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Abstract

Renal hemodynamics increase dramatically during pregnancy,
and pressor responsiveness to exogenous administration of va-

soconstrictors is attenuated. We investigated whether or not va-

sodilatory prostaglandins mediate these phenomena. Trained,
chronically instrumented, conscious pregnant rats were used.

Control values of glomerular filtration rate (GFR) and effective
renal plasma flow (ERPF) were elevated at midgestation (P
< 0.01 and P = 0.05 from prepregnant means, respectively), and
effective renal vascular resistance was decreased (P = 0.05).
Indomethacin (4.5-6.5 mg/kg body weight IBWI) failed to de-
crease renal hemodynamics at this stage of pregnancy; in fact,
it raised GFR somewhat further (P < 0.05). Systemic pressor
responsiveness to bolus administration of norepinephrine and
angiotensin II (All) was significantly attenuated by at least ges-
tational day 20. Neither indomethacin (7 mg/kg BW) or meclo-
fenamate (6 mg/kg BW) affected the refractory response. The
renal vasculature was also relatively unresponsive to an intra-
venous infusion of All (5 ng kg-' * min-') during late gestation
(day 19); in particular, the fall in ERPF in response to All

(16±3%) was markedly less than that observed in the prepregnant
condition (34±3%; P < 0.05). Indomethacin (6 mg/kg BW) failed
to restore this blunted response, and further attenuation was

evident, despite the presence of the inhibitor (gestational day
21). We conclude that vasodilatory prostaglandins do not appear
to mediate the rise in renal hemodynamics, and the attenuation
of the systemic and renal pressor responsiveness observed during
pregnancy, insofar as these phenomena were unaffected by acute

cyclooxygenase inhibition in unstressed, conscious rats.

Introduction

Dramatic alterations in renal and cardiovascular hemodynamics
occur during gestation in humans. Glomerular filtration rate

(GFR)' and effective renal plasma flow (ERPF) increase in the
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1. Abbreviations used in this paper: All, angiotensin II; BW, body weight;
ERPF, effective renal plasma flow; ERVR, effective renal vascular resis-
tance; GFR, glomerular filtration rate; MAP, mean arterial pressure;
NE, norepinepprine; PAH, sodium aminohippurate; PG, prostaglandin.

first trimester by as much as 50%; this increment is sustained at

least until late pregnancy, when renal hemodynamics may de-
cline toward prepregnant values (1-3). Cardiac output also rises
dramatically (4), and blood pressure falls by -10 mmHg (5).
Taken together, these data indicate that renal and systemic vas-

cular resistance are decreased during much of gestation.

We have recently reported that the chronically instrumented,
conscious rat demonstrates alterations of renal hemodynamics
and blood pressure during pregnancy which resemble those ob-

served in human gestation (6). (Our study corroborated several,
but not all, previous investigations performed in various strains

of acutely prepared, pregnant rats [for pertinent reviews, see

References 6 and 7].) The application of a chronically prepared,
conscious animal preparation to the study of renal and cardio-

vascular function during pregnancy provides three distinct ad-
vantages: (a) The perturbations of renal hemodynamics and of
the hormonal and cardiovascular systems, which are brought
about by anesthesia and surgical stress (8-18) as well as by al-

terations of plasma volume (19, 20), are avoided. This advantage
may be particularly apropos to pregnancy, in which the under-
lying physiology is radically altered from the nonpregnant con-

dition; that is, even before an experimental variable of interest
is implemented, the anesthesia and surgical stress may have af-
fected pregnant and nonpregnant animals differently, such that
the latter no longer serves as an adequate control. (b) Each animal
can be used as her own control-the same rat can be studied
longitudinally (before, during, and after pregnancy). (c) Inasmuch
as the changes in renal hemodynamics and blood pressure ob-
served in the chronically instrumented, conscious pregnant rat
resemble those of human gestation (6), it is possible that results
regarding mechanisms can be extrapolated to humans.

Several investigators have postulated a role for vasodilating
prostaglandins (PGs) in the control of systemic vascular resis-
tance and blood pressure during pregnancy (21, 22). Pedersen
and co-workers (23) have demonstrated an increase in urinary
excretion of PGE2 during human pregnancy, as assessed by ra-
dioimmunoassay. Using gas chromatography-mass spectrometry,
Goodman and associates (24) observed a rise in urinary excretion
oftwo metabolites of PGI2 . Venuto and Donker (25) and Paller
(26) have reported increases of urinary PGE2 excretion in preg-
nant rabbits and rats, respectively. In the present study, we tested
whether or not PGs serve as vasodepressor agents in pregnancy.
Our study, carried out in chronically instrumented, conscious
rats, included (a) the effects of cyclooxygenase inhibition on

GFR, ERPF, and effective renal vascular resistance (ERVR); (b)
the change in mean arterial pressure (MAP) produced by bolus
administration ofangiotensin II (AII) and norepinephrine (NE),
before and after inhibition of prostaglandin synthesis; and (c)
the influence of an intravenous infusion of AII on renal he-
modynamics and MAP, before and after cyclooxygenase inhi-
bition. The general approach, therefore, was to assess the con-

tribution ofPGs (ifany) to the control ofrenal and cardiovascular
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function during pregnancy by acute interruption ofPG synthesis.
Clarification ofthe role that these hormones may have in normal
pregnancy could facilitate investigation of the pathogenesis of
preeclampsia. Indeed, several investigators (23, 24, 27) have
postulated that a relative deficiency of vasodilating PGs may be
causative.

Methods

Animal preparation
Female Long-Evans rats (Charles River Breeding Laboratories, North
Wilmington, MA) fed a normal diet (Charles River RMH 3000 formula)
were used. They were - 14 wk old at the beginning of the study. All
animals underwent training in the experimental cage (28) prior to surgery
(3-4 h/d for at least 7 d). Details of the surgical preparation and post-
operative care have been previously described (6, 28). Aseptic technique
was employed, and animals were allowed 7-10 d of recovery from surgery
before the first experiment was run.

Experimental procedures
Effects of indomethacin on renal function. Animals were studied twice
before mating with 4 d allowed between studies. After conception (day
1 of gestation was documented by the presence of spermatozoa in the
vaginal lavage), the same rats were again examined on gestational days
12 and 20 (total gestation being 22 d). For each study, the rat was first
placed in the experimental cage. A special cage was designed to accom-
modate the enlarging abdominal girth during days 16-20 of pregnancy.
The femoral artery catheter was connected to a Statham pressure trans-
ducer (model P23 ID, Statham Instrument Div., Hato Rey, PR) and a

chart recorder (model 5D, Grass Instrument Co., Quincy, MA; or model
ICT-2H, Gilson Medical Electronics, Inc., Middleton, WI). This catheter
was also used for collection of blood samples, and administration of
vehicle or indomethacin. The femoral venous catheter was attached to
a Sage infusion pump (model 355, Orion Research, Inc., Cambridge,
MA) for the delivery of polyfructosan (Inutest, Laevosan-Gesellschaft,
Linz-Donau, Austria), and PAH (sodium aminohippurate, Merck, Sharp,
and Dohme, West Point, PA) in Ringer's solution. Finally, the bladder
cannula was extended with a polyethylene tube (Intramedic, Clay Adams,
Parsippany, NJ), and timed urine collections were made. (This technique
of urine collection has proven to be reliable; after achieving steady-state
conditions, the excretion of polyfructosan and PAH virtually matched
their infusion rates-98±5% and 97±4%, respectively, n = 9 rats.) The
clearances of polyfructosan and PAH provided a measure ofGFR and
ERPF, respectively.

After the infusion was started (1.0 mg min' - 100 g body weight
(BW)-' for polyfructosan, and 0.075 or 0.1 mg - min-' 100 g BW-' for
PAH) at 24 Ad/min, an equilibration of at least 60 min was allowed.
Vehicle (0.05 M Na2CO3) was administered over a 10-min interval early
in the equilibration period. Then, two 30-min urine collections were

obtained with midpoint blood samples (each sample 200-250 M1). In-
domethacin (6 mg/kg BW) was next administered over a 10-min period.
(In several of the earlier experiments, indomethacin was given as a 3
mg/kg BW bolus, followed by an infusion of 2 mg kg-' h-' (3.0 1/
min), or in divided doses-4 mg/kg BW, followed 15 min later by 2 mg/
kg BW.) 45-60 min after the start of indomethacin administration, two

or three more 30-min renal clearances were performed with midpoint
blood samples. After centrifugation of blood samples and separation of
plasma from cells, the latter were resuspended in Ringer's solution, and
returned to the rat.

Time-control studies. Two types of time-control experiments were

conducted in nonpregnant rats. (a) Periodic studies were performed in
the same animals over a period ranging from 5 to 40 d after surgical
preparation. Each experiment was conducted as follows. After the start

of an infusion of polyfructosan and PAH in Ringer's solution, an equil-
ibration period of 1 h was allowed. Then, two 30-min renal clearances
were performed. (b) Renal function and MAP were assessed in rats over

a period of 4.5 h while the animals were in the experimental cage. After

a 60-min equilibration period with polyfructosan and PAH in Ringer's
solution, five 40-min renal clearances were obtained.

Effects ofAHl andNE on bloodpressure before and after indomethacin
or meclofenamate. Because urine collection was unnecessary in these

studies, bladder cannulae were not implanted. Three types ofexperiments
were performed. (a) Rats were studied twice before mating, with 4 d
allowed between studies. After a 60-min equilibration period in the ex-

perimental cage, All (3.12, 6.25, 12.5, 25, and 50 ng/kg BW) and NE

(50, 100, 200, and 400 ng/kg BW) were administered intravenously in
random order, and the change in MAP recorded. 10 min were allowed
between each bolus (200 ul each). (In each experiment, a 200-,1 bolus
of vehicle [5% dextrose] was also administered. The vehicle yielded an

average increment in MAP of 2.5 mmHg.) Then, indomethacin (7 mg/
kg BW) or meclofenamate (6 mg/kg BW) was given intravenously over

a 10-min period. After an equilibration of45-60 min, the vasoconstrictors
were again administered. After mating, the same rats were studied in an
identical fashion on gestational days 12, 16, and/or 20. Several ofthem
were also examined on postpartum day 5-6. (b) To enhance the accuracy
of our study, experiments were performed as described above, except
that only one dosage of All (25 ng/kg BW) and NE (200 ng/kg BW) was

given, each in triplicate, before and after meclofenamate. (c) In order to

assess the potential effects of recovery from acute surgical preparation
and ether anesthesia, as well as lack of training to the experimental cage
(26), we performed studies similar to those in (a) and (b), except that
rats (untrained) were initially mated, and catheters implanted under ether
anesthesia on gestational days 15-16. The incision was < I cm, no blood
loss was incurred, catheters were secured with ties and exteriorized directly
from the site of incision. The wound was then sutured together around
the catheters. Saline (0.9% NaCl; 0.5% of BW) was given during surgery
(26). After surgical preparation, the animals were placed in the experi-
mental cage, and allowed to recover for .60 min before studies began.
Age-matched, virgin female rats prepared in the same fashion, served as

controls.

Effects ofAII on renal hemodynamics before and after indomethacin.
Rats were studied before mating. Two control renal clearances were ob-
tained (30 min each), followed by administration of vehicle (0.05 M
Na2CO3) over a 10-min period, and a continuous intravenous infusion
of All (5 ng kg-' - min' at 3 ul/min). After a 45-min equilibration,
three 30-min renal clearances were performed. These animals were then

mated, and the same experiment was repeated on gestational days 19
and 21, except that indomethacin (6 mg/kg BW) was administered on

day 21, instead of vehicle.

Preparation ofdrugs
All solutions were sterilized through millipore filters (Millex-GS, Milli-

pore, Bedford, MA). Indomethacin (Sigma Chemical Co., St. Louis, MO)
was freshly prepared for each experiment. It was dissolved over a 3-min
period in 0.05 M Na2CO3 heated to 40°C. Then, HCl (1.0 M) was added
to achieve a final pH of -8.0. A solution of Na2CO3 (0.05 M, titrated
to pH 8.0) served as vehicle. Meclofenamate (Warner-Lambert, Ann

Arbor, MI) was also freshly prepared for each experiment. It was dissolved
in 0.1 M NaCl. It has been shown that the dosages of indomethacin
(ranging from 4.5 to 7.0 mg/kg BW) and meclofenamate (6 mg/kg BW)
employed in these studies effect significant inhibition of renal prosta-
glandin production (29-31). For verification, urine samples obtained
from a few of the studies performed in the very first experimental pro-
cedure described above were analyzed for urinary PGE2 and PGF2. ex-

cretion (32). Indomethacin reduced the urinary excretion of PGE2 and/
or PGF2. by >90% (n = three observations in two nonpregnant rats,
and n = two observations in two pregnant rats). In a day-14 pregnant
rat, meclofenamate decreased the urinary excretion of PGE2 by 74%.

All (5-ILE All or Hypertensin II; Sigma Chemical Co.) was freshly
prepared every 2 mo as stock solution in 5% dextrose (100 tg/ml), and

kept in 1.0-ml aliquots at -20°C. Final dilutions were carried out with

Ringer's solution or 5% dextrose. NE (Levophed, Winthrop Laboratories,
New York) was prepared as stock solution in 5% dextrose (800 ng/ml),
and kept in 1.0-ml aliquots at -20°C. Final dilutions were also made

in 5% dextrose.
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Table I. Influence ofIndomethacin on Renal Function in Nonpregnant Rats

MAP GFR ERPF ERVR

mmHg 1l/min dI/min mmHg- ml- min-'

Vehicle 110±1 2,902±77 9,641±224 6.51±0.18

Indomethacin 111±1 2,827±83 9,135±240* 6.87±0.21

V UN.- V CN./CI. UK' V CKjCI.

I/min 5Leq/min % ueqlmin %

Vehicle 20.3±1.2 2.45±0.28 0.59±0.06 3.21±0.14 26.24±0.98

Indomethacin 22.7±1.6 3.78±0.35t 0.95±0.08t 2.27±0.09t 19.47±0.62t

Values are means±SEM. The data were obtained from 21 chronically instrumented, conscious rats. MAP, mean arterial pressure; GFR, glomeru-
lar filtration rate; ERPF, effective renal plasma flow; ERVR, effective renal vascular resistance (MAP-5/ERBF); V, urinary flow; Ux* V, urinary
excretion rate of solute; CxICIn, fractional excretion of solute. * P < 0.05. 1 P < 0.001 indomethacin vs. vehicle.

Analytical techniques
Polyfructosan in plasma and urine was determined by the anthrone tech-
nique (33), and PAH, by the method of Bratten and Marshall as modified
by Smith et al. (34). Sodium and potassium in plasma and urine were
measured by flame photometry (model 343, Instrumentation Laboratory,
Inc., Lexington, MA). Urine volume was determined gravimetrically.
All clearance data have been expressed per whole animal.

Statistical analysis

Except for Table I, which was analyzed by the paired t test, data on
each measure were subjected to a univariate analysis of variance. Measures
for which there were no missing observations were analyzed in a ran-
domized block or split-plot design (in the event of a between-subject
factor) with "rat" as tht blocking variable. Measures for which there
were missing observations were analyzed in a partially balanced incom-
plete block design; in the latter case, effects were tested against the rat
by effect interaction. Comparisons between means were performed using
Dunnett or Tukey tests, with corrections made for unbalanced cell sizes
if necessary. These comparisons were performed only to explore signif-
icant effects unless planned by a priori hypotheses. Separate error terms
were computed for contrasts in which assumptions about variance were
not met by the data. The reference for all analytical procedures was Kirk
(35). A value of P < 0.05 was taken to be significant.

Results

Effects ofindomethacin on renalfunction. Indomethacin did not
alter MAP or GFR in nonpregnant rats (Table I). ERPF was

decreased, and ERVR (MAP-5/ERBF) increased, slightly-both
by -5% (P < 0.05 and P < 0.1, respectively). Time-control
studies (Table II) performed in nonpregnant rats showed no sig-
nificant changes in any of these variables, although ERPF tended
to decrease, and ERVR to increase by -5%. Thus, indomethacin
had little, if any effect on renal hemodynamics. (The percent
changes of ERPF and ERVR between indomethacin and time-
control studies were not significant-both P > 0.1.)

As shown in Table I, the urinary excretion rate of sodium
(UNa * V) and fractional excretion of sodium (CNd1CIn) were ap-

parently augmented by indomethacin. Examination of the time-
control studies (Table II), on the one hand, shows that similar
increments occurred. Indomethacin, therefore, most likely had
no overall effect on renal handling of sodium. (The percent

changes of UNa. V and CNS1CIn between indomethacin and time-
control studies were not significant-both P > 0.1.) On the other
hand (Table I), the drug did effect significant decrements in po-

Table II. Time-Control Studies Performed during a 4¼-h Period in Nonpregnant Rats

Time (min)

60-140* 150-190 190-230 230-270 150-270t

MAP (mmHg) 111±2 112±2 112±2 112±2 112±2
GFR (,ul/min) 2,763+148 3,035±216 2,867±108 2,850±157 2,920±138
ERPF (,gllmin) 9,162±519 9,365±734 8,386±466 8,630±511 8,794±525
ERVR (mmHg * ml* min-') 6.87±0.40 6.82±0.47 7.47±0.40 7.23±0.36 7.17±0.37
V (Mgl/min) 20.8±2.9 32.3±5.6 35.4±6.5 33.5±6.2 33.8±5.7
UN.* V (,eq/min) 1.75±0.34 3.60±0.68§ 4.08±0.7311 3.39±0.57 3.69±0.59§
CN./CIn (%) 0.46±0.09 0.84±0.13 1.01±0.17" 0.85±0.13 0.90±0.12§
UK* V (Aeq/min) 3.02±0.29 3.43±0.46 3.06±0.33 2.70±0.30 3.06±0.35
CK/CI. (%) 27.9±2.5 29.6±2.5 28.2±2.3 25.3±2.0 27.7±2.1

Values are means±SEM. Time controls were performed in nine chronically instrumented, conscious animals. For abbreviations, see Table I.
* The first two 40-min renal clearances were averaged. * Average of last three 40-min renal clearances. § P < 0.05. 11 P < 0.01 vs. 60-140-min
period. N.B. Although analysis of variance revealed a significant main effect of time on V (P = 0.05), application of Dunnett tests failed to show
significant differences between the control (60-140 min) and subsequent time periods.
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Figure 1. (A and B) Influence of indomethacin on renal hemodynam-
ics in conscious, pregnant rats. After being each studied twice, nine
rats were mated. Seven were subsequently examined on gestational
day 12, and eight on day 20. V, vehicle; I, indomethacin. tP = 0.05;
*P < 0.05; **P < 0.01 pregnant vs. prepregnant; ttP < 0.05 vehicle
vs. indomethacin.

tassium excretion (U]K * V) and fractional excretion ofpotassium
(CK/CIn), which were not observed in time-control experiments.
Finally, whereas urinary flow rate (V) increased in time control
studies (Table II, P = 0.05), no such increment was observed in
the experiments involving administration of indomethacin
(Table I).

Of the 21 nonpregnant rats tested with indomethacin, nine
were subsequently mated, and examined on gestational days 12
and 20. The prepregnant values for renal function and MAP
before and after indomethacin (Fig. I A and B; Table III) were
not different from those obtained from the larger group of 21

rats discussed above. As we observed previously (6), base-line
values of GFR and ERPF were significantly elevated on gesta-

tional day 12 (Fig. I A), when compared to prepregnant means
(P < 0.01 and P = 0.05, respectively), and ERVR was decreased
(Fig. 1 B, P = 0.05). In order to further verify that this increment
in renal hemodynamics is specific to pregnancy, time-control
studies were performed in nonpregnant animals over a period
of 5-40 d after surgical preparation (Table IV). Analysis of vari-
ance showed a significant main effect of time only on BW (P
< 0.001).

Indomethacin did not decrease renal hemodynamics during
midgestation. In fact, GFR was enhanced further (P < 0.05).
The tendency for ERPF to fall, and ERVR to rise, as seen in
time-control studies (Table II), and in experiments using indo-
methacin in nonpregnant rats (Table I; Figs. 1 A and B) was not
observed on gestational day 12. By day 20, GFR had returned
towards prepregnant levels, and ERPF was actually less than,
and ERVR greater than, prepregnant means (both P < 0.05;
Fig. 1 A and B). Although indomethacin did not alter GFR at
this stage of pregnancy, it did seem to further depress ERPF,
and augment ERVR, albeit not significantly. These changes were
not statistically different from those obtained in the prepregnant
or time-control studies.

Data of renal sodium and potassium excretion from the
pregnant rats are portrayed in Table III. (The prepregnant data
are similar to those presented in Table I, which were discussed
above.) On gestational days 12 and 20, UNa* Vand CNaSCII, did
not increase significantly after indomethacin, as we had observed
in the nonpregnant rats that received the inhibitor (Tables I and
IIi), and in the time-control studies (Table II). After adminis-
tration of indomethacin, potassium excretion decreased on both
gestational days.

Effects ofAll and NE on blood pressure before and after
indomethacin or meclofenamate. The response ofMAP to boluses
of All and NE before and after administration of indomethacin
(7 mg/kg BW) is shown in Fig. 2 A. In the nonpregnant condition,
the inhibitor did not potentiate the blood pressure response by
the vasoconstrictors. The control dose-response curves for All
and NE were generally unchanged during pregnancy until day
20, when the curve was shifted significantly downward. Indo-
methacin failed to affect the attenuated responses obtained on

Table III. Influence ofIndomethacin on Renal Sodium and Potassium Handling during Pregnancy

Rat UN. - V CN.1CIX V UKV CKICtI.

Prepregnani lueq/min (%) id/min ueq/min (%)

Vehicle 2.24±0.44 0.53±0.11 19.9±1.7 3.17±0.19 26.19±1.27

Indomethacin 3.20±0.44t 0.81 ±0.11t 21.5±2.3 2.18±0.10* 19.41 ± 1.03t

Pregnancy: day 12

Vehicle 2.15±0.54 0.41±0.09 21.4±2.0 3.84±0.19§ 26.39±2.11

Indomethacin 2.35±0.33 0.46±0.07 15.4±0.9 2.96±0.09t§ 19.73±1.34t

Pregnancy: day 20

Vehicle 2.07±0.37 0.48±0.08 20.7±2.4 3.52±0.28 27.25±2.35

Indomethacin 2.27±0.52 0.58±0.16 19.5±3.2 2.98±0.15*§ 24.90±2.83

Values are means±SEM. Nine prepregnant rats were each studied twice before mating. Of these animals, seven were studied on day 12, and eight
rats on day 20 of pregnancy. For abbreviations, see Table I. * P < 0.05. t P < 0.01 indomethacin vs. vehicle. § P < 0.05 pregnant vs. prepreg-
nant.
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Table IV. Time Control Studies Performed during a 40-d Period in Nonpregnant Rats

Days after surgery

5-10 11-20 21-30 31-40
Nine expts. in five rats 10 expts. in six rats Eight expts. in five rats Seven expts. in four rats

BW (g) 241±8 251±8* 269±7* 271±9*

MAP (mmHg) 105±2 106±1 109±3 107±2
GFR (gul/min) 2,487±107 2,562±134 2,717±160 2,776±95
ERPF (p11/min) 8,700±418 8,795±401 8,802±464 9,331±608

ERVR

ERVR (mmHg- ml. min-') 6.97±0.31 7.01±0.29 6.94±0.20 6.42±0.43

Values are means±SEM. For abbreviations, see Table I. * P < 0.01 vs. the 5-10-d period.

gestational day 20. During the postpartum period, they spon-
taneously returned to prepregnant values.

That cyclooxygenase inhibition does not influence the
downward shift of the dose-response curves for All and NE ob-

served on gestational day 20, was corroborated by studies using
meclofenamate (6 mg/kg BW). Shown in Fig. 2 B is the response
ofMAP to boluses of All and NE before and after this inhibitor.

The increments in MAP were significantly less on day 20 of

pregnancy. Analysis of variance showed a significant main effect

of pregnancy for All and NE, P < 0.001 and < 0.005, respec-
tively. These attenuated responses were unaffected by meclo-

fenamate (no significant main effect of inhibitor was demon-

strated).
To improve the accuracy ofour study, we administered only

one dosage of All (25 ng/kg BW) and NE (200 ng/kg BW),
each in triplicate, before and after meclofenamate (rather than

infusing different dosages, each only once, so as to obtain a com-

plete dose-response curve). Using this protocol (Fig. 2 C), the
pressor responses to All and NE were significantly decreased by
gestational days 20 and 12, respectively. Note that the curves

connecting the mean values obtained after giving meclofenamate
are essentially parallel to or overlapping the control curves-
indicating that cyclooxygenase inhibition did not affect the
blunted response to exogenous vasoconstrictors observed during
pregnancy. Again, analysis of variance showed no significant
main effect of inhibitor.

Presented in Table V is the pressor responsiveness in acutely
prepared, virgin and pregnant rats (gestational days 15-16),
which had recovered for 60 min from implantation of catheters
under ether anesthesia. The initial control responses (60-110
min after surgery) of these animals were significantly less than
those for chronically instrumented rats (all P < 0.05; see Fig. 2
C for comparison). Overall, acutely prepared, pregnant rats
demonstrated lower responses than virgins (P < 0.05 for NE
and AII). Meclofenamate appeared to significantly augment the
control responses in pregnant and virgin animals-a finding
clearly different from results obtained in chronically prepared
rats (Fig. 2 A-C). The increase in the responses, however, may
not have been due solely to meclofenamate. They tended to
recover spontaneously, particularly in virgin animals (Table V):
control pressor responses obtained 120-140 min postimplan-
tation of catheters were greater than those elicited 60-1 10 min
after surgical preparation. Finally, the inhibitor did not restore
responses of virgin and pregnant rats to the same level-the
latter were still somewhat attenuated.

Effects ofAII on renal hemodynamics before and after in-

domethacin. In that systemic pressor responsiveness was blunted

during late gestation, we tested whether or not the renal circu-

lation also developed an attenuated pressor response. In non-

pregnant animals (Table VI), All infusion elicited a significant
rise in MAP and ERVR, and fall in GFR and ERPF (all P
< 0.01). The reduction in ERPF exceeded that ofGFR (34±3%
and 15±2%, respectively). During late gestation, increments of

MAP and ERVR in response to All were less than those observed

in nonpregnant animals. The decrement in ERPF and GFR

were also attenuated. These attenuated responses observed during
late pregnancy (day 19) were not restored by indomethacin. In

fact, they tended to be further depressed on gestational day 21,
despite administration of indomethacin.

Discussion

Based on these studies performed in conscious unstressed rats,
we are unable to support the hypothesis that PGs function as
vasodepressor agents in the renal and systemic vasculature during
pregnancy. That is, acute inhibition of cyclooxygenase with in-
domethacin and/or meclofenamate did not reverse: (a) the rise
in GFR and ERPF, and fall in ERVR; (b) the attenuated systemic
pressor response to an infusion of All, or boluses of All and
NE; and (c) the attenuated renal vascular response to an All
infusion.

To our knowledge, only one other group of investigators
addressed the potential role of PGs in the control of renal he-
modynamics during pregnancy (25). In that study, administra-
tion of indomethacin for 3 d (10 mg* kg-' * d-') to rabbits failed
to prevent the gestational rise in creatinine clearance. In our
study, acute administration of indomethacin (4.5-6.5 mg/kg
BW) to pregnant rats (gestational day 12) did not decrease GFR
or ERPF, or increase ERVR toward prepregnant levels (Fig. 1
A and B).2 Paradoxically, GFR was further elevated (P < 0.05),
and the tendency for ERPF to fall, and ERVR to rise, as dem-
onstrated by nonpregnant animals that received indomethacin
(Table I; Fig. 1 A and B) and by time-control studies (Table II),
was not observed. Because we did not perform time-control
studies during midgestation, we cannot exclude the possibility

2. Naden and co-workers (77) have recently reported the effects of in-
fusions of indomethacin upon uterine vascular resistance in unstressed,
pregnant sheep. When PGE2 concentrations were observed to be de-
creased by the drug in systemic venous, vena cava, or uterine venous

plasma, uterine vascular resistance was not significantly different from
control (pre-indomethacin) values.
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Figure 2. (A-C) Systemic pressor responsiveness in conscious, pregnant rats. Increments ofMAP in response to boluses

of All and NE before and after administration of indomethacin or meclofenamate. *P < 0.05; **P < 0.01 from pre-

pregnant mean.

that similar findings would have occurred in the absence of in-

domethacin. Alternatively, other potential effects ofthe inhibitor

(36, 37) could have caused the additional increment of GFR.
During late pregnancy (day 20), renal hemodynamics may

have shown a dependency on vasodilating PGs (Fig. 1 A and B),
in that indomethacin seemed to depress ERPF and to raise
ERVR more precipitously. But these changes were not statisti-
cally different from those observed in the same animals before

conception (Fig. I A and B), or in time-control studies

(Table II).
Briefly, our data obtained from nonpregnant rats (see Results;

Tables I and II) confirm previous investigations in conscious,
unstressed animals (30, 38-41) that cyclooxygenase inhibition

has little or no effect on renal hemodynamics. Because the ex-

cretion of sodium increased in nonpregnant animals, whether

or not indomethacin was given (Tables I-III), cyclooxygenase
inhibition apparently did not effect renal handling of sodium.

(The excretion ofsodium increased spontaneously, probably be-

cause we were infusing solutions that contained the ion, albeit

at a relatively low rate [<3.5 Aeq/min].) The influence of cy-

clooxygenase inhibitors on sodium excretion is controversial (30,
41, 42; for a pertinent review, see Reference 40). Because the

increment in sodium excretion was absent during pregnancy

(Table III), indomethacin may be antinatriuretic in this condi-

tion. Most likely, however, time-control studies performed in

pregnant animals would reveal the same finding. Because extra-

cellular water is expanded (by as much as 50%; Reference 43),
the infusion would have less impact. Additionally, pregnancy is

a relatively sodium-avid condition, in that the ion is accumulated

throughout its course (43); perhaps on this basis, the infused
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Table V. Pressor Responsiveness in Acutely Prepared, Virgin
Female and Pregnant Rats (Gestational Days 15-16) *

Virgin rats (n = 5)

A MAPt

Control Control Meclofenamate
(60-110 min) (120-140 min) (185-245 min)

mmHg mmHg mmHg

All (25 ng/kg BW) 21±3 30±3 38±2"
NE (200 ng/kg BW) 23±2 32±2§ 35±2"

Pregnant rats (n = 6)

A MAPt

Control Control Meclofenamate
(60-1 10 min) (120-140 min) (185-245 min)

mmHg mmHg mmHg

All (25 ng/kg BW) 15±2 20±3 26±41¶
NE (200 ng/kg BW) 17±2 22±2 29±31¶

Means±SEM.
* The dosages of All and NE were each administered in triplicate dur-
ing the 60-1 10-min interval after surgical preparation. They were

again administered once during the 120-140-min period. Meclofena-
mate (6 mg/kg BW) was given, and the vasoconstrictors were subse-
quently retested, each in triplicate (185-245 min postsurgical prepara-
tion).
t A MAP, change in mean arterial pressure.
§ P < 0.05 control (120-140 min) vs. control (60-1 10 min).
1"P < 0.01 meclofenamate vs. control (60-110 min).
T P < 0.05 meclofenamate vs. control (120-140 min). N.B. Although
analysis of variance showed a significant main effect of group (preg-
nant vs. virgin, P < 0.05), Tukey tests failed to demonstrate signifi-
cance between groups at any one time period.

sodium was retained. The observation that urine flow increased
in time-control studies (Table II; probably as a result of our
infusion of24 ,ul/min), and was unchanged in nonpregnant and
pregnant rats given indomethacin (Tables I and II), suggests that
cyclooxygenase inhibition is antidiuretic. This conclusion agrees
with some, but not all previous reports (30, 42; for a pertinent
review, see Reference 40). Finally, the pronounced antikaliuretic
effect ofthe inhibitor that we observed (Tables I and II) disagrees
with several previous investigations in conscious animals (30,
40, 42). On the other hand, infusion ofPGs into conscious dogs
promoted kaliuresis (44), and a strong correlation exists between
urinary PG and K+ excretion in some conditions (45, 46). In-
domethacin may promote antikaliuresis indirectly, by inhibition
of the renin-angiotensin aldosterone axis (37).

The attenuated systemic pressor response to exogenous va-
soconstrictors that develops during pregnancy has been observed
in many species (26, 47-52, present study). The mechanism(s)
is not clearly defined, and prereceptor, receptor, and/or postre-
ceptor phenomena could contribute. For example, increased
production of enzymes that inactivate the administered vaso-
constrictors (53) or enhanced sensitivity of the baroreflex (54)
could result in apparent attenuated vascular responsiveness;
down-regulation, decreased affinity, or prior occupancy of re-
ceptors by high circulating levels of hormone could effect a
blunted response (49); alteration of vessel wall constituents (55),

Table VI. Effects ofAngiotensin Infusion
before and after Administration ofIndomethacin on

Renal Hemodynamics during Late Gestation

Prepregnant

Change from control

GFR ERPF ERVR MAP

-15±2 -34±3 +90±12 +21±4

Late gestation

Change from control

GFR ERPF ERVR MAP

Day 19 -2±3* -16+2* +37±11* +12±5

Day 21 (Indomethacin) +7±5t -9±3t +21±9t +8±4*

Values are means±SEM. The effects of AII on renal hemodynamics
were assessed in five rats before conception. The same animals were

studied during late gestation (day 19). On gestational day 21, indo-
methacin was administered, in addition to the infusion of AII (see
Methods). Control values for prepregnant rats were: GFR

(jil/min) 2,968±270; ERPF (Al/min) 10,638±657; ERVR
(mmHg * ml - min-') 5.87+0.15; MAP (mmHg) 111±3. Control values
for day 19 pregnant animals were: GFR 2,729± 177, ERPF
7,956±594, ERVR 8.15±0.84, MAP 100±0. Control values for day 21
pregnant animals were: GFR 2,528±118, ERPF 6,999±32 1, ERVR
8.47±0.60, MAP 94±2.
P<O0.05.
f P < 0.01 pregnant vs. control.

lumen radius (56), smooth muscle membrane potential (57), or

production of vasodilators (47) could oppose vasoconstriction.
We tested the hypothesis that enhanced synthesis of prostaglan-
dins mediates the attenuated systemic pressor response. In four,
separate studies (Fig. 2 A-C; Table VI), using either indometh-
acin or meclofenamate, we could not reverse the attenuated
pressor response to All and NE, which had developed during
late gestation. We conclude, therefore, that mechanism(s) other
than a vasodilatory action of PGs must be operative in the rat.

Several investigators (26, 47, 50-52) have published data
that favor a role for PGs. However, other interpretations ofthese
studies are possible. Gant and colleagues (47) gave indomethacin
(or aspirin) to pregnant women on a subacute basis (14 h of
treatment). If PG12 and PGE2 contribute toward the activation
ofthe renin-angiotensin system during pregnancy (58, 59), then
reduction of these PGs could decrease circulating levels of All.
A decrease for 14 h could promote up-regulation ofthe receptor,
and consequently, a restoration of the pressor response. In fact,
Siddiqi et al. (49) have shown that a 24-h infusion of enalapril
(3 ,ug - kg-' * min'), a converting enzyme inhibitor, to chronically
instrumented, conscious pregnant sheep restored the refractory
response of All towards nonpregnant levels. Importantly, a 30-
min infusion of captopril (1 jsg kg-' min-') or enalapril did
not effect a restoration. This latter study suggests that down-
regulation of the All receptor during pregnancy may mediate
the blunted pressor response. O'Brien and Pipkin (52) have
demonstrated that an essential fatty acid-deficient diet enhanced
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the All pressor response in pregnant rabbits. The drawback of
their study is that the effects of the diet were not examined in
nonpregnant rabbits-it is possible that the pressor response
would have been enhanced by a similar degree. As well, surgical
stress of tracheal intubation, and the anesthetic agent may have
rendered the pressor response PG-dependent in those pregnant
animals maintained on a regular diet-not unlike the PG de-
pendency of renal blood flow which develops in dogs as a con-
sequence of surgical preparation and/or anesthesia (for pertinent
reviews, see References 16 and 40).

Our results conflict with those of Paller (26), who reversed
the attenuated pressor response of rat pregnancy with meclo-
fenamate. The major difference between his study and ours lies
in the preparation; whereas we used trained, chronically instru-
mented, conscious rats that were allowed 7-10 d of recovery
from surgery, Paller employed untrained, conscious rats given
60 min for recovery from implantation of catheters under ether
anesthesia. In an attempt to reproduce Paller's work, we followed
his protocol (26). As demonstrated in Table V, control pressor
responsiveness ofpregnant rats (gestational days 15-16) was less
than that of virgins, and after meclofenamate, it was significantly
enhanced in pregnant animals (P < 0.05). This much of the
study is in accordance with the data of Paller. We further showed
that a similar potentiation occurred in virgin rats, although pres-
sor responsiveness tended to recover spontaneously, particularly
in the virgin animals (Table V). Because ether anesthesia and
surgical stress dramatically increase plasma renin activity (1 1,
14), and noradrenaline levels (18), much ofthe attenuation may
have been secondary to prior occupancy ofAll and NE receptors,
or even receptor down-regulation (60) by high levels ofcirculating
hormones. A degree of spontaneous recovery would then be
expected to occur, as the hormone levels decreased. We have
previously shown that renal hemodynamics are also perturbed
for at least 2-3 h after implantation of catheters under ether
anesthesia (10). Moreover, because All and NE may augment
PG synthesis (61-63), pressor responsiveness could become PG-
dependent in this acute rat preparation. A further possibility is
that PG production may be differentially activated by stress in
pregnant and virgin animals: in an effort to defend a low vascular
resistance during stressful conditions, thereby ensuring adequate
blood flow and oxygen delivery to the fetoplacental unit, pregnant
animals may recruit vasodilatory substances, such as PGs, to a

greater degree. (The above discussion of All and NE applies to

arginine vasopressin, which Paller also used to elicit pressor re-
sponses.)

Venuto and colleagues have provided the most convincing
data that PGs modify the pressor response during pregnancy, at

least in rabbits (50, 51). Meclofenamate was given acutely to

conscious, pregnant rabbits (48-72 h were allowed for recovery
from surgery), and partial restoration of the pressor response to

NE was observed (compare their Figs. 1 and 2 in Reference 50).
The same inhibitor significantly decreased the dose of All re-

quired to raise diastolic pressure by 20 mmHg in pregnant rab-

bits, although the amount of All needed to achieve this rise in

blood pressure was not significantly different from that in non-

pregnant animals before meclofenamate was given (51). Mc-

Laughlin and associates (64) demonstrated that the threshold
concentration required to raise blood pressure by 4 mmHg was

increased for All, but not for barium chloride in the perfused
hind limb of pregnant rabbits. Hart (65, 66) has shown that
aortic arterial and portal venous strips from pregnant rats display
a reduction in barium-induced increments of tension. These

studies (50, 51, 64-66), including our own, perhaps suggest that

pressor responsiveness in pregnant rabbits and rats are modified
by different mechanisms.

Our investigations suggest that the renal vasculature also

develops an attenuated pressor response to an intravenous in-

fusion of All during late gestation (Table VI). This finding is
consonant with studies ofpulmonary vascular reactivity in preg-
nant rats (67) and dogs (68), in which the response to hypoxia
and to infusions of All or PGF2. was depressed. In the pregnant
dogs (68), meclofenamate failed to reverse the blunted hypoxic
pressor response. Likewise, in our experiments, indomethacin
failed to restore the attenuated effect of All on ERPF observed
during late gestation (Table VI). Based on these data (Table VI,
present study; see also Reference 68) we suggest that mecha-
nism(s) other than the vasodilatory action of PGs offset the im-

posed vasoconstrictor stimuli.
It seems unlikely that the amount ofindomethacin employed

in our experiments was insufficient to inhibit cyclooxygenase-
at least in the kidney. (The arguments which follow, also apply
to meclofenamate.) First, the dosage is consistent with (or ex-

ceeds) those reported to have significantly reduced urinary ex-

cretion ofPGE2 and/or PGF2, (29-31). Secondly, urine analyzed
from our experiments demonstrated a significant reduction in
the excretion rates of PGE2 and/or PGF2. in both nonpregnant
and pregnant animals (>90% for indomethacin and 74% for
meclofenamate; see Methods). Of course, we cannot be sure
whether the drug inhibited synthesis by glomeruli, and the ad-
jacent microvasculature (presumably the major sites that regulate
renal hemodynamics), or by the systemic vasculature, because
these compartments probably do not contribute greatly to uri-
nary levels-the urinary excretion ofPGE2 and PGFu. may pre-
dominantly reflect renal medullary production (69 [at least in
nonpregnant rats]). Some investigators have reported circulating
levels of PGs during pregnancy (21, 22, 25, 70), which perhaps
originate from the fetoplacental unit (22, 70). These PGs could
then gain access to the urine (61), presumably by filtration and
secretion. Because indomethacin can cross the placenta in late,
but probably not midgestation in the rat (71, 72), this potential
site of production may or may not have been inhibited in our

studies. Whether or not vasoactive PGs, such as PGE2 and PG12,
circulate in pregnancy in high enough concentrations to exert

an effect on renal and cardiovascular function is controversial.
PGI2 probably does not (73, 74). They are thought to have short
half-lives in the circulation (75, 76), and interpretation of mea-
surements obtained from plasma or serum is complicated by
the fact that blood collection can lead to artifactual production
of large amounts of hormone (75, 76).

In conclusion, our studies fail to support the hypothesis that

prostaglandins serve as vasodepressor agents in the renal and

systemic vasculature during rat gestation. In order to explain
the vasorelaxation observed in pregnancy, other potential
mechanisms require investigation.
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