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ABSTRACT 

The Dynamic Time Warping (DTW) distance measure is a 

technique that has long been known in speech recognition 

community.  It allows a non-linear mapping of one signal 

to another by minimizing the distance between the two.  A 

decade ago, DTW was introduced into Data Mining 

community as a utility for various tasks for time series 

problems including classification, clustering, and anomaly 

detection. The technique has flourished, particularly in the 

last three years, and has been applied to a variety of 

problems in various disciplines. 

In spite of DTW’s great success, there are still several 

persistent “myths” about it. These myths have caused 

confusion and led to much wasted research effort. In this 

work, we will dispel these myths with the most 

comprehensive set of time series experiments ever 

conducted.   

Keywords 

Dynamic Time Warping. Data Mining. Experimentation. 

1. INTRODUCTION 
In recent years, classification, clustering, and indexing of 

time series data have become a topic of great interest within 

the database/data mining community.  The Euclidean 

distance metric has been widely used [17], in spite of its 

known weakness of sensitivity to distortion in time axis 

[15]. A decade ago, the Dynamic Time Warping (DTW) 

distance measure was introduced to the data mining 

community as a solution to this particular weakness of 

Euclidean distance metric [3].  This method’s flexibility 

allows two time series that are similar but locally out of 

phase to align in a non-linear manner.  In spite of its O(n2) 

time complexity, DTW is the best solution known for  time 

series problems in a variety of domains, including 

bioinformatics [1], medicine [5], engineering, 

entertainment [30], etc. 

The steady flow of research papers on data mining with 

DTW became a torrent after it was shown that a simple 

lower bound allowed DTW to be indexed with no false 

dismissals [15]. The lower bound requires that the two 

sequences being compared are of the same length, and that 

the amount of warping is constrained. This work allowed 

practical applications of DTW, including real-time query-

by-humming systems [30], indexing of historical 

handwriting archives [24], and indexing of motion capture 

data [6]. 

In spite of the great success of DTW in a variety of 

domains, there still are several persistent myths about it. 

These myths have caused great confusion in the literature, 

and led to the publication of papers that solve apparent 

problems that do not actually exist. The three major myths 

are: 

Myth 1: The ability of DTW to handle sequences of 

different lengths is a great advantage, and therefore the 

simple lower bound that requires different-length 

sequences to be reinterpolated to equal length is of 

limited utility [18][27][28]. In fact, as we will show, 

there is no evidence in the literature to suggest this, and 

extensive empirical evidence presented here suggests 

that comparing sequences of different lengths and 

reinterpolating them to equal length produce no 

statistically significant difference in accuracy or 

precision/recall. 

Myth 2: Constraining the warping paths is a necessary 

evil that we inherited from the speech processing 

community to make DTW tractable, and that we should 

find ways to speed up DTW with no (or larger) 

constraints[27].  In fact, the opposite is true. As we will 

show, the 10% constraint on warping inherited blindly 

from the speech processing community is actually too 

large for real world data mining. 

Myth 3: There is a need (and room) for improvements 

in the speed of DTW for data mining applications. In 

fact, as we will show here, if we use a simple lower 

bounding technique, DTW is essentially O(n) for data 

mining applications. At least for CPU time, we are 

almost certainly at the asymptotic limit for speeding up 

DTW. 

In this paper, we dispel these DTW myths above by 

empirically demonstrate our findings with a comprehensive 

set of experiments. In terms of number of objective datasets 

and size of datasets, our experiments are orders of 

magnitude greater than anything else in the literature. In 



particular, our experiments required more than eight billion 

DTW comparisons.  

Before beginning our deconstruction of these myths, it 

would be remiss of us not to note that several early papers 

by the second author are guilty of echoing them. This work 

is part of an effort to redress these mistakes. Likewise, we 

have taken advantage of the informal nature of a workshop 

to choose a tongue-in-cheek attention grabbing title. We do 

not really mean to imply that the entire community is 

ignorant of the intricacies of DTW. 

The rest of the paper is organized as follows. In Section 2, 

we give an overview of Dynamic Time Warping (DTW) 

and its related work.  The next three sections consider each 

of the three myths above. Section 6 suggests some avenues 

for future researches, and Section 7 gives conclusions and 

directions for future work. Because we are testing on a 

wide range of real and synthetic datasets, we have placed 

the details about them in Appendix A to enhance the flow 

of the paper. 

2. BACKGROUND AND RELATED WORK 
The measurement of similarity between two time series is 

an important subroutine in many data mining applications, 

including classification [11][14], clustering [1][10], 

anomaly detection [9], rule discovery [8], and motif 

discovery [7].  The superiority of DTW over Euclidean 

distance metric for these tasks has been demonstrated by 

many authors [1][2][5][29].  We will first begin with a 

review of some background material on DTW and its 

recent extensions, which contributes to our main motivation 

of this paper.  

2.1 REVIEW OF DTW  
Suppose we have two time series, a sequence Q of length n, 

and a sequence C of length m, where 

Q = q1,q2,…,qi,…,qn  (1) 

C = c1,c2,…,cj,…cm  (2) 

To align these two sequences using DTW, we first 

construct an n-by-m matrix where the (ith
 , j

th
 ) element of 

the matrix corresponds to the squared distance, d(qi , cj) = 

(qi – cj)
2, which is the alignment between points qi and cj.  

To find the best match between these two sequences, we 

retrieve a path through the matrix that minimizes the total 

cumulative distance between them as illustrated in Figure 1.   

In particular, the optimal path is the path that minimizes the 

warping cost 

⎩
⎨⎧= ∑ =

K

k kwCQDTW
1

min),(  
(3) 

where wk is the matrix element (i,j)k that also belongs to kth 

element of a warping path W, a contiguous set of matrix 

elements that represent a mapping between Q and C. 

This warping path can be found using dynamic 

programming to evaluate the following recurrence. 

γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) } (4) 

where d(i,j) is the distance found in the current cell, and 

γ(i,j) is the cumulative distance of d(i,j) and the minimum 

cumulative distances from the three adjacent cells. 
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Figure 1. A) Two similar sequences Q and C, but out of phase.  

B) To align the sequences, we construct a warping matrix and 

search for the optimal warping path, shown with solid 

squares.  Note that the 'corners' of the matrix (shown in dark 

gray) are excluded from the search path as part of an 

Adjustment Window condition.  C) The resulting alignment. 

To reduce the number of paths to consider during the 

computation, several well-known constraints (Boundary 

Conditions, Continuity condition, Monotonic condition, 

and Adjustment Window Condition) have been applied to 

the problem to restrict the moves that can be made from 

any point in the path and so restrict the number of paths 

that need to be considered.  Figure 1 B) illustrates a 

particular example of the Adjustment Window Condition 

(or Warping Window Constraints) with the Sakoe-Chiba 

Band [26].  The width of this constraint is often set to 10% 

of the length of the time series [1][22][26].  

2.2 LOWER BOUNDING THE DTW 

DISTANCE 
A recent extension to DTW that significantly speeds up the 

DTW calculation is a lower bounding technique based on 

the warping window (envelope) [15].   
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Figure 2.  The two most common constraints in the literature 

are the Sakoe-Chiba Band and the Itakura Parallelogram 

Figure 2 illustrates two of the most frequently used global 

constraints in the literature, the Sakoe-Chiba Band [26] and 



the Itakura Parallelogram [13].  The latter is widely used in 

the speech community. 

The lower bound is only defined for sequences of the same 

length; if the sequences are of different lengths, one of 

them must be reinterpolated. This lower bounding 

technique uses the warping window to create a bounding 

envelope above and below the query sequence.  Then the 

squared sum of the distances from every part of the 

candidate sequence not falling within the bounding 

envelope, to the nearest orthogonal edge of the bounding 

envelope, is returned as its lower bound.  The technique is 

illustrated in Figure 3.   
 

Figure 3.  The Sakoe-Chiba Band A) can be used to create an 

envelope B) around a query sequence Q.  The Euclidean 

distance between any candidate sequence C and the closest 

external part of the envelope C) is a lower bound for the DTW 

distance 

For clarity, in Table 1, we will show a trivial algorithm that 

can exploit any lower bound to do faster sequential search.  

This algorithm is taken from Table 2 of [15]. 

Table 1. An algorithm that uses a lower bounding distance 

measure to speed up the sequential scan search for the query 

Q 

Algorithm Lower_Bounding_Sequential_Scan(Q)  

1. best_so_far = infinity; 

2. for all sequences in database 

3.  LB_dist = lower_bound_distance(C
i
, Q); 

4.     if LB_dist < best_so_far 

5.         true_dist = DTW(C
i
, Q); 

6.         if true_dist < best_so_far 

7.             best_so_far = true_dist; 

8.             index_of_best_match = i; 

9.         endif 

10.     endif 

11. endfor 
 

Note that the tightness of these lower bounds and pruning 

power essentially depend on the size of the warping 

window used as well. In general, the smaller the area of 

allowed warping, the more we can take advantage of 

pruning. As noted above, the best size of this warping is 

subject to controversy; we will examine the question in 

Section 4.   

For clarity, we will summarize before continuing. If we are 

willing to force the sequences to be of the same length, and 

to constrain the warping, then we have a simple solution for 

speeding up similarity search under DTW. We will call this 

solution 4S (Simple Straw man for Similarity Search).  As 

we shall see, the papers that try to speed up this simple 

approach, or relax its two assumptions, are motivated and 

misled by the myths discussed above. 

3. DOES COMPARING SEQUENCES OF 

DIFFERENT LENGTHS HELP OR 

HURT?  
Many recent papers suggest that the ability of classic DTW 

to deal directly with sequences of different length is a great 

advantage; some paper titles even contain the phrase “…of 

different lengths” [4][21] showing their great concerns in 

solving this issue. As further examples, consider the 

following quotes taken from recent papers: “Time warping 

enables sequences with similar patterns to be found even 

when they are of different lengths” [18], or “ (DTW is) a 

more robust distance measure than Euclidean distance in 

many situations, where sequences may have different 

lengths” [28] or “(DTW) can be used to measure similarity 

between sequences of different lengths”. Some of these 

papers further suggest that the simple 4S solution to DTW 

similarity search is not useful because it requires that 

sequences of different lengths to be reinterplolated to the 

same length, and use this fact to motive new approaches: 

for example “(4S) only works when the data and query 

sequences are of the same length.” [27]. 
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These claims are surprising in that they are not supported 

by any empirical results in the papers in question. 

Furthermore, an extensive literature search through more 

than 500 papers dating back to the 1960’s failed to produce 

any theoretical or empirical results to suggest that simply 

making the sequences to be of the same length has any 

detrimental effect. 

To test our claimed hypothesis that there is no significant 

difference in accuracies between using variable-length time 

series and equal-length time series in DTW calculation, we 

carry out an experiment as follows. 

For all variable-length time series datasets (Face, Leaf, 

Trace, and Wordspotting – See Appendix A for dataset 

details), we compute 1-nearest-neightbor classification 

accuracies (leaving-one-out) using DTW for all warping 

window sizes (1% to 100%) in two different ways: 

1) The 4S way; we simply reinterpolated the 

sequences to have the same length.  

2) By comparing the sequences directly using their 

original lengths. 



The latter case is not as simple as one might think since we 

need to normalize the returned distance in some way. All 

things being equal, we would expect longer sequences to be 

further apart than short sequences, since they have more 

dimensions on which to accumulate noise. The following 

normalization policies have appeared in the literature or are 

common sense ideas.  

• No normalization on the distance. 

• Normalize by the length of the optimal warping path. 

• Normalize by the length of the shorter time series (for 

each pair of the time series during each DTW 

computation). 

• Normalized by the length of the longer time series. 

To give the benefit of the doubt to different-length case, for 

each warping window size, we do all four possible 

normalizations above, and the best performing of the four 

options is recorded as the accuracy for the variable-length 

DTW calculation.   

For completeness, we test over every possible warping 

constraint size. Note that we start the warping window size 

of 1% instead of 0% since 0% size is Euclidean distance 

metric, which is undefined when the time series are not of 

the same length.  Also, when measuring the DTW distance 

between two time series of different lengths, the percentage 

of warping window applied is based on the length of the 

longer time series to ensure that we allow adequate amount 

of warping for each pair and deliver a fair comparison. 

 

Figure 4.  A comparison of the classification accuracies 

between variable-length datasets (dotted lines) and the 

(reinterpolated) equal-length datasets (solid lines). The two 

options produce such similar results that in many places the 

lines overlap. 

The variable-length datasets are then linearly reinterpolated 

to have the same length of the longest time series within 

each dataset.  After that, we simply compute the 

classification accuracies using DTW for all warping 

window sizes (1% to 100%) for each dataset.  The results 

are shown in Figure 4. 

Note that the experiments do strongly suggest that changing 

the amount of warping allowed does affect the accuracy (an 

issue that will be discussed in depth in the next section), but 

over the entire range on possible warping widths, the two 

approaches are nearly indistinguishable. Furthermore, a 

two-tailed test using a significance level of 0.05 between 

each variable-length and equal-length pair indicates that 

there is no statistically significant difference between the 

accuracy of the two sets of experiments.  An even more 

telling result is the following.  In spite of extensive 

experience with DTW and an extensive effort, we were 

unable to create an artificial problem where reinterpolating 

made a significant difference in accuracy.  To further 

reinforce our claim, we also reinterpolate the datasets to 

have the equal length of the shortest and averaged length of 

all time series within the dataset.  We still achieve similar 

findings.  

These results strongly suggest that work allowing DTW to 

support similarity search that does require reinterpolation, 

is simply solving a problem that does not exist. 

Subsequently, while Wong and Wong claimed, “(DTW is 

useful) to measure similarity between sequences of different 

lengths” [28] we must recall that two Wongs do not make a 

right1. The often-quoted utility of DTW being able to 

support the comparison of sequences of different lengths is 

simply a myth.  
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4. ARE NARROW CONSTRAINTS BAD? 
Apart from (slightly) speeding up the computation, warping 

window constraints were originally applied mainly to 

prevent pathological warping (where a relatively small 

section of one sequence maps to a much larger section of 

another).  The vast majority of the data mining researchers 

have used a Sakoe-Chiba Band with a 10% width for the 

global constraint [1][22][26].  This setting seems to be the 

result of historical inertia, inherited from the speech 

processing community, rather than some remarkable 

property of this particular constraint. 

Some researchers believe that having wider warping window 

contributes to improvement in accuracy [30]. Or without 

realizing the great effect of the warping window size on 

accuracies, some applied DTW with no warping window 

constraints [20], or did not specify the window size used in 

the experiments [19] (the latter case makes it particularly 

difficult for others to reproduce the experiment results). In 

[27], the authors bemoan the fact that “(4S) cannot be 

applied when the warping path is not constrained” and use 

                                                                 

1 Yes, this is a very poor joke! 



this fact to justify introducing an alterative approach that 

works for the unconstrained case.  

To test the effect of the warping window size to the 

classification accuracies, we performed an empirical 

experiment on all seven classification datasets.  We vary 

the warping window size from 0% (Euclidean) to 100% (no 

constraint/full calculation) and record the accuracies. 

Since we have shown in Section 3 that reinterpolation of 

time series into the same length is at least as good as (or 

better than) using the original variable-length time series, 

we linearly interpolate all variable-length datasets to have 

the same length of the longest time series within the dataset 

and measure the accuracy using the 1-nearest-neighbor 

with leaving-one-out classification method. The results are 

shown in Figure 5. 

 

Figure 5.  The classification accuracies for all warping 

window sizes.  All accuracies peak at very small window sizes. 

As we hypothesized, wider warping constraints do not 

always improve the accuracy, as commonly believed [30].  

More often, the accuracy peaks very early at much smaller 

window size, as shown in Table 2 below. In essence, the 

results can be summarized by noting that a little warping is 

a good thing, but too much warping is a bad thing.  

Table 2.  The warping window size that yields maximum 

classification accuracy for each dataset, using DTW with 

Sakoe-Chiba Band. 

Dataset 
Max Accuracy 

(%) 

Warping 

Window Size 

(%) 

Face 96.43 3 

Gun 99.00 3 

Leaf 96.38 10 

Syn_contrl_chrt 99.67 8 

Trace 100.00 1 

TwoPatterns 100.00 3 

Wordspotting 98.90 3 Face
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We also did an additional experiment, where half of the 

objects in the databases are randomly removed from the 

database in each iteration.  We measure the classification 

accuracies for each database size, as shown in Figure 6.  As 

the database size decreases, the classification accuracy also 

declines and the peak appears at larger warping window 

size. 

 

Figure 6. With fewer objects in the databases, the accuracies 

become less accurate and peak at larger window size 

This finding suggests that warping window size adjustment 

does affect accuracy, and that the effect also depends on the 

database size. This in turn suggests that we should find the 

best warping window size on realistic (for the task at hand) 

database sizes, and not try to generalize from toy problems. 

To summarize, there is no evidence to support the idea that 

we need to be able to support wider constraints. While it is 

possible that there exist some datasets somewhere that 
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could benefit from wider constraints, we found no evidence 

for this in a survey of more than 500 papers on the topic. 

More tellingly, in spite of extensive efforts, we could not 

even create a large synthetic dataset for classification that 

needs more than 10% warping. 

All the evidence suggests that narrow constraints are 

necessary for accurate DTW, and the “need” to support 

wide (or no) constraints is just a myth. 

5. CAN DTW BE FURTHER SPEEDED UP? 
Smaller warping windows speed up the DTW calculations 

simply because there is less area of the warping matrix to 

be searched. Prior to the introduction of lower bounding, 

the amount of speedup was directly proportional to the 

width of the warping window. For example, a nearest 

neighbor search with a 10% warping constraint was almost 

exactly twice as fast as a search done with a 20% window. 

However, it is important to note that with the introduction 

of lower bounding based on warping constraints (i.e. 4S), 

the speedup is now highly nonlinear in the size of the 

warping window. For example, a nearest neighbor search 

with a 10% warping constraint may be many times faster 

than twice a search done with a 20% window. 

In spite of this, many recent papers still claim that there is a 

need and room for further improvement in speeding up 

DTW.  For example, a recent paper suggested “dynamic 

time warping incurs a heavy CPU cost…” Surprisingly, as 

we will now show, the amortized CPU cost of DTW is 

essentially O(n) if we use the trivial 4S technique.  

To really understand what is going on, we will avoid 

measuring the efficiency of DTW when using index 

structures. The use of such index structures opens the 

possibility of implementation bias [17]; it is simply difficult 

to know if the claimed speedup truly reflects a clever 

algorithm, or simply the care in choice of buffer size, 

caching policy, etc.    

Instead, we measure the computation time of DTW for each 

pair of time series in terms of the amortized percentage of 

the warping matrix that needs to be visited for each pair of 

sequences in our database. This number depends only on 

the data itself and the usefulness of the lower bound. As a 

concrete example, if we are doing a one nearest neighbor 

search on 120 objects with a 10% warping window size, 

and the 4S algorithm only needs to examine 14 sequences 

(pruning the rest), then the amortized cost for this 

calculation would be (w * 14) / 120 = 0.12*w, where w is 

the area (in percentage) inside the warping window 

constraint along the diagonal (Sakoe-Chiba band).  Note 

that 10% warping window size does not always occupy 

10% of the warping matrix; it mainly depends on the length 

of the sequence as well (longer sequences give smaller w).  

In contrast, if 4S was able to prune all but 3 objects, the 

amortized cost would be (w * 3) / 120 = 0.03*w. 

The amount of pruning we should actually expect depends 

on the lower bounds. For example, if we used a trivial 

lower bound hard-coded to zero (pointless, but perfectly 

legal), then line 4 of Table 1 would always be true, and we 

would have to do DTW for every pair of sequences in our 

dataset. In this case, amortized percentage of the warping 

matrix that needs to be accessed for each sequence in our 

database would exactly be the area inside the warping 

window. If, on the other hand, we had a “magic” lower 

bound that returned the true DTW distance minus some 

tiny epsilon, then line 4 of the Table 1 would rarely be true, 

and we would have to do the full DTW calculation only 

rarely. In this case, the amortized percentage of the warping 

matrix that needs to be accessed would be very close to 

zero. 

We measured the amortized cost for all our datasets, and 

for every possible warping window size. The results are 

shown in Figure 7.   Figure 8 shows the zoom-in of the 

results from 0 to 10 % warping window size 
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Figure 7.  The amortized percentage of warping matrix that 

needs to be accessed during the DTW calculation for each 

warping window size.  The use of a lower bound helps prune 

off numerous unnecessary calculations. 

The results are very surprising. For reasonably large 

datasets, simply using a good lower bound insures that we 

rarely have to use the full DTW calculation. In essence, we 

can say that DTW is effectively O(n), and not O(n2), when 

searching large datasets. 

For example, in the Gun, Trace, and 2-Pattern problems (all 

maximum accuracy at 3% warping), we only need to do 

much less than half a percent of the O(n2) work that we 

would have been forced to do without lower bounding. For 

some of the other datasets, it may appear that we need to do 

a significant percentage of the CPU work. However, as we 

will see below, these results are pessimistic in that they 

reflect the small size of these datasets. 



 

Figure 8. Zoom-in of Figure 6, from 0 to 10% warping 

window size. Note that from Section 4, we recognize that the 

most accurate results for all datasets happen in this range.  

If the amortized cost of DTW is linear, where does the 

claimed improvement from recent papers come from? It is 

true that these approaches typically use indexes, rather than 

sequential search, but an index must do costly random 

access rather than the optimized linear scans of sequential 

search. In order to simply break even in terms of disk 

access time, they must avoid looking at more than 10% of 

the data [16], but for time series where even the reduced 

dimensionality (i.e. the Fourier or wavelet coefficients) is 

usually greater than 20 [17], it is not obvious that this is 

possible.  

Some recent papers that claim speedups credit the 

improved lower bounds, for example “…we present 

progressively tighter lower bounds… that allow our method 

to outperform (4S) ” [27]. Indeed, it might be imagined that 

speedup could be obtained by having tighter lower bounds. 

Surprisingly, this is not true! We can see this with the 

following simple experiment. Let us imagine that we have a 

wonderful lower bound, which always returns a value that 

is within 1% of the correct value (more concretely, a value 

uniformly distributed between 99% and 100% of the true 

DTW value). We will call this idealized lower bound 

LB_Magic. In contrast, the current best-known lower 

bounds typically return a value between 40% and 60% of 

the true value [15]. 

We can compare the speedup obtained by LB_Magic with 

the current best lower bound, LB_Keogh [15], on 1-nearest 

neighbor search. Note that we have to cheat for LB_Magic 

by doing the full DTW calculation then assigning it a value 

up to 1% smaller.  We will use a warping constraint of 5%, 

which is about the mean value for the best accuracy (cf. 

Section 4). As before, we measured the amortized 

percentage of the warping matrix that needs to be accessed 

for each sequence in our database. For this experiment, we 

use a randomwalk data of length 128 data points, and vary 

the database size from 10 objects to 40,960 objects. Figure 

9 shows the results. 
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Figure 9. Amortized percentage of the warping matrix that 

needs to be accessed.  As the size of the database is increasing, 

the amortized percentage of the warping matrix accessed 

becomes closer to zero. 

Once again, the results are very surprising. The idealized 

LB_Magic allows a very impressive speedup; for the 

largest size database, it eliminates 99.997% of the CPU 

effort. However, the very simple lower bounding technique 

that has been in the literature for several years is able to 

eliminate 99.369% of the CPU effort! The difference is not 

quite so dramatic for very small datasets, say less than 160 

objects. But here we can do unoptimized search in much 

less than a hundredth of a second. Note that we obtain 

similar results for other datasets. 

To summarize, for problems involving a few thousand 

sequences or more, each with a few hundred data points, 

the “significant CPU cost of DTW” is simply non-issue (as 

for problems involving less than a few thousand sequences, 

we can do them in less than a second anyway).  

The lesson for the data mining community from this 

experiment is the following; it is almost certainly pointless 

to attempt to speed up the CPU time for DTW by 

producing tighter lower bounds. Even if you could produce 

a magical lower bound, the difference it would make would 

be tiny, and completely dwarfed by minor implementation 

choices.  

6. AVENUES FOR FUTURE RESEARCH 
In this section, we will attempt to redress the somewhat 

negative tone of this paper by suggesting many avenues for 

future research with DTW.  Since it has been demonstrated 

by many authors that DTW is the solution to many data 

mining problems, we would like to present some of the 



other applications or problems that can effectively benefit 

from DTW distance measure. 

6.1 VIDEO RETRIEVAL 
Generally, research on content-based video retrieval 

represents the content of the video as a set of frames, 

leaving out the temporal features of frames in the shot.  

However, for some domains, including motion capture 

editing, gait analysis, and video surveillance, it may be 

fruitful to extract time series from the video, and index just 

the time series (with pointers back to the original video).  

Figure 10 shows an example of a video sequence that is 

transformed into a time series. This example is the basis for 

the Gun dataset discussed in Appendix A. 

 

Figure 10. Stills from a video sequence; the right hand is 

tracked, and converted into a time series 

One obvious reason why using time series representation 

may be superior to working with the original data is the 

massive reduction in dimensionality, which enhances the 

ease of storage, transmission, analysis, and indexing.  

Moreover, it is much easier to make the time series 

representation invariant to distortions in the data, such as 

time scaling and time warping. 

6.2 IMAGE RETRIEVAL 
For some specialized domains, it can be useful to convert 

the images into “pseudo time series”.  For example, 

consider Figure 11 Below.  Here, we have converted an 

image of a leaf into a time series by measuring the local 

angle of a trace of its perimeter.  The utility of such a 

transform is similar to that for video retrieval. 

 

Figure 11. An example of a leaf image converted into a 

"pseudo time series” 

6.3 HANDWRITING RETRIEVAL 
The problem of transcribing and indexing existing 

historical archives is still a challenge.  For even such a 

major historical figure as Isaac Newton, there exists a body 

of unpublished, handwritten work exceeding one million 

words.  For other historical figures, there are even larger 

collections of handwritten text.  Such collections are 

potential goldmines for researchers and biographers. 

Recent work by [24] suggests that DTW may be best 

solution to this problem. 

A)

B)

C)

A)A)

B)

C)

B)

C)

 

Figure 12.  A) An example of handwritten text by George 

Washington. B) A zoom-in on the word “Alexandria”, after 

being processed to remove slant.  C) Many techniques exist to 

convert 2-D handwriting into a time series; in this case, the 

projection profile is used (Fig. created by R. Manmatha). 

6.4 TEXT MINING 
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Surprisingly, we can also transform text into a time series 

representation.  For instance, we consider a problem of 

translating biblical text in two different languages (English 

and Spanish).  The bible text is converted into bit streams 

according to the occurrences of the chosen word in the text.  

For example, subsection of the bible containing the word 

‘God’ in “In the beginning God created the heaven and the 

earth” will be represented by “0001000000”.  Then the bit 

streams are converted into time series by recording the 

number of word occurrences within the predefined sliding 

window.   
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Figure 13. Times series of the number of occurrences of the 

word 'God' in English (top) and 'Dios' in Spanish (bottom) 

bible text using 6,000 words as the window size (z-normalized 

and reinterpolated to the same length).  The two time series 

are almost identical. 

The intuition behind this approach is that for each 

appearance of each word in English, there must be a 

corresponding Spanish word that also appears in the same 

vicinity in the Spanish bible text.  However, there can be 

some discrepancies in the number of words in the entire 

text as well as the position of the word within the sentence 



between the two languages.  This can be overcome by 

DTW technique.  

These suggestions are only subsets of variety of problems 

7. CONCLUSIONS AND FUTURE WORK 
h  

searchers focus on 

8. ACKNOWLEDGMENTS 
d lable upon request, 

that could benefit from transforming them into time series, 

which DTW could be trivially applied to.  There are still 

considerable amount of applications that are left to be 

explored. 

In t is work, we have pointed out and investigated some of

the myths in Dynamic Time Warping measure.   We 

empirically validated our three claims. 

We hope that our results will help re

more useful problems. For example, while there have been 

dozens of papers on speeding up DTW in the last decade, 

there has only been one on making it more accurate [23]. 

Likewise, we feel that the speed and accuracy of DTW that 

we have demonstrated in this work may encourage 

researchers to apply DTW to a wealth of new 

problems/domains.   

All atasets used in this paper are avai

by emailing either author. We thank Yasushi Sakurai for 

his useful comments.  We note that some of the claims in 

this paper might be controversial. We welcome comments 

and criticism, and will be happy to run experiments on your 

favorite dataset. The online version on this paper (at 

www.cs.ucr.edu/~eamonn/selected_publications.php) will 

be updated within 48 hours of any contradictory evidence 

being found.  
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1

THE DATASETS USED 
 

ave chosen seven classification dW

o

e h

standard deviation = 1) all the datasets used in this work. 

10.1 FACE DATASET 
This is a face classification problem

profiles.  We took a number

different individuals (1 female, 3 males) making different 

expressions on the face, e.g. talking, smiling, frowning, 

laughing, etc.  We then convert each head profile, starting 

from the neck area into a “pseudo time series” by 

measuring the local angle of a trace of its perimeter, as 

shown in Figure 14.  The dataset contains 112 instances in 

total with the length of each instance ranges from 107 to 

240 data points. 

  

Figure 14. Starting from the neck area, the head profile is 

converted into a "pseudo time series" 

   

10.2 GUN PROBLEM 
This dataset comes from the video surveillance domain.  

The dataset has two classes, each containing 100 instances.  

All instances were created using one female actor and one 

male actor in a single session.  The two classes are: 

Gun-Draw: The actors have their hands by their sides.  

They draw a replicate gun from a hip-mounted holster, 

point it at a target for approximately one second, then 

return the gun to the holster, and their hands to their sides. 

Point: The actors have their gun by their sides.  They point 

with their index fingers to a target for approximately one 

second, and then return their hands to their sides. 

For both classes, we tracked the centroid of the actor’s right 

hands in both X- and Y-axes, which appear to be highly 

correlated; therefore, in this experiment, we only consider 

the X-axis for simplicity. 

The overall motions of both classes are very similar.  

However, it is possible for human to visually classify the 

two classes with great accuracy, after noting that the actor 

must lift his/her hand above a holster, then reach down for 

the gun.  This action creates a subtle distinction between 

the classes as shown in Figure 15. 
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Figure 15. (left) some examples from the Gun-Draw data. 

(right) some examples from the Point data 

The dataset contains 200 instances, 100 for each class.  

Since each actor was periodically signaled every 5 seconds 

before each repetition of Gun-Draw/Point, the video clip 

(captured at 30 frames per second) was easily segmented 

into 150 data points for each instance. 

10.3 LEAF DATASET 
This dataset contains a collection of six different species of 

leaf images, including 2 genera of plant, i.e. oak and maple 

(all original images can be found at 

[http://web.engr.oregonstate.edu/~tgd/leaves/dataset/herbari



um]).  The dataset comprises four different species of 

Maple and two species of Oak, with 442 instances in total.  

We convert each leaf image into “pseudo time series” using 

similar method as the Face Dataset.  Figure 11 shows an 

example of a Glabrum maple image converted into a ‘time 

series’.  The length of each time series ranges from 22 to 

475 data points. 

10.4 SYNTHETIC CONTROL CHART 
This six-class dataset was retrieved from the UCR Time 

Series Data Mining Archive [http://www.cs.ucr.edu/ 

~eamonn/TSDMA/].  It contains 600 instances in total with 

100 instances in each class.  Each instance has the same 

length of 60 data points.  

10.5 TRACE DATASET 
This dataset is a subset of the Transient Classification 

Benchmark first introduced by Davide Roverso [25].  This 

is a synthetic dataset designed to simulate instrumentation 

failures in a nuclear power plant.  The full dataset consists 

of 16 classes, 50 instances in each class.  Each instance has 

4 features. 

For simplicity, we only use the second feature of class 2 

and 6, and the third feature of class 3 and 7 for our 

experiment.  Our dataset contains 200 instances, 50 for 

each class.  The length of each instance ranges between 279 

and 386 data points. 

10.6 TWO-PATTERN DATASET 
This four-class dataset contains 5,000 instances.  Each 

instance has the same length of 128 data points.  The 

dataset was introduced in [12].  Each class is characterized 

by the presence of two patterns in a definite order, down-

down, up-down, down-up, and up-up. 

10.7 WORDSPOTTING DATASET 
This is a subset of the WordSpotting Project dataset created 

by Rath and Manmatha [24] 

In the full dataset, there are 2,381 words with four features 

that represent each word image’s profiles or the 

background/ink transitions. 

For simplicity, we pick the “Projection Profile” (feature 1) 

of the four most common words, “the”, “to”, “be”, and 

“that”, to be used in our experiment.  “the” has 109 

instances; “to” has 91 instances; “be” has 38 instances, and 

“that” has 34 instances.  Once combined, we obtain a 

dataset of 272 instances, with the length of each instance 

ranges from 41 to 192 data points. 
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