

Edinburgh Research Explorer

EviCheck: Digital Evidence for Android

Citation for published version:
Seghir, MN & Aspinall, D 2015, EviCheck: Digital Evidence for Android. in Automated Technology for
Verification and Analysis: 13th International Symposium, ATVA 2015, Shanghai, China, October 12-15,
2015, Proceedings. Lecture Notes in Computer Science, vol. 9364, Springer International Publishing, pp.
221-227. https://doi.org/10.1007/978-3-319-24953-7_17

Digital Object Identifier (DOI):
10.1007/978-3-319-24953-7_17

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Automated Technology for Verification and Analysis

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Aug. 2022

https://doi.org/10.1007/978-3-319-24953-7_17
https://doi.org/10.1007/978-3-319-24953-7_17
https://www.research.ed.ac.uk/en/publications/ab4b47af-77b8-4888-90cc-5021b18c4668

EviCheck: Digital Evidence for Android ⋆

Mohamed Nassim Seghir and David Aspinall

University of Edinburgh

Abstract. We present EviCheck, a tool for the verification, certification
and generation of lightweight fine-grained security policies for Android. It
applies static analysis to check the conformance between an application
and a given policy. A distinguishing feature of EviCheck is its ability to
generate digital evidence: a certificate for the analysis algorithm asserting
the conformance between the application and the policy. This certificate
can be independently checked by another component (tool) to validate
or refute the result of the analysis. The checking process is generally very
efficient compared to certificate generation as experiments on 20,000 real-
world applications show.

1 Introduction and Related Work

Android security has been recently an active area of investigation and many
tools for this purpose have emerged. Some of them rely on dynamic analysis like
Aurasium [15], TaintDroid [8] and AppGuard [4]. Other ones are based on static
analysis, like FlowDroid [2], ComDroid [6] and Apposcopy [9]. The last family of
tools performs an exhaustive exploration of the application behaviour thanks to
abstraction (over-approximation), which also leads to some imprecision. We are
interested in this category (static analysis) as our aim is to certify the absence
of bad behaviour. EviCheck complements these tools as it not only analyses
applications but, returns a verifiable certificate attesting the validity of its result.
The idea of associating proofs with code was initially proposed by Necula as
Proof-Carrying Code (PCC) [11]. It has since been generalised to many forms
of ”certificate”, not necessarily representations of proof in a logic. For example,
abstract interpretations [1], validating intermediate steps in a compiler [10], etc.
It was further used to provide bound guarantees on resource consumption [3,5].
We call the generalised notion ”digital evidence”. The certificate returned by
EviCheck broadens the PCC idea by encompassing lightweight forms of evidence
specific to particular properties, e.g., program annotations tracking permissions
or resource usage. Digital evidence can be independently checked to validate or
refute the result of the analysis. A key point in PCC and related approaches is
that the checking process is efficient compared to the generation one, in certain
cases it could be 1000 times faster according to our experiments. Thus it may
ultimately be carried out on the device itself at the point of installation, with the

⋆ This work was supported by EPSRC under grant number EP/K032666/1 “App
Guarden Project”.

generation process carried out once by the app supplier or app store. To release
the user from the burden of writing anti-malware policies, EviCheck offers the
option of inferring them automatically using constraint solving.

2 EviCheck’s Main Ingredients

EviCheck has several components: policy language, verifier, checker and policy
generator. The verification and certification processes are illustrated in Figure 1.

Fig. 1. The architecture of EviCheck and its main components

To illustrate the functionality of the various components of EviCheck, con-
sider the code snippets and the associated graphical interface in Figure 2, which
represent the audio recording app Recorder. The access to the recording device
is carried out via object recorder (line 2).

1 public c lass Recorder extends Act iv i ty {
2 private MediaRecorder r e co rde r = null ;
3
4 public void onCreate (. . . .) {
5 ((Button) findViewById (Star t))
6 . s e tOnCl i ckL i s tener (s t a r tC l i c k) ;
7
8 // s t a r t R e c o r d i n g () ;
9 }

10
11 private void s tar tRecord ing () {
12 reco rde r = new MediaRecorder () ;
13 r e co rde r . setAudioSource
14 (MediaRecorder . AudioSource .MIC) ;
15 r e co rde r . setOutputFi le (/∗ f i l e name ∗/) ;
16
17 r e co rde r . s t a r t () ;
18 }
19
20 private View . OnCl ickListener s t a r tC l i c k
21 = new View . OnCl ickListener () {
22 public void onClick (View v) {
23
24 s tar tRecord ing () ;
25 }} ;
26
27 }

Fig. 2. Code snippets and graphical interface of the Recorder app

At the creation phase (onCreate), a callback for a click event is associated with
the button Start (line 5). Within the callback onClick, the method startRecording
is invoked (line 24) which in turns calls recorder.setAudioSource and recorder.start
to set the (on-device) microphone as a source and trigger the recording process.
This app requires the permission record audio which is associated with the
API method setAudioSource.

2.1 Policy Language

The policy represents the specification that a user wants to check or a claim that
a developer is stating about his app. In EviCheck, a policy consists of a set of
rules obeying the grammar:

rule := H (: |
or

:) T

H := method | (CV |¬CV)+

CV := entry point | activity | service | receiver

| onclick handler | ontouch handler | LC

LC := oncreate | onstart | onresume | . . .

T := (id|¬id)∗

The head H of the rule represents a context in which the tail T should (not)
be used. In the grammar, CV represents a context variable specifying the scope
for methods to which the rule applies. For example, entry point: all entry
points of the app, activity: activity methods, onclick handler: click event
handlers, in addition to activity life-cycle callbacks such as oncreate, etc. The
tail of the rule is a list of (negated) identifiers id’s or tags. We use permissions as
tags, however tags can be supplied by the user as well. Referring to our running
example, we can prohibit recording without user consent via the rule:

ENTRY POINT, ¬CLICK HANDLER : ¬RECORD AUDIO (1)

It simply says: “in all entry points, apart from click event handlers, the permis-

sion record audio must not be used”. It is also possible to rule out another
scenario of malicious behaviour, where a service reads the recorded file and sends
it to a remote server, via the following rule:

SERVICE
or

: ¬INTERNET
¬READ EXTERNAL STORAGE

The superscript or indicates that this is an or-rule. Its semantics is that either
permission internet or read external storage can be used in a service
component but not both. By default rules have an and-semantics. Due to space
limitations, we do not provide a formal definition of the language semantics.

2.2 The Verifier

As Figure 1 shows, the verifier (certificate generator) takes an app and a policy as
input and answers whether the policy is satisfied by the app and eventually out-
puts a certificate (digital evidence). If the policy is violated a diagnosis pointing

to the violated rules is returned. The verification algorithm consists of a reach-
ability analysis which computes the transitive closure of the call graph with
respect to permission usage. Referring to our running example, we start with
the map below on the left side as we initially only know that the API method
recorder.setAudioSource requires the record audio permission as implemented
by the Android framework. The analysis, which consists of a backward propa-
gation, returns the map on the right side. In this case rule (1) is valid as the
only entry points (underlined) we have are onClick and onCreate. If we uncom-
ment line 8 in Figure 2, record audio will be reachable from onCreate, hence
violating the rule. The final map represents the certificate for the analysis.

setAudioSource : RECORD AUDIO

setAudioSource : RECORD AUDIO
onClick : RECORD AUDIO

onCreate :
startRecording : RECORD AUDIO

2.3 The Checker

The checker takes as input a certificate (computed map), a policy and an app,
and checks whether the certificate is valid (see Figure 1). It also checks whether
the certificate entails the policy. If the certificate is invalid, a message refer-
ring to its first inconsistent entry is returned. Certificate checking is lighter than
certificate generation as we do not need to compute a fix point (backward propa-
gation). It suffices to go through each method and locally check if the associated
set of tags includes all the tags associated with the functions it calls. This proce-
dure has a linear complexity in the number of map entries (functions). It also has
a constant space complexity as we are just performing checks without generating
any information which needs to be stored.

2.4 Policy Generator

EviCheck is able to automatically infer anti-malware policies using constraint
solving. To this end, we need a training set of malware and benign applications
where each application is described by a set of properties (p’s). For example pi

could be service : send sms, meaning that the permission send sms is used
within a service component. A policy P excludes an application A if P contains
a rule ¬pi and pi belongs to the description of A. We want to find the properties
p1, . . . , pk such that the policy composed of ¬p1, . . . ,¬pk allows a maximum of
benign applications and excludes a maximum of malware. We use a a pseudo-
Boolean solver, such as Sat4j 1, to solve this kind of optimisation problems
where variable values are either 0 or 1 (true or false).

2.5 Technical Discussion

The call graph is the key representation on which our analysis relies. It is there-
fore essential that the generated call graph is as complete as possible. Java and

1 http://www.sat4j.org/

object oriented languages in general have many features, such as method overrid-
ing, which makes the construction of an exact call graph (statically) at compile
time undecidable. Therefore we over-approximate it using the class hierarchy

approach [13] which permits to conservatively estimate the run-time types of
the receiver objects.

Other Issues. Reflection is also a known issue for static analysis. A simple and
conservative solution for this problem is to associate a tag tref with methods of
the class java/lang/reflect/Method. We then use the tag tref to make the pol-
icy reflection-aware, e.g., c : ¬tref to express that reflection should not be used
in the context c. A similar solution is applicable for dynamic code loading by
associating a tag tdyn with methods of the class dalvik/system/DexClassLoader.
Another framework-related challenge consists of modelling event handler call-
backs. While the order of callback invocations can be over-approximated via a
non-deterministic model, a more precise solution has been proposed in the lit-
erature [16]. However, adopting such an approach for EviCheck could incur an
additional cost exceeding the one of the core analysis itself.

3 Implementation and Experiments

EviCheck is written in Python (∼ 6000 lines) [12]. It uses Androguard [7] as
back-end for parsing Android apps and has also an interface to Soot [14].

As mentioned previously, EviCheck has an option for the automatic gener-
ation of policies. In our experiments, we have first automatically generated a
policy composed of 22 rules. An example of a rule is receiver : ¬camera, ex-
pressing that the camera should not be used in a broadcast receiver component.
We then verified the generated policy against a representative set of more than
20,000 apps, from the Google Play store and Android observatory2, ranging
over different domains: games, social, etc. A snapshot of the results obtained
with a typical desktop computer is illustrated in Figure 3.

App G.T C.T #M Policy

amazon 14.15 0.07 30498
facebook 32.09 0.08 37106
whatsapp 25.3 0.08 34143 ✗

skype 11.9 0.06 25247
twitter 17.4 0.07 32807

.

Fig. 3. In the table, G.T is the certificate generation time in seconds, C.T is the
checking time and #M is the number of methods in an app. The symbol ✗ means that
the policy is violated. The diagram on the right gives for each rule from the policy,
identified by its number, the number of apps violating it from a set of 20,000 apps.

2 https://androidobservatory.org/

In the table, symbol ✗ indicates that the policy is violated. Policy violation
does not necessarily mean malicious behaviour; it can be used as an alarm trigger
in a triage phase to filter out safe apps and to advise more careful scrutiny of the
remaining ones. EviCheck can provide a detailed view pointing to the violated
rule itself. The diagram on the right shows for each rule the number of apps
violating it. The selected rules are numbered according to their appearance in
the generated policy.

The checking time is less than 1 second for most of the apps and the ratio
between the certificate generation and checking time is on average 70 but can in
some cases reach 1000. This is encouraging as our aim is to carry out the checking
process on the phone device, which is quite limited in terms of performance.

References

1. E. Albert, G. Puebla, and M. V. Hermenegildo. Abstraction-carrying code. In
LPAR, pages 380–397, 2004.

2. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L. Traon,
D. Octeau, and P. McDaniel. Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for Android apps. In PLDI, page 29, 2014.

3. D. Aspinall and K. MacKenzie. Mobile resource guarantees and policies. In CAS-

SIS, pages 16–36, 2005.
4. M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-Rekowsky. App-

guard - enforcing user requirements on Android apps. In TACAS, pages 543–548,
2013.

5. G. Barthe, P. Crégut, B. Grégoire, T. P. Jensen, and D. Pichardie. The mobius
proof carrying code infrastructure. In FMCO, pages 1–24, 2007.

6. E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in Android. In MobiSys, pages 239–252, 2011.

7. A. Desnos. Androguard. http://code.google.com/p/androguard/.
8. W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth.

Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In OSDI, pages 393–407, 2010.

9. Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-based detection
of Android malware through static analysis. In FSE, 2014. (to appear).

10. X. Leroy. Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In POPL, pages 42–54, 2006.

11. G. C. Necula. Proof-carrying code. In POPL, pages 106–119, 1997.
12. M. N. Seghir. Evicheck.

http://groups.inf.ed.ac.uk/security/appguarden/tools/EviCheck/.
13. V. Sundaresan, L. J. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,

and C. Godin. Practical virtual method call resolution for java. In OOPSLA, pages
264–280, 2000.

14. R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundare-
san. Optimizing java bytecode using the soot framework: Is it feasible? In CC,
pages 18–34, 2000.

15. R. Xu, H. Säıdi, and R. Anderson. Aurasium: Practical policy enforcement for An-
droid applications. In Presented as part of the 21st USENIX Security Symposium,
pages 539–552, Berkeley, CA, 2012. USENIX.

16. S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow analysis
of user-driven callbacks in Android applications. In ICSE, 2015.

