROUND AND RELATED WORK
The measurement of similarity between two time series is

an important subroutine in many data mining applications,

including classification [11][14], clustering [1][10],

anomaly detection [9], rule discovery [8], and motif

discovery [7]. The superiority of DTW over Euclidean

distance metric for these tasks has been demonstrated by

many authors [1][2][5][29]. We will first begin with a

review of some background material on DTW and its

recent extensions, which contributes to our main motivation

of this paper.

2.1 REVIEW OF DTW
Suppose we have two time series, a sequence Q of length n,

and a sequence C of length m, where

Q = q1,q2,…,qi,…,qn (1)

C = c1,c2,…,cj,…cm (2)

To align these two sequences using DTW, we first

construct an n-by-m matrix where the (ith
 , j

th
) element of

the matrix corresponds to the squared distance, d(qi , cj) =

(qi – cj)
2, which is the alignment between points qi and cj.

To find the best match between these two sequences, we

retrieve a path through the matrix that minimizes the total

cumulative distance between them as illustrated in Figure 1.

In particular, the optimal path is the path that minimizes the

warping cost

⎩
⎨⎧= ∑ =

K

k kwCQDTW
1

min),(
(3)

where wk is the matrix element (i,j)k that also belongs to kth

element of a warping path W, a contiguous set of matrix

elements that represent a mapping between Q and C.

This warping path can be found using dynamic

programming to evaluate the following recurrence.

γ(i,j) = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j) , γ(i,j-1) } (4)

where d(i,j) is the distance found in the current cell, and

γ(i,j) is the cumulative distance of d(i,j) and the minimum

cumulative distances from the three adjacent cells.

Q

C
A)

Q

C
A) B) C

Q

B) C

Q

C)

C

Q

C)

C

Q

Figure 1. A) Two similar sequences Q and C, but out of phase.

B) To align the sequences, we construct a warping matrix and

search for the optimal warping path, shown with solid

squares. Note that the 'corners' of the matrix (shown in dark

gray) are excluded from the search path as part of an

Adjustment Window condition. C) The resulting alignment.

To reduce the number of paths to consider during the

computation, several well-known constraints (Boundary

Conditions, Continuity condition, Monotonic condition,

and Adjustment Window Condition) have been applied to

the problem to restrict the moves that can be made from

any point in the path and so restrict the number of paths

that need to be considered. Figure 1 B) illustrates a

particular example of the Adjustment Window Condition

(or Warping Window Constraints) with the Sakoe-Chiba

Band [26]. The width of this constraint is often set to 10%

of the length of the time series [1][22][26].

2.2 LOWER BOUNDING THE DTW

DISTANCE
A recent extension to DTW that significantly speeds up the

DTW calculation is a lower bounding technique based on

the warping window (envelope) [15].

 C

Q

Sakoe-Chiba Band

C

Q

Itakura Parallelogram

Figure 2. The two most common constraints in the literature

are the Sakoe-Chiba Band and the Itakura Parallelogram

Figure 2 illustrates two of the most frequently used global

constraints in the literature, the Sakoe-Chiba Band [26] and

the Itakura Parallelogram [13]. The latter is widely used in

the speech community.

The lower bound is only defined for sequences of the same

length; if the sequences are of different lengths, one of

them must be reinterpolated. This lower bounding

technique uses the warping window to create a bounding

envelope above and below the query sequence. Then the

squared sum of the distances from every part of the

candidate sequence not falling within the bounding

envelope, to the nearest orthogonal edge of the bounding

envelope, is returned as its lower bound. The technique is

illustrated in Figure 3.

Figure 3. The Sakoe-Chiba Band A) can be used to create an

envelope B) around a query sequence Q. The Euclidean

distance between any candidate sequence C and the closest

external part of the envelope C) is a lower bound for the DTW

distance

For clarity, in Table 1, we will show a trivial algorithm that

can exploit any lower bound to do faster sequential search.

This algorithm is taken from Table 2 of [15].

Table 1. An algorithm that uses a lower bounding distance

measure to speed up the sequential scan search for the query

Q

Algorithm Lower_Bounding_Sequential_Scan(Q)

1. best_so_far = infinity;

2. for all sequences in database

3. LB_dist = lower_bound_distance(C
i
, Q);

4. if LB_dist < best_so_far

5. true_dist = DTW(C
i
, Q);

6. if true_dist < best_so_far

7. best_so_far = true_dist;

8. index_of_best_match = i;

9. endif

10. endif

11. endfor

Note that the tightness of these lower bounds and pruning

power essentially depend on the size of the warping

window used as well. In general, the smaller the area of

allowed warping, the more we can take advantage of

pruning. As noted above, the best size of this warping is

subject to controversy; we will examine the question in

Section 4.

For clarity, we will summarize before continuing. If we are

willing to force the sequences to be of the same length, and

to constrain the warping, then we have a simple solution for

speeding up similarity search under DTW. We will call this

solution 4S (Simple Straw man for Similarity Search). As

we shall see, the papers that try to speed up this simple

approach, or relax its two assumptions, are motivated and

misled by the myths discussed above.

3. DOES COMPARING SEQUENCES OF

DIFFERENT LENGTHS HELP OR

HURT?
Many recent papers suggest that the ability of classic DTW

to deal directly with sequences of different length is a great

advantage; some paper titles even contain the phrase “…of

different lengths” [4][21] showing their great concerns in

solving this issue. As further examples, consider the

following quotes taken from recent papers: “Time warping

enables sequences with similar patterns to be found even

when they are of different lengths” [18], or “ (DTW is) a

more robust distance measure than Euclidean distance in

many situations, where sequences may have different

lengths” [28] or “(DTW) can be used to measure similarity

between sequences of different lengths”. Some of these

papers further suggest that the simple 4S solution to DTW

similarity search is not useful because it requires that

sequences of different lengths to be reinterplolated to the

same length, and use this fact to motive new approaches:

for example “(4S) only works when the data and query

sequences are of the same length.” [27].

U

LQ

B)
U

LQ

U

LQ

B)
U

LQ

CU

LQ

C)
CU

LQ

C)
CU

LQ

C)
CU

LQ

CU

LQ

C)
CU

LQ

C)

C

Q

C

Q

C

Q

A) C

Q

C

Q

C

Q

C

Q

A)
U

LQ

B)
U

LQ

U

LQ

B)
U

LQ

CU

LQ

C)
CU

LQ

C)
CU

LQ

C)
CU

LQ

CU

LQ

C)
CU

LQ

C)

C

Q

C

Q

C

Q

A) C

Q

C

Q

C

Q

C

Q

A)

These claims are surprising in that they are not supported

by any empirical results in the papers in question.

Furthermore, an extensive literature search through more

than 500 papers dating back to the 1960’s failed to produce

any theoretical or empirical results to suggest that simply

making the sequences to be of the same length has any

detrimental effect.

To test our claimed hypothesis that there is no significant

difference in accuracies between using variable-length time

series and equal-length time series in DTW calculation, we

carry out an experiment as follows.

For all variable-length time series datasets (Face, Leaf,

Trace, and Wordspotting – See Appendix A for dataset

details), we compute 1-nearest-neightbor classification

accuracies (leaving-one-out) using DTW for all warping

window sizes (1% to 100%) in two different ways:

1) The 4S way; we simply reinterpolated the

sequences to have the same length.

2) By comparing the sequences directly using their

original lengths.

The latter case is not as simple as one might think since we

need to normalize the returned distance in some way. All

things being equal, we would expect longer sequences to be

further apart than short sequences, since they have more

dimensions on which to accumulate noise. The following

normalization policies have appeared in the literature or are

common sense ideas.

• No normalization on the distance.

• Normalize by the length of the optimal warping path.

• Normalize by the length of the shorter time series (for

each pair of the time series during each DTW

computation).

• Normalized by the length of the longer time series.

To give the benefit of the doubt to different-length case, for

each warping window size, we do all four possible

normalizations above, and the best performing of the four

options is recorded as the accuracy for the variable-length

DTW calculation.

For completeness, we test over every possible warping

constraint size. Note that we start the warping window size

of 1% instead of 0% since 0% size is Euclidean distance

metric, which is undefined when the time series are not of

the same length. Also, when measuring the DTW distance

between two time series of different lengths, the percentage

of warping window applied is based on the length of the

longer time series to ensure that we allow adequate amount

of warping for each pair and deliver a fair comparison.

Figure 4. A comparison of the classification accuracies

between variable-length datasets (dotted lines) and the

(reinterpolated) equal-length datasets (solid lines). The two

options produce such similar results that in many places the

lines overlap.

The variable-length datasets are then linearly reinterpolated

to have the same length of the longest time series within

each dataset. After that, we simply compute the

classification accuracies using DTW for all warping

window sizes (1% to 100%) for each dataset. The results

are shown in Figure 4.

Note that the experiments do strongly suggest that changing

the amount of warping allowed does affect the accuracy (an

issue that will be discussed in depth in the next section), but

over the entire range on possible warping widths, the two

approaches are nearly indistinguishable. Furthermore, a

two-tailed test using a significance level of 0.05 between

each variable-length and equal-length pair indicates that

there is no statistically significant difference between the

accuracy of the two sets of experiments. An even more

telling result is the following. In spite of extensive

experience with DTW and an extensive effort, we were

unable to create an artificial problem where reinterpolating

made a significant difference in accuracy. To further

reinforce our claim, we also reinterpolate the datasets to

have the equal length of the shortest and averaged length of

all time series within the dataset. We still achieve similar

findings.

These results strongly suggest that work allowing DTW to

support similarity search that does require reinterpolation,

is simply solving a problem that does not exist.

Subsequently, while Wong and Wong claimed, “(DTW is

useful) to measure similarity between sequences of different

lengths” [28] we must recall that two Wongs do not make a

right1. The often-quoted utility of DTW being able to

support the comparison of sequences of different lengths is

simply a myth.

0 10 20 30 40 50 60 70 80 90 100
96.5

97

97.5

98

98.5

99

99.5

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
93.5

94

94.5

95

95.5

96

96.5

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
75

80

85

90

95

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Face Leaf

WordspottingTrace

0 10 20 30 40 50 60 70 80 90 100
96.5

97

97.5

98

98.5

99

99.5

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
93.5

94

94.5

95

95.5

96

96.5

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
75

80

85

90

95

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Face Leaf

WordspottingTrace

4. ARE NARROW CONSTRAINTS BAD?
Apart from (slightly) speeding up the computation, warping

window constraints were originally applied mainly to

prevent pathological warping (where a relatively small

section of one sequence maps to a much larger section of

another). The vast majority of the data mining researchers

have used a Sakoe-Chiba Band with a 10% width for the

global constraint [1][22][26]. This setting seems to be the

result of historical inertia, inherited from the speech

processing community, rather than some remarkable

property of this particular constraint.

Some researchers believe that having wider warping window

contributes to improvement in accuracy [30]. Or without

realizing the great effect of the warping window size on

accuracies, some applied DTW with no warping window

constraints [20], or did not specify the window size used in

the experiments [19] (the latter case makes it particularly

difficult for others to reproduce the experiment results). In

[27], the authors bemoan the fact that “(4S) cannot be

applied when the warping path is not constrained” and use

1 Yes, this is a very poor joke!

this fact to justify introducing an alterative approach that

works for the unconstrained case.

To test the effect of the warping window size to the

classification accuracies, we performed an empirical

experiment on all seven classification datasets. We vary

the warping window size from 0% (Euclidean) to 100% (no

constraint/full calculation) and record the accuracies.

Since we have shown in Section 3 that reinterpolation of

time series into the same length is at least as good as (or

better than) using the original variable-length time series,

we linearly interpolate all variable-length datasets to have

the same length of the longest time series within the dataset

and measure the accuracy using the 1-nearest-neighbor

with leaving-one-out classification method. The results are

shown in Figure 5.

Figure 5. The classification accuracies for all warping

window sizes. All accuracies peak at very small window sizes.

As we hypothesized, wider warping constraints do not

always improve the accuracy, as commonly believed [30].

More often, the accuracy peaks very early at much smaller

window size, as shown in Table 2 below. In essence, the

results can be summarized by noting that a little warping is

a good thing, but too much warping is a bad thing.

Table 2. The warping window size that yields maximum

classification accuracy for each dataset, using DTW with

Sakoe-Chiba Band.

Dataset
Max Accuracy

(%)

Warping

Window Size

(%)

Face 96.43 3

Gun 99.00 3

Leaf 96.38 10

Syn_contrl_chrt 99.67 8

Trace 100.00 1

TwoPatterns 100.00 3

Wordspotting 98.90 3 Face

0 10 20 30 40 50 60 70 80 90 100
91

92

93

94

95

96

97

98

99

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Gun

0 10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Leaf

0 10 20 30 40 50 60 70 80 90 100
92

93

94

95

96

97

98

99

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Control Chart

0 10 20 30 40 50 60 70 80 90 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Trace

0 10 20 30 40 50 60 70 80 90 100

99

99.2

99.4

99.6

99.8

100

Warping Window (%)

A
c
c
u
ra

c
y
 (

%
)

Two-Pattern

0 10 20 30 40 50 60 70 80 90 100
96

96.5

97

97.5

98

98.5

99

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Wordspotting

0 10 20 30 40 50 60 70 80 90 100
93.5

94

94.5

95

95.5

96

96

We also did an additional experiment, where half of the

objects in the databases are randomly removed from the

database in each iteration. We measure the classification

accuracies for each database size, as shown in Figure 6. As

the database size decreases, the classification accuracy also

declines and the peak appears at larger warping window

size.

Figure 6. With fewer objects in the databases, the accuracies

become less accurate and peak at larger window size

This finding suggests that warping window size adjustment

does affect accuracy, and that the effect also depends on the

database size. This in turn suggests that we should find the

best warping window size on realistic (for the task at hand)

database sizes, and not try to generalize from toy problems.

To summarize, there is no evidence to support the idea that

we need to be able to support wider constraints. While it is

possible that there exist some datasets somewhere that

.5

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

FaceFace

0 10 20 30 40 50 60 70 80 90 100
91

92

93

94

95

96

97

98

99

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Gun

0 10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Leaf

0 10 20 30 40 50 60 70 80 90 100
92

93

94

95

96

97

98

99

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Control Chart

0 10 20 30 40 50 60 70 80 90 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Trace

0 10 20 30 40 50 60 70 80 90 100

99

99.2

99.4

99.6

99.8

100

Warping Window (%)

A
c
c
u
ra

c
y
 (

%
)

Two-Pattern

0 10 20 30 40 50 60 70 80 90 100
96

96.5

97

97.5

98

98.5

99

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Wordspotting

0 10 20 30 40 50 60 70 80 90 100
93.5

94

94.5

95

95.5

96

96.5

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

FaceFace

0 10 20 30 40 50 60 70 80 90 100
91

92

93

94

95

96

97

98

99

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Gun

0 10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Leaf

0 10 20 30 40 50 60 70 80 90 100
92

93

94

95

96

97

98

99

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Control Chart

0 10 20 30 40 50 60 70 80 90 100
99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Trace

0 10 20 30 40 50 60 70 80 90 100

99

99.2

99.4

99.6

99.8

100

Warping Window (%)

A
c
c
u
ra

c
y
 (

%
)

Two-Pattern

0 10 20 30 40 50 60 70 80 90 100
96

96.5

97

97.5

98

98.5

99

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Wordspotting

0 10 20 30 40 50 60 70 80 90 100
93.5

94

94.5

95

95.5

96

96.5

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

0 10 20 30 40 50 60 70 80 90 100
93.5

94

94.5

95

95.5

96

96.5

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

Face

0 10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Warping Window Size (%)

A
c
c
u
ra

c
y
 (

%
)

200 instances

100 instances

50 instances

24 instances

12 instances

6 instances

could benefit from wider constraints, we found no evidence

for this in a survey of more than 500 papers on the topic.

More tellingly, in spite of extensive efforts, we could not

even create a large synthetic dataset for classification that

needs more than 10% warping.

All the evidence suggests that narrow constraints are

necessary for accurate DTW, and the “need” to support

wide (or no) constraints is just a myth.

5. CAN DTW BE FURTHER SPEEDED UP?
Smaller warping windows speed up the DTW calculations

simply because there is less area of the warping matrix to

be searched. Prior to the introduction of lower bounding,

the amount of speedup was directly proportional to the

width of the warping window. For example, a nearest

neighbor search with a 10% warping constraint was almost

exactly twice as fast as a search done with a 20% window.

However, it is important to note that with the introduction

of lower bounding based on warping constraints (i.e. 4S),

the speedup is now highly nonlinear in the size of the

warping window. For example, a nearest neighbor search

with a 10% warping constraint may be many times faster

than twice a search done with a 20% window.

In spite of this, many recent papers still claim that there is a

need and room for further improvement in speeding up

DTW. For example, a recent paper suggested “dynamic

time warping incurs a heavy CPU cost…” Surprisingly, as

we will now show, the amortized CPU cost of DTW is

essentially O(n) if we use the trivial 4S technique.

To really understand what is going on, we will avoid

measuring the efficiency of DTW when using index

structures. The use of such index structures opens the

possibility of implementation bias [17]; it is simply difficult

to know if the claimed speedup truly reflects a clever

algorithm, or simply the care in choice of buffer size,

caching policy, etc.

Instead, we measure the computation time of DTW for each

pair of time series in terms of the amortized percentage of

the warping matrix that needs to be visited for each pair of

sequences in our database. This number depends only on

the data itself and the usefulness of the lower bound. As a

concrete example, if we are doing a one nearest neighbor

search on 120 objects with a 10% warping window size,

and the 4S algorithm only needs to examine 14 sequences

(pruning the rest), then the amortized cost for this

calculation would be (w * 14) / 120 = 0.12*w, where w is

the area (in percentage) inside the warping window

constraint along the diagonal (Sakoe-Chiba band). Note

that 10% warping window size does not always occupy

10% of the warping matrix; it mainly depends on the length

of the sequence as well (longer sequences give smaller w).

In contrast, if 4S was able to prune all but 3 objects, the

amortized cost would be (w * 3) / 120 = 0.03*w.

The amount of pruning we should actually expect depends

on the lower bounds. For example, if we used a trivial

lower bound hard-coded to zero (pointless, but perfectly

legal), then line 4 of Table 1 would always be true, and we

would have to do DTW for every pair of sequences in our

dataset. In this case, amortized percentage of the warping

matrix that needs to be accessed for each sequence in our

database would exactly be the area inside the warping

window. If, on the other hand, we had a “magic” lower

bound that returned the true DTW distance minus some

tiny epsilon, then line 4 of the Table 1 would rarely be true,

and we would have to do the full DTW calculation only

rarely. In this case, the amortized percentage of the warping

matrix that needs to be accessed would be very close to

zero.

We measured the amortized cost for all our datasets, and

for every possible warping window size. The results are

shown in Figure 7. Figure 8 shows the zoom-in of the

results from 0 to 10 % warping window size

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Warping Window Size (%)

A
m

o
rt

iz
e

d
 p

e
rc

e
n

ta
g
e

 o
f

th
e

 O
(n2

)
c
a

lc
u
la

ti
o
n

 r
e

q
u

ir
e
d

Face

Gun

Leaf

CtrlChrt

Trace

2-Pattern

WordSpotting

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Warping Window Size (%)

A
m

o
rt

iz
e

d
 p

e
rc

e
n

ta
g
e

 o
f

th
e

 O
(n2

)
c
a

lc
u
la

ti
o
n

 r
e

q
u

ir
e
d

Face

Gun

Leaf

CtrlChrt

Trace

2-Pattern

WordSpotting

Face

Gun

Leaf

CtrlChrt

Trace

2-Pattern

WordSpotting

Figure 7. The amortized percentage of warping matrix that

needs to be accessed during the DTW calculation for each

warping window size. The use of a lower bound helps prune

off numerous unnecessary calculations.

The results are very surprising. For reasonably large

datasets, simply using a good lower bound insures that we

rarely have to use the full DTW calculation. In essence, we

can say that DTW is effectively O(n), and not O(n2), when

searching large datasets.

For example, in the Gun, Trace, and 2-Pattern problems (all

maximum accuracy at 3% warping), we only need to do

much less than half a percent of the O(n2) work that we

would have been forced to do without lower bounding. For

some of the other datasets, it may appear that we need to do

a significant percentage of the CPU work. However, as we

will see below, these results are pessimistic in that they

reflect the small size of these datasets.

Figure 8. Zoom-in of Figure 6, from 0 to 10% warping

window size. Note that from Section 4, we recognize that the

most accurate results for all datasets happen in this range.

If the amortized cost of DTW is linear, where does the

claimed improvement from recent papers come from? It is

true that these approaches typically use indexes, rather than

sequential search, but an index must do costly random

access rather than the optimized linear scans of sequential

search. In order to simply break even in terms of disk

access time, they must avoid looking at more than 10% of

the data [16], but for time series where even the reduced

dimensionality (i.e. the Fourier or wavelet coefficients) is

usually greater than 20 [17], it is not obvious that this is

possible.

Some recent papers that claim speedups credit the

improved lower bounds, for example “…we present

progressively tighter lower bounds… that allow our method

to outperform (4S) ” [27]. Indeed, it might be imagined that

speedup could be obtained by having tighter lower bounds.

Surprisingly, this is not true! We can see this with the

following simple experiment. Let us imagine that we have a

wonderful lower bound, which always returns a value that

is within 1% of the correct value (more concretely, a value

uniformly distributed between 99% and 100% of the true

DTW value). We will call this idealized lower bound

LB_Magic. In contrast, the current best-known lower

bounds typically return a value between 40% and 60% of

the true value [15].

We can compare the speedup obtained by LB_Magic with

the current best lower bound, LB_Keogh [15], on 1-nearest

neighbor search. Note that we have to cheat for LB_Magic

by doing the full DTW calculation then assigning it a value

up to 1% smaller. We will use a warping constraint of 5%,

which is about the mean value for the best accuracy (cf.

Section 4). As before, we measured the amortized

percentage of the warping matrix that needs to be accessed

for each sequence in our database. For this experiment, we

use a randomwalk data of length 128 data points, and vary

the database size from 10 objects to 40,960 objects. Figure

9 shows the results.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Warping Window Size (%)

A
m

o
rt

iz
e

d
 p

e
rc

e
n

ta
g
e

 o
f

th
e

 O
(n2

)
c
a

lc
u

la
ti
o
n

 r
e

q
u

ir
e
d

Face

Gun

Leaf

CtrlChrt

Trace

2-Pattern

WordSpotting

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

Warping Window Size (%)

A
m

o
rt

iz
e

d
 p

e
rc

e
n

ta
g
e

 o
f

th
e

 O
(n2

)
c
a

lc
u

la
ti
o
n

 r
e

q
u

ir
e
d

Face

Gun

Leaf

CtrlChrt

Trace

2-Pattern

WordSpotting

Face

Gun

Leaf

CtrlChrt

Trace

2-Pattern

WordSpotting

0

1

2

3

4

5

6

7

8

9

10 20 40 80 160 320 640 1280
2560

5120
10240

20480
40960

No Lower Bound

LB_Keogh

LB_Magic

Size of Database (Number of Objects)

A
m

o
rt

iz
ed

 p
er

ce
n
ta

g
e

o
f

th
e

O
(n

2
)

ca
lc

u
la

ti
o

n
 r

eq
u

ir
ed

0

1

2

3

4

5

6

7

8

9

10 20 40 80 160 320 640 1280
2560

5120
10240

20480
40960

No Lower Bound

LB_Keogh

LB_Magic

0

1

2

3

4

5

6

7

8

9

10 20 40 80 160 320 640 1280
2560

5120
10240

20480
40960

No Lower Bound

LB_Keogh

LB_Magic

No Lower Bound

LB_Keogh

LB_Magic

Size of Database (Number of Objects)

A
m

o
rt

iz
ed

 p
er

ce
n
ta

g
e

o
f

th
e

O
(n

2
)

ca
lc

u
la

ti
o

n
 r

eq
u

ir
ed

Figure 9. Amortized percentage of the warping matrix that

needs to be accessed. As the size of the database is increasing,

the amortized percentage of the warping matrix accessed

becomes closer to zero.

Once again, the results are very surprising. The idealized

LB_Magic allows a very impressive speedup; for the

largest size database, it eliminates 99.997% of the CPU

effort. However, the very simple lower bounding technique

that has been in the literature for several years is able to

eliminate 99.369% of the CPU effort! The difference is not

quite so dramatic for very small datasets, say less than 160

objects. But here we can do unoptimized search in much

less than a hundredth of a second. Note that we obtain

similar results for other datasets.

To summarize, for problems involving a few thousand

sequences or more, each with a few hundred data points,

the “significant CPU cost of DTW” is simply non-issue (as

for problems involving less than a few thousand sequences,

we can do them in less than a second anyway).

The lesson for the data mining community from this

experiment is the following; it is almost certainly pointless

to attempt to speed up the CPU time for DTW by

producing tighter lower bounds. Even if you could produce

a magical lower bound, the difference it would make would

be tiny, and completely dwarfed by minor implementation

choices.

6. AVENUES FOR FUTURE RESEARCH
In this section, we will attempt to redress the somewhat

negative tone of this paper by suggesting many avenues for

future research with DTW. Since it has been demonstrated

by many authors that DTW is the solution to many data

mining problems, we would like to present some of the

other applications or problems that can effectively benefit

from DTW distance measure.

6.1 VIDEO RETRIEVAL
Generally, research on content-based video retrieval

represents the content of the video as a set of frames,

leaving out the temporal features of frames in the shot.

However, for some domains, including motion capture

editing, gait analysis, and video surveillance, it may be

fruitful to extract time series from the video, and index just

the time series (with pointers back to the original video).

Figure 10 shows an example of a video sequence that is

transformed into a time series. This example is the basis for

the Gun dataset discussed in Appendix A.

Figure 10. Stills from a video sequence; the right hand is

tracked, and converted into a time series

One obvious reason why using time series representation

may be superior to working with the original data is the

massive reduction in dimensionality, which enhances the

ease of storage, transmission, analysis, and indexing.

Moreover, it is much easier to make the time series

representation invariant to distortions in the data, such as

time scaling and time warping.

6.2 IMAGE RETRIEVAL
For some specialized domains, it can be useful to convert

the images into “pseudo time series”. For example,

consider Figure 11 Below. Here, we have converted an

image of a leaf into a time series by measuring the local

angle of a trace of its perimeter. The utility of such a

transform is similar to that for video retrieval.

Figure 11. An example of a leaf image converted into a

"pseudo time series”

6.3 HANDWRITING RETRIEVAL
The problem of transcribing and indexing existing

historical archives is still a challenge. For even such a

major historical figure as Isaac Newton, there exists a body

of unpublished, handwritten work exceeding one million

words. For other historical figures, there are even larger

collections of handwritten text. Such collections are

potential goldmines for researchers and biographers.

Recent work by [24] suggests that DTW may be best

solution to this problem.

A)

B)

C)

A)A)

B)

C)

B)

C)

Figure 12. A) An example of handwritten text by George

Washington. B) A zoom-in on the word “Alexandria”, after

being processed to remove slant. C) Many techniques exist to

convert 2-D handwriting into a time series; in this case, the

projection profile is used (Fig. created by R. Manmatha).

6.4 TEXT MINING

0 10 20 30 40 50 60 70 80 90

Hand at rest

Aiming gun

Hand moving to

shoulder level

Hand moving down

to grasp gun

Hand moving

above holster

0 10 20 30 40 50 60 70 80 90

Hand at rest

Aiming gun

Hand moving to

shoulder level

Hand moving down

to grasp gun

Hand moving

above holster

0 10 20 30 40 50 60 70 80 90

Hand at rest

Aiming gun

Hand moving to

shoulder level

Hand moving down

to grasp gun

Hand moving

above holster

0 10 20 30 40 50 60 70 80 90

Hand at rest

Aiming gun

Hand moving to

shoulder level

Hand moving down

to grasp gun

Hand moving

above holster

0 10 20 30 40 50 60 70 80 90

Hand at rest

Aiming gun

Hand moving to

shoulder level

Hand moving down

to grasp gun

Hand moving

above holster

0 10 20 30 40 50 60 70 80 90

Hand at rest

Aiming gun

Hand moving to

shoulder level

Hand moving down

to grasp gun

Hand moving

above holster

0 10 20 30 40 50 60 70 80 90

Hand at rest

Aiming gun

Hand moving to

shoulder level

Hand moving down

to grasp gun

Hand moving

above holster

Surprisingly, we can also transform text into a time series

representation. For instance, we consider a problem of

translating biblical text in two different languages (English

and Spanish). The bible text is converted into bit streams

according to the occurrences of the chosen word in the text.

For example, subsection of the bible containing the word

‘God’ in “In the beginning God created the heaven and the

earth” will be represented by “0001000000”. Then the bit

streams are converted into time series by recording the

number of word occurrences within the predefined sliding

window.

0 1 2 3 4 5 6 7 8 9

x 10
5

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9

x 10
5

-2

0

2

4

6

God

Dios

0 1 2 3 4 5 6 7 8 9

x 10
5

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9

x 10
5

-2

0

2

4

6

God

Dios

Figure 13. Times series of the number of occurrences of the

word 'God' in English (top) and 'Dios' in Spanish (bottom)

bible text using 6,000 words as the window size (z-normalized

and reinterpolated to the same length). The two time series

are almost identical.

The intuition behind this approach is that for each

appearance of each word in English, there must be a

corresponding Spanish word that also appears in the same

vicinity in the Spanish bible text. However, there can be

some discrepancies in the number of words in the entire

text as well as the position of the word within the sentence

between the two languages. This can be overcome by

DTW technique.

These suggestions are only subsets of variety of problems

7. CONCLUSIONS AND FUTURE WORK
h

searchers focus on

8. ACKNOWLEDGMENTS
d lable upon request,

that could benefit from transforming them into time series,

which DTW could be trivially applied to. There are still

considerable amount of applications that are left to be

explored.

In t is work, we have pointed out and investigated some of

the myths in Dynamic Time Warping measure. We

empirically validated our three claims.

We hope that our results will help re

more useful problems. For example, while there have been

dozens of papers on speeding up DTW in the last decade,

there has only been one on making it more accurate [23].

Likewise, we feel that the speed and accuracy of DTW that

we have demonstrated in this work may encourage

researchers to apply DTW to a wealth of new

problems/domains.

All atasets used in this paper are avai

by emailing either author. We thank Yasushi Sakurai for

his useful comments. We note that some of the claims in

this paper might be controversial. We welcome comments

and criticism, and will be happy to run experiments on your

favorite dataset. The online version on this paper (at

www.cs.ucr.edu/~eamonn/selected_publications.php) will

be updated within 48 hours of any contradictory evidence

being found.

9. REFERENCES
Aach, J. & Church, G. (2001). Aligning gene expression time

[2] ., Gerber, G., Gifford, D., Jaakkola, T. & Simon,

[3] and Clifford, J. (1994). Using dynamic time

[4] M. (1997).

[5] ., Porta, A., Baselli, G., Turiel, M., Muzzupappa,

[6] . Thesis,

Cambridge University.

es Motifs. In the 9 ACM SIGKDD

[8]
 of the

[9]
ogy. In Proceedings of

[10]

of the 4

[11]

time series Classification. Multiple

[12]

.

[13]

E Trans. Acoustics,

[14]

the 16

[15]

ses.

[16]

 dimensionality reduction for

[17]

ining Benchmarks: A Survey and Empirical

[18]

ng in

[19]

 with Handwritten Documents. 1 Intermational

[20]

trategies for On-Line Character Recognition. In

[21]

different lengths in

[22]

 warping algorithms for

[1]
series with time warping algorithms. Bioinformatics. Vol. 17,

pp. 495-508.

Bar-Joseph, Z

I. (2002). A new approach to analyzing gene expression time

series data. In Proceedings of the 6th Annual International

Conference on Research in Computational Molecular Biology,

pp. 39-48.

Berndt, D.

warping to find patterns in time series. AAAI Workshop on

Knowledge Discovery in Databases, pp. 229-248.

Bozkaya, T, Yazdatani, Z, and Ozsoyoglu, Z.

Matching and Indexing Sequences of Different Lengths.

CIKM-97.

Caiani, E.G

S., Pieruzzi, F., Crema, C., Malliani, A., & Cerutti, S. (1998).

Warped-average template technique to track on a cycle-by-

cycle basis the cardiac filling phases on left ventricular

volume. IEEE Computers in Cardiology, pp. 73-76.

Cardle, M. (2003). Music-Driven Animation. Ph.D

[7] Chiu, B. Keogh, E., & Lonardi, S. (2003). Probabilistic

Discovery of Time Seri th

International Conference on Knowledge Discovery and Data

Mining. August 24-27, 2003. Washington, DC, USA.

Das, G., Lin, K., Mannila, H., Renganathan, G. & Smyth, P.

(1998). Rule discovery from time series. Proceedings

4th International Conference of Knowledge Discovery and

Data Mining, pp. 16-22, AAAI Press.

Dasgupta, D. & Forest, S. (1999). Novelty Detection in Time

Series Data using Ideas from Immunol

the International Conference on Intelligent Systems.

 Debregeas, A. & Hebrail, G. (1998). Interactive interpretation

of Kohonen maps applied to curves. Proceedings th

International Conference of Knowledge Discovery and Data

Mining, pp. 179-183.

 Diez, J.J.R. & Gonzalez, C.A. (2000). Applying boosting to

similarity literals for

Classifier Systems, 1st International Workshop. pp. 210-219.

 Geurts, P. (2002). Contributions to decision tree induction:

bias/variance tradeoff and time series classification. Ph.D

thesis, Department of Electrical Engineering and Computer

Science, University of Liege, Belgium.

 Itakura, F. (1975). Minimum prediction residual principle

applied to speech recognition. IEE

Speech, and Signal Proc., Vol. ASSP-23, pp. 52-72.

 Kadous, M.W. (1999). Learning comprehensible descriptions

of multivariate time series. In Proceedings of th

International Machine Learning Conference. pp. 454-463

 Keogh, E. (2002). Exact indexing of dynamic time warping.

In 28th International Conference on Very Large Data Ba

Hong Kong. pp. 406-417.

 Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S.

(2001). Locally adaptive

indexing large time series databases. In Proceeding so ACM

SIGMOD International conference on Management of data,

pp. 151-162.

 Keogh, E. and Kasetty, S. (2002). On the Need for Time

Seires Data M

Demonstration. In the 8th ACM SIGKDD, pp. 102-111.

 Kim, S.W., Park, S., & Chu, W.W. (2004). Efficient

processing of similarity search under time warpi

sequence databases: an index-based approach. Inf. Syst. 29(5):

405-420.

 Kornfield, E.M, Manmatha, R., and Allan, J. (2004). Text

Alignment st

workshop on Document Image Analysis for Libraris (DIAL),

pp. 195-209.

 Laaksonen, J., Hurri, J., and Oja, Erkki. (1998). Comparison

of Adaptive S

proceedings of ICANN’98, pp. 245-250.

 Park, S.,, Chu, W, Yoon, J., and Hsu, C (2000). Efficient

searchs for similar subsequences of

sequence databases. In ICDE-00.

 Rabiner, L., Rosenberg, A. & Levinson, S. (1978).

Considerations in dynamic time

http://www.cs.ucr.edu/~eamonn/selected_publications.php

discrete word recognition. IEEE Trans. Acoustics Speech,

and Signal Proc., Vol. ASSP-26, pp. 575-582.

Ratanamahatana, C.A. & Keogh, E. (2004). Making Time-

series Classification More Accurate U

[23]
sing Learned

[24]
e warping. CVPR, Vol. II, pp. 521-527.

t neural

[26]

recognition. IEEE

[27]

g of Segmented Time-series, HKU CSIS Tech report,

[28]

Databases under Time Warping.

[29]

e sequences under time warping. In

[30]

for Query by Humming. SIGMOD

0. APPENDIX A: A DESCRIPTION OF

atasets to be tested in

ur work. Note that we Z-normalized (mean = 0 and

 based on the head

 of photos (20-35) of four

Constraints. In proceedings of SDM International conference,

pp. 11-22.

Rath, T. & Manmatha, R. (2003). Word image matching using

dynamic tim

[25] Roverso, D. (2000). Multivariate temporal classification by

windowed wavelet decomposition and recurren

networks. In 3rd ANS International Topical Meeting on

Nuclear Plant Instrumentation, Control and Human-Machine

Interface, 2000.

 Sakoe, H. & chiba, S. (1978). Dynamic programming

algorithm optimization fro spoken word

Trans. Acoustics, Speech, and Signal Proc., Vol. ASSP-26. pp.

43-49.

 Shou, Y., Mamoulis, N., and Cheung, D.W. (2004). Efficient

Warpin

TR-2004-01, March 2004.

 Wong, T.S.F & Wong, M.H. (2003). Efficient Subsequence

Matching for Sequences

IDEAS ‘03: 139-148.

 Yi, B.K., Jagadish, H. & Faloutsos, C. (1998). Efficient

retrieval of similar tim

ICDE ’98, pp. 23-27.

 Zhu, Y. & Shasha, D. (2003). Warping Indexes with

Envelope Transforms

2003. pp. 181-192.

1

THE DATASETS USED

ave chosen seven classification dW

o

e h

standard deviation = 1) all the datasets used in this work.

10.1 FACE DATASET
This is a face classification problem

profiles. We took a number

different individuals (1 female, 3 males) making different

expressions on the face, e.g. talking, smiling, frowning,

laughing, etc. We then convert each head profile, starting

from the neck area into a “pseudo time series” by

measuring the local angle of a trace of its perimeter, as

shown in Figure 14. The dataset contains 112 instances in

total with the length of each instance ranges from 107 to

240 data points.

Figure 14. Starting from the neck area, the head profile is

converted into a "pseudo time series"

10.2 GUN PROBLEM
This dataset comes from the video surveillance domain.

The dataset has two classes, each containing 100 instances.

All instances were created using one female actor and one

male actor in a single session. The two classes are:

Gun-Draw: The actors have their hands by their sides.

They draw a replicate gun from a hip-mounted holster,

point it at a target for approximately one second, then

return the gun to the holster, and their hands to their sides.

Point: The actors have their gun by their sides. They point

with their index fingers to a target for approximately one

second, and then return their hands to their sides.

For both classes, we tracked the centroid of the actor’s right

hands in both X- and Y-axes, which appear to be highly

correlated; therefore, in this experiment, we only consider

the X-axis for simplicity.

The overall motions of both classes are very similar.

However, it is possible for human to visually classify the

two classes with great accuracy, after noting that the actor

must lift his/her hand above a holster, then reach down for

the gun. This action creates a subtle distinction between

the classes as shown in Figure 15.

0 50 100 150
-1

-0.5

0

0.5

1

1.5

2

2.5

0 50 100 150
-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 15. (left) some examples from the Gun-Draw data.

(right) some examples from the Point data

The dataset contains 200 instances, 100 for each class.

Since each actor was periodically signaled every 5 seconds

before each repetition of Gun-Draw/Point, the video clip

(captured at 30 frames per second) was easily segmented

into 150 data points for each instance.

10.3 LEAF DATASET
This dataset contains a collection of six different species of

leaf images, including 2 genera of plant, i.e. oak and maple

(all original images can be found at

[http://web.engr.oregonstate.edu/~tgd/leaves/dataset/herbari

um]). The dataset comprises four different species of

Maple and two species of Oak, with 442 instances in total.

We convert each leaf image into “pseudo time series” using

similar method as the Face Dataset. Figure 11 shows an

example of a Glabrum maple image converted into a ‘time

series’. The length of each time series ranges from 22 to

475 data points.

10.4 SYNTHETIC CONTROL CHART
This six-class dataset was retrieved from the UCR Time

Series Data Mining Archive [http://www.cs.ucr.edu/

~eamonn/TSDMA/]. It contains 600 instances in total with

100 instances in each class. Each instance has the same

length of 60 data points.

10.5 TRACE DATASET
This dataset is a subset of the Transient Classification

Benchmark first introduced by Davide Roverso [25]. This

is a synthetic dataset designed to simulate instrumentation

failures in a nuclear power plant. The full dataset consists

of 16 classes, 50 instances in each class. Each instance has

4 features.

For simplicity, we only use the second feature of class 2

and 6, and the third feature of class 3 and 7 for our

experiment. Our dataset contains 200 instances, 50 for

each class. The length of each instance ranges between 279

and 386 data points.

10.6 TWO-PATTERN DATASET
This four-class dataset contains 5,000 instances. Each

instance has the same length of 128 data points. The

dataset was introduced in [12]. Each class is characterized

by the presence of two patterns in a definite order, down-

down, up-down, down-up, and up-up.

10.7 WORDSPOTTING DATASET
This is a subset of the WordSpotting Project dataset created

by Rath and Manmatha [24]

In the full dataset, there are 2,381 words with four features

that represent each word image’s profiles or the

background/ink transitions.

For simplicity, we pick the “Projection Profile” (feature 1)

of the four most common words, “the”, “to”, “be”, and

“that”, to be used in our experiment. “the” has 109

instances; “to” has 91 instances; “be” has 38 instances, and

“that” has 34 instances. Once combined, we obtain a

dataset of 272 instances, with the length of each instance

ranges from 41 to 192 data points.

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	REVIEW OF DTW
	LOWER BOUNDING THE DTW DISTANCE

	DOES COMPARING SEQUENCES OF DIFFERENT LENGTHS HELP OR HURT?
	ARE NARROW CONSTRAINTS BAD?
	CAN DTW BE FURTHER SPEEDED UP?
	AVENUES FOR FUTURE RESEARCH
	VIDEO RETRIEVAL
	IMAGE RETRIEVAL
	HANDWRITING RETRIEVAL
	TEXT MINING

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: A DESCRIPTION OF THE DATASETS USED
	FACE DATASET
	GUN PROBLEM
	LEAF DATASET
	SYNTHETIC CONTROL CHART
	TRACE DATASET
	TWO-PATTERN DATASET
	WORDSPOTTING DATASET

