
CERIA Research Report 2002-07-24 
 
 

Evicting SDDS-2000 Buckets in RAM to the Disk 
 

(Extended Abstract) 
 

W. Litwin, P. Scheuermann, Th. Schwarz 
 
 
Abstract 
 
An SDDS-2000 server currently manages only buckets in its RAM storage [C01]. Several 
buckets can coexist. When many files are created however, RAM storage space may not be 
sufficient for all the buckets simultaneously. When an application requests a bucket, but there 
is not enough room in RAM for it, one can evict some buckets to the disk.  We define a number 
of promising eviction strategies.  Our goal is to maximize the throughput of the server.   
 

1.The Model 
 

We call cache the RAM storage available for the buckets at an SDDS Server. The cache of an 
SDDS server will contain buckets of files created by LH* and RP*  insertions and splits. We 
envision that during a particular time period we will need to keep at a server only a small 
number of rather large buckets,  // how large are they ?//  say of the order of 20-30 buckets. 
The pattern of accesses will most likely consist of some steady accesses to a number of 
favorite files. In addition, we envision that some files will exhibit a burst of accesses during 
short periods, while for some other files we may have to deal with a temporal pattern, where 
the files go through peaks and valleys of accesses periodically. We would also like to consider 
the case where for some files, for example payroll files, we can anticipate this cyclical pattern.  
 
A bucket consists of a number of pages. Observe that when a page is not in the cache, the 
system needs to bring to memory the entire bucket (pointer swizzling does not work here). 
However, when a bucket is written to disk we only need to write the pages that have been 
modified since the last time the bucket was written to disk.  

 
The system keeps track of the sizes of the buckets. For a new file the create bucket operation 
will specify s, the size of the bucket. At the current time the space for a bucket is allocated 
statically. In the current implementation, a bucket split is implemented as follows: we copy 
half of contents of the bucket into a new bucket of size  s/2 and we discard the old bucket.       
 
 The cache manager consists mainly of a cache replacement algorithm that attempts to 
minimize the total throughput. Note that we have a trivial cache admission algorithm since 
whenever a client requests to create a bucket for a new SDDS space needs to be granted in the 
cache.  We propose to investigate three possible solutions for the cache replacement 
algorithm. 
 

- 1 - 



2. Least Cost Replacement (LCR) 
 
This algorithm follows in spirit the LNC-R algorithm of the Watchman cache manager for 
data warehouses [SSV96], but uses a modified performance metric.  We define the profit of 
keeping a bucket in cache as follows: 
 
 Profit(Bi) =fi ( ci  +wi) 
 
  
Where: 
 

   fi  = average rate of requests addressed to  bucket Bi 

              ci = cost of retrieving bucket from disk 
  wi =cost of writing bucket to disk  
  
 
The term fi ( ci  +wi )  denotes the savings in throughput due to caching the bucket.  
 
Unlike in Watchman or in the design of proxy caches for Web servers [PSV97], it does not 
seem to make sense to normalize by dividing by si , the size of the bucket, since the size is 
already implicit in the costs for reading and writing.  // In Watchman if we have two buckets 
having the same execution savings the larger one will have a smaller profit. Thus the larger 
bucket should be evicted from the cache first because it frees more space.// 
 
We proceed now to discuss how to evaluate the above parameters: 

• fi 
  

       This parameter can we calculated using the moving average of the last K  inter-arrival 
times of queries to the bucket Bi. In practice a small value of K (say 3 or 4) suffices: 
           fi = K/ (t – tk) 
 
where  t =current time and  
           tk= time of the past k-th reference. 
 
Observe, that if a new bucket is created as result of a split operation, we could also piggyback 
to the new destination the frequency fi  of the originating bucket. 
 
One can compute   the frequency fi by an alternative method that keeps a count of the number 
of requests to a bucket within the last T seconds, with T a global parameter. However, the 
problem with such an approach is that it does not keep track of both hot and cold buckets in 
an equally responsive manner [PWZ98].  Hot buckets would need a relatively short value of T 
to guarantee that we become aware of frequency variations quickly enough. Cold buckets 
would need a large value of T to guarantee that we smooth out stochastic fluctuations. The 
moving-average method does not have this problem, since a fixed value of K implies a short 
observation period for hot buckets and a long window for cold buckets.  

• ci = pi * r   
 where pi = number of pages in   bucket Bi and  
           r = cost of random read/write of a page from  disk. 
• wi =ui * r  +  calc(Bi)    if ui  < threshold  
         = pi * r  +  calc(Bi)     otherwise 

- 2 - 



where ui = number of pages of Bi that have been accessed since last time it was written to 
disk 
          calc(Bi)=the cost of computing the signature for the bucket.     
Ideally we would like to calculate the number of pages that were modified since the last 
write, but this is not possible because it would require keeping track of a bit map for every 
bucket. 
 
Note: if the number of pages modified since the last write to disk exceeds a certain 
threshold we assume that the entire bucket has to be rewritten.  
 
There are two possible ways of estimating this parameter. The first estimation also makes 
use of a sliding window. Let us denote: 
   
       t=current time  
       t1, t2 = the previous two times when the bucket was written to disk 
       ∆t = t –t1 
  ∆t’ = t1 –t2 
  ui’ = number of pages accessed during the period ∆t’ 
      
     ui = ui’ * ∆t/∆t’ 
 
       Thus, in effect, this calculates the current number of pages that were accessed by 
extrapolating on the last number of pages written out during the past two time intervals. 
 
The second estimate computes effectively αi the rate at which the pages of the bucket Bi 
are being accessed: 
 
αI = n( Bi) /∆t 
 
with n( Bi)  the count of the number of accesses to Bi during the period ∆t. Note that  
 n( Bi)  includes duplicate accesses to a given page. 
 

      However, we observe here that αI  is in fact identical to fi. 
 
Let us also denote: 
 
ui(t)= expected number of pages accessed during period  ∆t. 
                                                                  

      Then we obtain the following differential equation: 
 
       d ui(t) 
       ------ = fi (pi - ui(t)) ; ui(0) =0 ; 
       dt 
       
      which has the solution: 
 
      ui(t) = pi(1-e- fi t) 
 
This equation says that the number of pages accessed during a period increases, as expected, 
if the time interval in question is longer. 

- 3 - 



 
The LCR cache replacement algorithm proceeds as follows. Given a new request for a bucket 
of size s the algorithm constructs a list C of the estimated profits for all buckets currently in 
RAM arranged in increasing order of profit. Then it picks for replacement as many buckets as 
necessary in order to accommodate the new bucket of size s. 
 

3. Knapsack Algorithm (KA) 
 
This approach involves using periodically an algorithm that will provide an optimal solution 
to the knapsack problem [CLR90]. To minimize the total throughput, the cost incurred by the 
execution of the queries that are not in the cache should be minimized. The problem can be 
formulated as: 
 
         Minimize Σ [ pi * (ci + wi)] 
   
where pi is the probability of accessing a bucket Bi 

 
subject to the constraint that : 
 
          Σ si  <= S  
   
where S is the size of the cache. 
 
Observe, that this approach cannot handle appropriately the case of a new request since it uses 
all the space available in the cache. A possible solution is to modify the knapsack algorithm 
so that only S’ < S is used for the optimal allocation and the remainder of the space, S- S’  is 
used for new requests. This actually provides part of the motivation for the third approach. 
The solution of the knapsack approach will be optimal as long as the probabilities of requests 
to the files remain stationary.  This algorithm will be run periodically and will change the 
favorite files in the cache to reflect the temporal access patterns as well as the 
addition/deletion of new buckets.  

4. Hybrid Cache Replacement Algorithm (HCR) 
 
This approach combines the LCR and KA algorithms. The cache is divided into two sections 
with approximately  80% of the cache allocated to favored (F) buckets which are selected 
using the KA approach and 20% of the space reserved for new requests and less favored  (LF) 
buckets.  Periodically, the KA algorithm is run and decides which buckets should belong to 
the F area for period T and which should belong to the LF area. Note that the favored buckets 
are assumed to be all in memory, while the less favorite ones maybe in memory or on disk. A 
new request will always be assigned space in the LF area, possibly causing the eviction of a 
LF bucket. Thus the HCR algorithm proceeds as follows: 
 
 Request arrives for bucket Bi: 

 

 Case 1: request is for bucket in F area  
    No action required 
 
 Case 2:  request is for a new bucket: 

- 4 - 



     If there is not enough space in the LF area the LCR algorithm is executed 
 
             Case 3: request is for bucket in LF area: 
    If  Regular  activity 
      If  Bi is not memory resident the LCR algorithm is executed and  
             Bi  is brought to  LF area    
                        // this will result in the eviction of some LF buckets // 
 

If Overheated activity 
      If Bi is not memory resident  run LCR algorithm to replace one or more      
       bucket of the F area with bucket Bi 

 
We define overheated activity the condition whereby there is a sudden burst of requests 
directed to the LF buckets which justifies writing temporarily one of the F buckets to disk.  
One way that we could measure overheated activity is as follows. Let us keep for the files in 
the LF area two sliding windows for the inter-arrival times of requests. Thus, one sliding 
window W would keep track of the latest K inter-arrival times, while the second, W’ would 
keep track of the previous K inter-arrival times: 
 
                          fi = K/ (t – tk) ;      fi’ = K/ ( tk –t2k) ;  
 
On overheated condition is triggered if the frequency of requests to the LF files in the current 
time window W exceeds substantially the frequency of requests in the previous time window 
W’ and also is larger then the average frequency of requests to the F files: 
  
 Overheated trigger : ΣLF fi’ >>ΣLF fi and ΣLF fi’ > averF(fi) 
 
We observe here that the HCR algorithm will need to use a slightly adjusted version of the 
KA algorithm. It could happen that the KA optimal solution for 80% of the cache is slightly 
inferior to the KA solution for (80%+ ∆) of the cache for a small value of  ∆. On the other 
hand, the division of the cache into two categories having 80% and 20% is not a very rigid 
one, leaving room for reasonable adjustments. 
  
We also need to take care in the HCR algorithm that if an F file is evicted and its bucket is 
stored on disk, thus becoming in fact a member of the LF files, it does not remain in the LF 
area for too long. The objective is the determine at the next time period T the best 
configuration of the F files considering the current distribution of requests.  
 
We will need to show that in some configuration of requests the solution provided by the 
HCR algorithm is better then the solution obtained by either KA or LCR alone.  
 

Conclusion 
 
The eviction strategies that we have presented seem feasible and useful. We intend to analyze 
the application properties that make a given strategy better than another. An experimental 
implementation should also take place.  
 
References 
[C01]  CERIA: SDDS-2000 prototype and related papers. 

- 5 - 

http://ceria.dauphine.fr/


- 6 - 

 
[CLR90] T. Cormen, C. Leiserson and R. Rivest,  Introduction to Algorithms,  McGraw-Hill, 
1990. 
 
[SSV96]  P. Scheuermann, J. Shim and R. Vingralek, “WATCHMAN: A Data Warehouse 
Intelligent Cache Manager,” Proceedings of 22 Intern. Conf. On Very Large Databases, 
Bombay, India, 1996, pp. 51-62. 
 
[SSV97]  P. Scheuermann, J. Shim and R. Vingralek, “A Case for Delay-Conscious Caching 
in Web Documents,” Computer Networks and ISDN Systems, Vol. 29, 1997 pp. 997-1005 
 
[SWZ98]  P. Scheuermann, G. Weikum and P. Zabback, “Data Partitioning and Load 
Balancing in Parallel Disk Arrays,’ The VLDB Journal, Vol. 27, No.1, February 1988, pp. 48-
66.  
 


