
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 1

Evidence-aware Mobile Computational
Offloading

Huber Flores, Pan Hui, Petteri Nurmi, Eemil Lagerspetz, Sasu Tarkoma, Jukka Manner,

Vassilis Kostakos, Yong Li, and Xiang Su

Abstract—Computational offloading can improve user experience of mobile apps through improved responsiveness and reduced

energy footprint. A fundamental challenge in offloading is to distinguish situations where offloading is beneficial from those where it is

counterproductive. Currently, offloading decisions are predominantly based on profiling performed on individual devices. While

significant gains have been shown in benchmarks, these gains rarely translate to real-world use due to the complexity of contexts and

parameters that affect offloading. We contribute by proposing crowdsensed evidence traces as a novel mechanism for improving the

performance of offloading systems. Instead of limiting to profiling individual devices, crowdsensing enables characterising execution

contexts across a community of users, providing better generalisation and coverage of contexts. We demonstrate the feasibility of using

crowdsensing to characterize offloading contexts through an analysis of two crowdsensing datasets. Motivated by our results, we

present the design and development of EMCO toolkit and platform as a novel solution for computational offloading. Experiments

carried out on a testbed deployment in Amazon EC2 Ireland demonstrate that EMCO can consistently accelerate app execution while

at the same time reduce energy footprint. We also demonstrate that EMCO provides better scalability than current cloud platforms,

being able to serve a larger number of clients without variations in performance. Our framework, use cases, and tools are available as

open source from GitHub.

Index Terms—Mobile Cloud Computing, Code Offloading, Cloud Offload, Big Data, Crowdsensing, Mobile Context Modeling.

✦

1 INTRODUCTION

COmputational offloading is a powerful mechanism for
improving responsiveness and battery efficiency, two

critical factors in the acceptability and usability of mobile
applications [1]. By outsourcing (parts of) computation-
ally intensive tasks to dedicated computing infrastructure,
devices can reduce burden on their own resources while
benefiting from resources provided by the dedicated infras-
tructure. Several platforms for providing offloading support
have been proposed in the literature with the main differ-
ence being the level at which offloading is enabled. Exam-
ples of proposed mechanisms include annotation [2], [3],
thread-migration [4], thread-migration through data shared
memory (DSM) [5], and various others [6], [7], [8].

A key challenge in computational offloading is to dis-
tinguish situations where offloading is beneficial from those
where it is counterproductive. For example, offloading net-
work intensive computing tasks is only beneficial when
the network link is sufficiently fast and stable whereas of-
floading parts of applications that require interactivity (e.g.,

• H. Flores is with the Department of Computer Science, University of
Helsinki, Finland.
E-mail: see http://huberflores.com

• P. Hui is with the University of Helsinki, Finland and the Hong Kong
University of Science and Technology, Hong Kong.

• P. Nurmi, E. Lagerspetz and S. Tarkoma are with the University of
Helsinki, Finland.

• V. Kostakos is with the University of Melbourne, Australia.
• J. Manner is with Aalto University, Finland.
• Y. Li is with Tsinghua University, China.
• X. Su is is with the University of Oulu, Finland.

Manuscript received November xx, 201x; revised Month xx, 201x.

augmented reality) is often counterproductive as energy
gains are offset by decreased responsiveness resulting from
increased latency [9]. Making optimal decisions, however,
is far from straightforward as a wide range of factors can
influence the effectiveness of offloading. For example, the
extent of energy savings from reduced CPU usage depend
on temperature and the number of applications running on
a device [10]. Similarly, network type, device model, and
the capacity and current load of the cloud surrogate have a
major impact on offloading performance [11], [12]. Quanti-
fying and characterizing the effect of these factors on a single
device is clearly infeasible due to the inherent complexity
and diversity of these factors. Indeed, in our experiments
we demonstrate that quantifying individual factors, such
as characterizing whether a particular mobile application
requires heavy processing or characterizing the effect of
network type, requires a large amount of samples (data
from over 100 different apps or over 6, 000 RTT samples).
While individual devices cannot capture such amounts
easily, harnessing a community of devices would make the
process feasible. A population of 100 devices, which is easily
obtainable within a university or even a company, would
be capable of collecting the required measurements within
a week or less, and a community of 1000 devices, which
is increasingly possible through app store deployment [13],
could collect the required measurements in less than a day.

We contribute by developing evidence-aware mobile
computational offloading (EMCO) as a novel mechanism for
optimizing the performance of computational offloading
frameworks. The key novelty in EMCO is the use of
crowdsensed evidence traces to characterize the influence
of different contextual parameters and other factors on

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 2

offloading decisions [14]. Contrary to existing solutions,
which either rely on static code profiling performed on
individual devices [2], [3], [4], [5], [6], [11], [15], [16], [17]
or on parametrized models that consider a handful of
parameters such as network latency, remaining energy,
and CPU speed [9], [18], the use of crowdsensing enables
EMCO to quantify and characterize the effect of a wide
range of parameters and how they vary over execution
contexts. EMCO models the context where offloading
decisions are made is through simple dimensions that are
easy to scale, and determines optimal dimensions using
an analytic process that characterizes the performance of
offloading based on contexts captured by the community.
EMCO also supports identifying reusable and profitable
code invocations that can be cached locally to further
accelerate performance. We evaluate EMCO through
extensive benchmarks conducted on an Amazon EC2
testbed deployment. Our results demonstrate that EMCO
significantly accelerates mobile app performance, resulting
in over five-fold improvements in response time and over
30% reductions in energy. When pre-caching on the client
is used, the magnitude of savings is even higher with up to
30-fold improvements in response rate being possible.

The contributions of the paper are summarized as follows:

• We propose crowdsensed evidence traces as a novel
mechanism for optimizing offloading performance.
By aggregating samples from a larger community
of devices, it is possible to learn optimal execution
contexts where to offload. We analyze two crowd-
sensing datasets, Carat [19] and NetRadar [20], to
demonstrate that it is possible to use crowdsensing
to accurately quantify the effect of different factors
on offloading performance. We also demonstrate that
carrying out the profiling on a single device is not
feasible due to the number of samples required.

• We present the design and development of the
Evidence-Aware Mobile Computational Offloading
(EMCO) platform and toolkit. We demonstrate
that EMCO enables apps to accelerate their re-
sponse time up to five-fold, and up to thirty-fold
with pre-caching. We also demonstrate that EMCO
can achieve further reductions in energy footprint
through optimal selection of the cloud surrogate.

• We develop LAPSI1 as a novel cloud-based runtime
environment that supports characterization of sur-
rogate performance. LAPSI is based on the Dalvik
virtual machine which we have directly integrated
with a cloud server. This creates a lightweight com-
piler for executing code and provides good scaling
performance over a large community of clients.

• We develop and deploy a real testbed in Amazon
EC2 and show that simply by dynamically adapting
the resource allocation of the surrogate, EMCO in-
creases gains in energy from offloading by 30%. In
addition, we show that EMCO considerably reduces
the energy required in the communication with cloud
through the use of pre-caching.

1. Finnish for child, motivated by our runtime environment’s parent-
child structure.

2 RELATED WORK

The origins of computational offloading are in cyberfor-
aging, which aimed at distributing computations from a
resource constrained (mobile) device to nearby infrastruc-
ture [21]. Since then, most of the work has focused on
linking the device with remote infrastructure or a hybrid
that combines remote and local connectivity. An example of
the latter are Cloudlets [15] in which constrained devices act
as thin clients that connect to remote infrastructure through
a nearby gateway service (the cloudlet).

In most of the early works, offloading took place at
application level, i.e., the execution of the entire app was
shifted to another device. Current state-of-the-art solutions
provide finer-grained control over the offloading process by
instrumenting the apps at code level. For example, MAUI [2]
proposes a strategy where the software developer annotates
the code and during runtime methods are offloaded when
suitable conditions are detected by the MAUI profiler. Simi-
larly, CloneCloud [4] exploits a dynamic approach, where
a code profiler extrapolates pieces of bytecode at thread
level to a server. CloneCloud uses static analysis to par-
tition code. However, this is inadequate to verify runtime
properties of code, which usually cause unnecessary code
offloading. COMET [5] is another framework for code of-
floading that offloads at thread level, but introduces a DSM
mechanism that allows the device to offload unmodified
multi-threads. ThinkAir [3] addresses scalability by creating
virtual machines (VMs) of a complete smartphone system
in the cloud. However, since the development of mobile
application uses annotations, the developer must follow a
brute-force approach to adapt his/her application to a spe-
cific device. Moreover, the scalability claimed by ThinkAir
does not support multi-tenancy, but the system creates
multiple virtual machines based on Android-x86 within
the same server for parallelization. Other frameworks for
computational offloading include [16], [22], [23], [24], [25].
COSMOS [6] provides offloading as a service at method
level using Android-x86. The framework introduces an extra
layer in an existing offloading architecture to solve the
mismatch between how individual mobile devices demand
computing resources and how cloud providers offer them.
However, COSMOS relies on the user to manually solve this
problem, which is inefficient. Moreover, end users seldom
are familiar with different cloud options and their costs.

Studies of computational offloading in the wild have
mostly shown that offloading increases computational ef-
fort rather than reduces it [26]. This is due to the large
amount of mobile usage contexts, and the poor under-
standing of the conditions and configurations in which a
device offloads to the cloud. Some recent work attempts
to overcome this problem by dynamically alleviating the
issues of inferring the right matching between mobile and
cloud considering multiple levels of granularity [11], [27].
Similarly, CDroid [26] attempts to improve offloading in real
scenarios. However, the framework focuses more on data
offloading rather than computational offloading.

The EMCO framework proposed in the present paper
differs from existing solutions by harnessing mobile crowd-
sensing for characterizing context parameters of mobile
apps. By relying on samples from a community, EMCO

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 3

Dataset Carat NetRadar

Data source
App store deployment

(Multiple locations)
Finland (Metropolitan

Helsinki area)
Number

of samples
2.9 ∗ 10

9

(from 328,000 apps)
135,000

Start time 01/08/2013 01/01/2015
Duration 1 year 1 year

TABLE 1: Summary statistics of application usage and net-
work connectivity datasets.

reduces the effort and time of learning when to offload.
This also improves the detection of offloading opportunities
as it captures a large spectrum of possibilities from the
community. Lastly, unlike other work that just uses the
cloud as computational infrastructure to offload, EMCO
takes advantage of the capabilities of cloud infrastructure
to optimize the diagnosis of offloading contexts.

3 FEASIBILITY OF CROWDSENSING FOR QUANTI-

FYING OFFLOADING CONTEXTS

The focus of our work is on improving the effectiveness of
offloading through the use of crowdsensing. Before detailing
our approach, we investigate two fundamental questions in
the use of crowdsensing. First, we examine the accuracy and
generality of crowdsensed evidence traces and demonstrate
that measurements provided by a community of devices
can indeed be used to characterize offloading contexts. Sec-
ond, we determine the amount of measurements required
to characterize execution contexts. Specifically, we demon-
strate that collecting a sufficient amount of measurements is
infeasible on individual devices, but can be captured even
from a (reasonably) small community of devices. We carry
out our analysis using two large-scale datasets of mobile
crowdsensing: Carat [19] and NetRadar [20]; see Table 1 for
a summary of the datasets. The former captures the process-
ing requirements and energy use of applications, whereas
the latter captures network performance related parameters
across different devices. Additionally, we carry out a crowd-
sensing simulation to characterize cloud resource allocation
performance. In summary, we show that characterization
via crowdsensing captures richer context information about
smartphone usage (mobile context), network (communica-
tion context) and task acceleration (execution context).

3.1 Smartphone Application Usage

We first consider the feasibility of using crowdsourcing to
quantify the computational performance on applications,
a critical factor in deciding when to offload. We perform
the analysis by considering a large-scale data set contain-
ing energy footprints of mobile apps collected through the
Carat application [19]. While many offloading frameworks
operate on finer level of code granularity, i.e., on a method
or class level, collecting such data is infeasible as it requires
a large-scale deployment of apps which have been instru-
mented with the appropriate mechanism. Nevertheless, we
demonstrate that even when considering application level
granularity, it is possible to identify the conditions in which
mobile applications require intensive processing. The ana-
lyzed data contains data from approximately 328, 000 apps,

collected over a period of one year. For each app, the data
contains the expected % of energy drain which is calculated
over the entire community of devices; see [19] for details of
the Carat methodology.

We first consider the minimum number of apps that are
needed for identifying conditions for resource intensiveness.
We analyze the distribution of expected energy drain, as
given by the Carat application, and identify convergence of
the resulting energy distribution. The results of our analysis
are shown in Figure 1a. From the results we can observe that
measurements from around 120 different apps are required.
The average energy drain of apps within the community
is < 0.004, which depicts battery consumption in % per
second. In our experiments we consider this value as a lower
bound for the detection of resource-intensive behavior.

To further illustrate the practical value of our approach,
we assess the fraction of apps that could benefit from
offloading through two representative examples of ap-
plication categories that are generally believed to bene-
fit from offloading: photo face manipulation and games.
We also separately consider puzzle and chess games, two
subcategories of games with heavy computational require-
ments, to demonstrate that our methodology applies to
smaller sets of applications. For each category, we extract
all unique apps. Overall there are about 550 photo face
manipulation apps, about 7,805 game apps, about 717 puz-
zle apps, and about 166 chess apps, i.e., each category
meets the minimum requirement for estimating resource
intensiveness. Each group is compared with the average
energy drain of the subset, which excludes its own energy
drain. From the results in Figure 1 we can observe that
around (1b) 43.84%, (1c) 44.56%, (1d) 42.75% and (1e) 33%
of apps implement computational operations that require
higher energy drain than normal, which is a significant
number of apps. This result suggests that computational
offloading could be beneficial for a large fraction of apps.

As the final step of our analysis, we consider the amount
of samples required from the community to accurately
characterize high energy drain. According to Figure 1f, we
find that about 10,000 samples are gathered to estimate high
energy drain within interval of 0.0040 ± 0.000035. As Carat
collects samples each time the battery of a device changes,
we get on average 50 − 100 samples per device in a day.
Collecting the required 10, 000 samples on a single device
would thus clearly be infeasible, but a community of 100
devices could achieve this in a day or two.

A limitation of our analysis is that we considered app
level offloading instead of method, class or thread level
migration. Intuitively, we would expect finer-granularity to
further improve decision making. However, this requires
instrumenting the offloading mechanisms with the ability to
monitor its own local and remote execution. To enable this
kind of analytics, our implementation of EMCO integrates
required mechanisms to capture both local and remote
execution performance; see Section 4 for details.

3.2 Network Connectivity

Communication latency during application usage is another
key building block for making optimal offloading decisions.
Latency is typically monitored through a network pro-
filer, which is also responsible for characterizing different

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 4

 0.002

 0.004

 10 1000 50000

B
at

te
ry

 c
o

n
su

m
p

ti
o

n
 [

%
/s

]

Number of apps

 0.0035

 0.004

 0.0045

 50000 75000 100000

(a)

 0

 5

 10

 15

 20

 25

 30

(0,0.001]

(0.001,0.002]

(0.002,0.003]

(0.003,0.004]

(0.004,0.005]

(0.005,0.006]

(0.006,0.007]

(0.007,0.008]

(0.008,0.009]

(0.009,0.01]

(0.01,+]

%
 o

f
fa

ce
 m

an
ip

u
la

ti
o

n
 a

p
p

s

Battery drain [%]

Normal energy drain

4.0

16.09

10.72

25.36
Higher energy drain

15.27

8.0

5.18 4.75

2.27
1.27

7.09

(b)

 0

 5

 10

 15

 20

 25

 30

(0,0.001]

(0.001,0.002]

(0.002,0.003]

(0.003,0.004]

(0.004,0.005]

(0.005,0.006]

(0.006,0.007]

(0.007,0.008]

(0.008,0.009]

(0.009,0.01]

(0.01,+]

%
 o

f
g

am
e

ap
p

s

Battery drain [%]

Normal energy drain

3.29

6.14

19.60

26.36
Higher energy drain

16.09

8.52

4.39 3.68
2.19 1.78

7.91

(c)

 0

 5

 10

 15

 20

 25

 30

(0,0.001]

(0.001,0.002]

(0.002,0.003]

(0.003,0.004]

(0.004,0.005]

(0.005,0.006]

(0.006,0.007]

(0.007,0.008]

(0.008,0.009]

(0.009,0.01]

(0.01,+]

%
 o

f
p

u
zz

le
 a

p
p

s

Battery drain [%]

Normal energy drain

5.99

10.18

21.51
19.57

Higher energy drain

16.0

7.39

3.76
2.26

0.83 0.97

11.54

(d)

 0

 5

 10

 15

 20

 25

 30

(0,0.001]

(0.001,0.002]

(0.002,0.003]

(0.003,0.004]

(0.004,0.005]

(0.005,0.006]

(0.006,0.007]

(0.007,0.008]

(0.008,0.009]

(0.009,0.01]

(0.01,+]

%
 o

f
ch

es
s

ap
p

s

Battery drain [%]

Normal energy drain

6.02

9.03

27.10

24.09 Higher energy drain

9.63

6.62
5.42

2.40
1.20 0.60

7.83

(e)

 0.001

 0.004

 0.01

 10 1000 10000

B
at

te
ry

 c
o

n
su

m
p

ti
o

n
 [

%
/s

]

Number of samples

 0.0035

 0.004

 0.0045

 1000 2500 5000 10000

(f)

Fig. 1: Characterization of smartphone app usage via crowdsensing. (a) Number of applications for community charac-
terization. (b, c, d, e) Smartphone apps that depict higher energy drain at different community granularity. (f) Number of
samples for energy characterization.

communication interfaces, e.g., WiFi, 3G, LTE. Characteriz-
ing networking performance, however, can easily become
energy-intensive, especially in suboptimal network condi-
tions as more samples and and a longer duration of monitor-
ing are required. In this section we examine the potential of
replacing the network profiler with crowdsensing. The main
question we investigate is how many samples are required
to characterize latency accurately at a particular time or lo-
cation. We answer this question by analyzing the NetRadar
dataset2 [20] and characterizing the performance of 3G and
LTE communications. Since latency in the cellular network
also depends on the provider, we consider three different
mobile operators, which are the main network providers
in Finland. For anonymity, we refer to the operators using
pseudonyms Operator-1, Operator-2 and Operator-3.

The topmost row of Figure 2 shows the average latency
of the communication (RTT) for each provider. From the re-
sults, we can observe that the average RTT varies across the
operators: 107ms (SD≈283) for Operator-1, 130ms (SD≈387)
for Operator-2, and 129ms (SD≈403) for Operator-3. For
LTE, the averages are 43ms (SD≈35) for Operator-1, 33ms
(SD≈65) for Operator-2, and 39ms for (SD≈90) Operator-
3. While there is a notable difference between 3G and LTE
in terms of speed, we can observe higher stability in the
communication link of LTE. In terms of quality of service, in
the case of 3G, Operator-1 provides the most stable commu-
nication and Operator-3 the most unstable one. In the case
of LTE, Operator-2 provides the most stable communication
and Operator-1 the most unstable one, i.e., both the operator
and the communication technology should be taken into

2. https://www.netradar.org/en

account when making offloading decisions.
Regarding the amount of data needed for characteri-

zation, we calculate the number of samples required to
estimate latency. The average and median latency as a
function of the number of samples for 3G and LTE are
shown on the two bottommost rows of Figure 2. We can
observe that the amount of data required to characterize the
latency of communication depends on the stability of the
communication link. For instance, for 3G, to characterize the
most stable communication (Operator-1) with an interval of
100 ± 7.24 at least 6, 300 samples are needed. In contrast,
if the same amount of samples is used to characterize the
most unstable channel (Operator-3), then an interval of 132
±10.06 is achieved. Thus, to improve accuracy and reduce
error at comparable rates as Operator-1, an addition of 3,700
samples is required (10,000 in total). By generalizing the
characterization time as a function of samples required,
we have T = S/(St ∗ n), where T is the time that takes
to complete the characterization, S is the total number of
samples required for the characterization, St is the number
of samples collected in time t, and n is the number of
devices available to collect samples. In terms of sampling
complexity, assume we want to characterize latency of 3G
for Operator-3 and that we receive 5 samples per day from
a device. A single device would then need about 2,000 days
to complete the task. For a single device to gather the data
in one year, it would have to collect 370 samples per day,
significantly reducing battery life. Even if this was done,
we would only be sampling latency at locations the device
visited. In contrast, 100 devices (easily found at University
Campus) can complete the characterization in about three
weeks. By piggybacking the sample collection as part of

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 5

application data requests, significantly larger communities
of devices could be reached, making it possible to complete
the characterization in a matter of hours.

3.3 Augmented Resource Allocation

Computational provisioning takes place at infrastructure
level through instances, which are physical or virtualized
servers associated to a specific type of resource [27]. An
instance follows a utility computing model, whereby con-
sumers pay on the basis of their usage and type preferences.
The cost of the instance is proportional to its type, which
in turn determines the level of acceleration at which a task
is executed and energy required in the communication [28].
Moreover, the type of the instance also defines its capacity
to handle multiple offloading requests at once. Speeding up
code execution certainly depends on how code is written.
However, higher types of instances can process a task faster
than lower ones as higher types can rely on larger memory
span and higher parallelization in multiple processors [29].

To thoroughly characterize cloud resources, we conduct
a simulation study where a large number of clients create
a dynamic workload which is sent to the cloud [30]. Our
simulator operates in two different operational modes: (i)
concurrent and (ii) inter-arrival rate. In the former, the
simulator creates n concurrent threads that offload a ran-
dom computational task loaded from a pool of common
algorithms found in apps, e.g., quicksort, bubblesort. Each
thread represents a mobile device outsourcing a task to a
remote server. This mode is utilized to benchmark the in-
stances of the cloud. In inter-arrival rate mode, the simulator
takes as parameters the number of devices (workload), the
inter-arrival time between offloading requests and the time
that the workload is active. This mode is utilized to produce
synthetic workloads. We note that while throughput could
be analyzed through server logs, such logs are (to our best
knowledge) not freely available and we are not aware of any
studies that would have done so. Thus, we focus instead on
performing the characterization on the clients with the help
of a community of devices.

To simulate crowdsensing in the wild, we configure our
simulator in concurrent mode to stress the instances with
a heavy workload of requests. In this experiment, each
request that is created by the simulator is taken randomly
from the pool. The processing required for each task is also
determined randomly. The random nature of the experiment
is important to verify all possible cases that can influence
the processing of a task by a server. We conduct a 3-hour
experiment per server to ensure coverage. We also check
this characterization by relying on static load. We evaluate
the influence of increasing users’ load by configuring the
workload from 1 to 100 in intervals of 10 users; per each
server loads 1,10,20,30,40,50,60,70,80,90 and 100. Concurrent
load is generated with an inter-arrival rate of 1 minute.
This means that the maximum load (load=100) used for
characterizing a server is ≈ 18000 (3*60*100) requests and
the minimum load (load=1) is ≈ 180 requests. The purpose
of the 1 minute inter-arrival is to give enough cool down
time to the server before stressing it again.

Figure 3 shows the results of the experiments. We can
observe how the response time of the requests is distributed

through the interpercentile range of the processed load.
The slope of the mean response time becomes less steep as
we use more powerful instances. This suggests that the re-
sponse time of a request is defined by the type of the server.
Based on this property, we characterize each server into an
acceleration group. We find that servers can be classified
to 3 acceleration groups. This is important as servers with
different costs provide the same level of acceleration when
server utilization is low. However, there is also a correlation
between server acceleration and utilization, the response
time of an offloading request degrades based on the resource
capabilities of the server as utilization increases.

Lastly, we used a minimax algorithm with a static input
as workload to confirm our results. We can observe the
differences between acceleration levels. A task is executed
≈1.25 times faster by a server of level 2 when compared with
one of level 1. Similarly, a task is accelerated ≈1.73 times by
a server of level 3 compared with level 1. The difference
between levels 3 and 2 is also significant (≈1.36 times accel-
eration). Our results thus demonstrate that crowdsensing
is capable of characterizing both cloud throughput and
acceleration across a wide range of contexts.

4 EMCO TOOLKIT AND ARCHITECTURE

In this section we describe the EMCO development toolkit
and platform, which integrate novel mechanisms for har-
nessing crowdsensed evidence traces in offloading decision
making. EMCO handles two types of mobile communica-
tion with the cloud: synchronous code offloading and asyn-
chronous injection of data analytics via push notifications.
The overall architecture of EMCO is shown in Figure 4.
EMCO follows a model where the source code of an app
resides both on the mobile and at the server, but it releases
the mobile from a fixed cloud counterpart as implemented
by other frameworks. EMCO encourages a scalable provi-
sioning as a service approach where EMCO is deployed on
multiple interconnected servers and responds on-demand
to computational requests from any available server. EMCO
also provides a toolkit that facilitates the integration of the
mobile and cloud mechanisms in the development life-cycle.
In the following we describe the different mechanisms and
components of EMCO in detail.

4.1 Development Toolkit

To integrate offloading support into applications, EMCO
provides a toolkit that consists of a GUI conversion tool
that prepares the apps for client/server deployment. Our
conversion tool receives as input an Android project and
produces as output two projects, one for the mobile, and
another for the cloud. Each project is defined with Maven-
Android3 so that for each project an Android Application
Package (APK) file is built automatically. The tool also
provides means for automatic deployment of the APK to
the cloud. Our conversion tool has been designed to operate
with existing frameworks and hence does not introduce any
additional complexity, such as learning a new API.

The conversion tool transforms all methods that fulfill
offloading requirements by wrapping each task (or method)

3. http://code.google.com/p/maven-android-plugin/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 6

 0

 50

 100

 150

 200

 250

00:00 04:00 08:00 12:00 16:00 20:00 23:59

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Time of the day [in hours]

3G
LTE

 0

 50

 100

 150

 200

 250

00:00 04:00 08:00 12:00 16:00 20:00 23:59

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Time of the day [in hours]

3G
LTE

 0

 50

 100

 150

 200

 250

00:00 04:00 08:00 12:00 16:00 20:00 23:59

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Time of the day [in hours]

3G
LTE

 0

 50

 100

 150

 200

 250

 0 4000 8000 12000 16000 20000

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Number of samples

3G-average
3G-median

 85
 90
 95

 100
 105
 110
 115
 120

 6000 7000 8000

 0

 50

 100

 150

 200

 250

 0 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Number of samples

3G-average
3G-median

 100
 105
 110
 115
 120
 125
 130
 135

 6000 7000 8000

 0

 50

 100

 150

 200

 250

 0 4000 8000

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Number of samples

3G-average
3G-median

 110
 115
 120
 125
 130
 135
 140
 145

 6000 7000 8000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 4000 8000

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Number of samples

LTE-average
LTE-median

 39
 40
 41
 42
 43
 44
 45
 46
 47

 6000 7000 8000

(a) Operator-1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 4000 8000 12000 16000 20000 24000 28000 32000

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Number of samples

LTE-average
LTE-median

 32
 33
 34
 35
 36
 37
 38
 39
 40

 6000 7000 8000

(b) Operator-2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 4000 8000

R
T

T
 [

in
 m

il
li

se
co

n
d

s]

Number of samples

12000

LTE-average
LTE-median

 38
 39
 40
 41
 42
 43
 44
 45
 46

 6000 7000 8000

(c) Operator-3

Fig. 2: Network characterization: (top and middle-top) Number of samples collected at different times of day; (middle-
bottom) latency for 3G and LTE technologies (Operators 1-3); (bottom) amount of samples required to characterize latency.

into a container, which retrieves its execution details from a
descriptor during runtime (see Sec. 4.3) [4]. The container is
named with the name of the task, while the original task is
renamed by adding the prefix "local". Similar instrumenta-
tion is followed in [3], [6], [8] with the main difference in our
approach being the inclusion of a descriptor that governs
the execution of tasks based on the community analysis.
Besides equipping the app with offloading mechanisms, the
conversion tool integrates the device with crowdsensing
mechanisms, i.e., mechanisms for collecting context infor-
mation and sharing it with the wider community. As has
been shown in previous works [19], such monitoring has
minimal impact on the battery lifetime of the mobile client.

4.2 EMCO Server

The EMCO Server provides computational resources for of-
floading and analyzes crowdsensed measurements to iden-
tify contexts where offloading is beneficial. We next detail
the server’s subcomponents and their key functionalities.

Evidence Analyzer

The Evidence Analyzer analyzes evidence traces collected
through crowdsensing and identifies conditions that are

beneficial for offloading. Our implementation of the Evi-
dence Analyzer is based on a dual layer analysis pipeline.
The first layer, dimension discovery, identifies factors that
are most relevant for creating a code offload descriptor for
a particular app. The second layer, classification, uses the
evidence obtained by the first layer to build a classifier
which integrates the decision logic used to construct the
offload descriptor. The constructed classifier can then be
deployed on the client to make offloading decisions directly
without interfacing with the cloud.

The first layer, dimension discovery, operates on traces
collected from the community. A trace consists of a list of
parameters or features such as device model, app identifier,
the name of the executed method, input of the method,
local execution time, RTT, type of server, and remote ex-
ecution time. Additionally, when the code is offloaded,
each trace includes a binary variable that indicates whether
the remote invocation succeeded. The invocation can fail,
e.g., if the surrogate in unable to invoke the code (e.g.,
missing dependencies) or communicate back the result of
that invocation (e.g., malformed serialization). To analyze
evidence, we transform the evidence into rate distributions
which model variations of a specific feature f over time. For
each parameter, we construct separate rate distributions for

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 7

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 1: t2.nano

(a)

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 2: t2.medium

(b)

 10

 100

 1000

1 10 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 t
im

e
[i

n
 m

il
li

se
co

n
d
s]

Number of concurrent users

Acceleration level 3: m4.10xlarge

(c)

Fig. 3: Cloud-based characterization via crowdsensing gives different acceleration levels to servers based on performance
degradation as more users are added.

Fig. 4: Evidence-aware mobile code offloading architecture.

local and remote execution and compare them to identify
when offloading is beneficial. Rate distributions are created
for all obtainable parameters with the only requirement
being that the feature and its value can be estimated during
the execution of local and remote computations.

Formally, we construct rate distributions by converting

evidence traces into a set of samples. Let st = (c, p, f̂)
denote a sample taken at time t of code execution with
identifier c (e.g., app id or method name) which is processed
at p (local or remote) and which is characterized by the

set of features f̂ . In our implementation we consider the
features to be represented as key-value pairs, e.g., "response-
time=2s", "energy-consumed=180J". We sort the samples
based on time and split them into two groups, one for local
execution and one for remote. For each group, successive
measurements (st1 , fs) and (st2 , fs), are converted into a

rate distribution u =
(fs2−fs1)
(t2−t1) , which later is associated with

the rest of features to create a pair R = (u, f̂). This associa-
tion is important in order to keep track about the values of
the other features with fs. Once the rate distributions are
calculated for a given feature, pairs Rlocal and Rremote are
compared as shown in Figure 5. The comparison consists of
finding an overlap, or a slice, between the two distributions.
Typically, Rremote values that are higher than Rlocal ones
suggest that remote execution is counterproductive for the
device in the context specified by the slice.

When slices that are counterproductive for offloading
are encountered, we remove the corresponding samples
from analysis and recalculate the rate distributions. We
then analyze the next feature fsi over the remaining set of

samples, i.e., we gradually refine the samples and features
to identify conditions that are favorable for offloading. Once
the refinement process completes, we construct a code offload
descriptor which incorporates the most important dimen-
sions. To create the descriptor, we compare the distance d
between the local and remote distributions as this deter-
mines the level of improvement; see Figure 5. We aggregate
the distances d into bins, and select the bin with the highest
count for the descriptor. Note that the process thus identifies
the most frequent conditions for obtaining benefits instead
of selecting the ones with the highest performance increase.
This is essential for avoiding overfitting to highly specific
conditions which are encountered infrequently. EMCO also
extracts various alternatives for surrogates based on the
levels of frequency of d. Additionally, the set of rules is
created at the end of the descriptor following a simple
heuristic method presented in [31]. Since processing in the
cloud is not constrained to service response time, we choose
the heuristic solution. Naturally, any other method can be
implemented and the modularity of EMCO provides an
easy way to extend the functionality of the components.

Once the first layer has finished refining the evidence,
the remaining samples are passed on the second layer,
classification, to train a classifier which can be deployed
on the mobile device as a decision engine. As classifiers
we currently use C4.5 decision trees as they can be learned
efficiently in the cloud from crowdsourced data and as the
decisions made by the classifier can be easily explained [32].
An additional benefit from the use of decision trees is that
it provides a mechanism for app developers to scrutinize
which parts of their app have been offloaded and why.

The overall EMCO analysis is described in Algorithm 1
and consists of ≈ 1500 LOC written in Scala. To avoid over-
loading the surrogate with extra processing, the analysis
is outsourced to a separate monitoring server, which also
collects performance metrics about EMCO execution.

Evidence Cache

To facilitate bootstrapping of offloading decisions, the server
maintains a cache of previous method invocations together
with results of the invocations. We take advantage of the
fact that each offload request (including method name,
input parameters, and other information relevant for an
invocation) received by EMCO server is serializable and

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 8

Fig. 5: Comparison of local and remote distributions.

Algorithm 1 Evidence analysis

Require: : path to the traces
1: for each app in traces do
2: Create samples.
3: Specify features to compare <fs>
4: for each feature in fs do
5: Compute rate distribution using samples.
6: <Rlocal, Rremote>
7: Compare Rlocal with Rremote

8: Remove slices where Rremote is higher
9: Update samples

10: end for
11: Calculate d using filtered samples.
12: Create code offload descriptor
13: EMCO policy creates the descriptor based on

higher frequency of d
14: Push descriptor to subscribed smartphone app
15: end for

calculate a digest key from the output of the serialization
(SHA-1 checksum). We then index the resulting invocation
results with the checksums. Whenever a new request is
received, the server compares the checksum of the new
request against the previously seen requests and returns the
results from the cache whenever a match is found.

Code Offload Manager

The Code Offload Manager is responsible for handling code
offload requests arriving at the server. The component ex-
tracts from each incoming request an object package which
contains details about the app and details of invocation
(method, type of parameters, value of parameters, and so
forth). As outlined above, we first calculate a checksum
of the request and compare it against the evidence cache.
When a match is found, we return the result associated
with the match. Otherwise the offload manager identifies
the app and its associated (Dalvik) process in the server.
The connection is forwarded to the process so that the Cloud
Controller associated with the APK file instance can invoke
the method via Java reflection. The result obtained is packed
and sent back to the mobile device. In parallel, a trace
is created by recording the execution of the method, e.g.,
execution time, type of server, CPU load, etc., and stored
along with the data of the request and its result. Finally, the
trace is passed to the Evidence Analyzer for analysis.

Push Profiler

The Push Profiler is the messaging component of the cloud
server. Our implementation is based on GCM (Google
Cloud Messaging) service4 which is a notification service
provided by Google to send messages to Android devices.
We rely on an existing technique as messaging mechanisms
are widely used by cloud vendors to trigger events on the
mobiles to synchronize data with their cloud counterparts,
e.g., Gmail. These mechanisms are well integrated with
current handsets and they have been carefully optimized
to have low energy consumption [33].

The EMCO server is registered to GCM service using a
key obtained from the Google API. Multiple servers associ-
ated with one deployment of EMCO can use the same key.
A mobile app subscribes to EMCO to receive notifications,
obtaining a sender ID as a result. The ID is valid until the
app unsubscribes (or GCM service is refreshed). EMCO then
sends a message to the smartphone client which consists of
a push request to the GCM service. The request consists of
the API key, the sender ID and the message payload. Requests
are queued for delivery (with maximum of five attempts) or
stored if the mobile is offline. Once the message reaches the
device, the Android system executes a broadcast intent for
passing the raw data to the code offload descriptor.

EMCO relies on push requests to construct code offload
descriptors for smartphone apps. As each message sent
through GCM is limited to 1024 bytes, multiple messages
are needed to form a descriptor. Messages are sent to the
mobile based on different events, for instance, dynamic
cloud allocation, periodic trace analysis, location detection
of the mobile, etc. Since GCM is a popular service, it does
not guarantee the delivery of a message and is unreliable to
be used in real-time applications. To counter this problem,
EMCO provides a generic interface, which can be used to in-
tegrate easily other push technologies, e.g., MQTT (Message
Queue Telemetry Transport). We have also developed our
own push server5 based on XMPP, which can overcome the
issues of proprietary push technologies and performance
reliability of the notifications.

Auto Scaler

The Auto Scaler enables EMCO to support multi-tenancy.
It uses the AMI EC2 tools wrapped into Java, to manage
dynamic resource allocation of servers. The mechanism
allows the framework to scale dynamically in a public or
private cloud infrastructure. Note that while public cloud
vendors provide mechanisms for scaling, e.g., Amazon Au-
toscale and Amazon Lambda, these mechanisms are de-
signed for scaling SOA applications on demand. Resource
requirements in computational offloading are driven by
users’ perception of app performance, which is governed by
throughput of the cloud infrastructure. This differs from tra-
ditional SOA applications that focus on energy savings and
reduced computational time without concern for through-
put variations. EMCO addresses this gap by utilizing a
hierarchical control and supervision scheme as shown in
Figure 6. In our scheme, EMCO server acts as a parent, and
a separate monitor server collects performance metrics from

4. developer.android.com/google/gcm/
5. https://github.com/huberflores/XMPPNotificationServer

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 9

Fig. 6: Multi-tenancy and horizontal scaling in EMCO.

the available EMCO servers (based on collectD6). When the
parent reaches its service utilization limits, it creates another
child. In this case, the list of subscribed devices is split
between the parent and child, and a push notification mes-
sage is sent to each device to update the information of its
assigned surrogate. In this manner, code offloading requests
are balanced among the servers. Respectively, a child can
become a second level parent when its service utilization
limits are reached. When a child is destroyed, e.g., when it
has served all requests and there are no incoming requests,
the subscribed mobile devices are passed to the parent.

Surrogate Runtime Environment

EMCO Server is deployed on top of Lightweight App Per-
formance Surrogate Image (LAPSI), a customized Dalvik-
x867 virtual machine for Android. LAPSI has been built by
downloading and compiling the source code of Android
Open Source Project (AOSP) over the instance to target a
x86 server architecture, and removing the Applications and
Application Framework layers from the Android software
architecture. Contrary to other frameworks [3], [4], EMCO
does not rely on the virtualization of the entire mobile plat-
form to execute the code remotely (such as with Android-
x86). Full virtualization has been shown to consume sub-
stantial CPU resources and to slow down performance
of code execution [34]. Moreover, full virtualization limits
the number of active users offloading to a single server.
In our case we also found that maintaining a complete
execution environment requires substantial storage on the
server (>100 GB) to install the software which includes
AOSP code and Android SDK, among others. Moreover,
once the OS is running in the server, all default features
are activated (e.g., Zygote and GUI Manager) which are
unnecessary for operating as surrogate and which result
in higher CPU utilization of the surrogate. To avoid these
overheads, LAPSI uses a Dalvik compiler extracted from
the mobile platform which is deployed directly onto the
underlying physical resources. This reduces the storage size
of our surrogate to 60 GB. Moreover, our surrogate does not
activate any default processes from the OS. Besides reducing
overall system load, a major advantage of our approach

6. http://collectd.org/
7. Released as public in Ireland region of Amazon EC2 as ami-

b2487bd4

is that offload requests getting stuck or lost can be killed
individually without restarting the entire offloading system.

4.3 EMCO Smartphone Client

The EMCO Client manages the offloading process on mobile
devices. We next detail the subcomponents of the EMCO
client and their key functionalities.

Context Profilers

Profilers are local monitors that gather information about
parameters that can potentially influence the outcome of
the offloading process. Examples of profilers include system
profilers (e.g., network and CPU monitors usage), device
monitors (e.g., battery state), and sensor data profilers (e.g.,
location or remaining battery). We rely on built-in Android
APIs to get the status of each resource. In addition, EMCO
also includes a code profiler that quantifies the execution of
a task (i.e., a method or a process). A task is quantified in
terms of response time and energy. The latter is estimated
using PowerTutor [35], which has been shown to have low
estimation error [19]. We also collect details about the task,
e.g., cast type and parameters which allows more fine-
grained analytics of offloading performance.

Code Offload Descriptor

The code offload descriptor controls the management (cre-
ation, updating, and deletion) of the data analytics injected
from the cloud for a particular app running on the device.
The descriptor consists of a characterization of the compu-
tational offloading process in JSON format which is stored
as part of the app space; see Snippet 1 for an example. The
descriptor effectively characterizes the logic that is used to
determine which parts of the app are suitable of offloading,
which acceleration levels are suitable for executing these
parts, and which contexts are beneficial for offloading.

Formally, let D represent the dimensions contained in
the descriptor, D = {di ∈ D : 1 ≤ i ≤ N}. Each
di ∈ D consists of sets S of attributes sdi , where Sdi =
{sdi

j ∈ Sdi : 0 ≤ j ≤ N}, and their values adi , where Adi

= {adi

k ∈ A : 1 ≤ k ≤ N}. Our current implementation
assumes attributes are represented as key-value pairs to
ensure their storage and processing is lightweight. The
descriptor can also contain other types of parameters, such
as an indicator of whether the results of a specific method
request are reusable and thus a candidate for caching, or
parameters that describe user preferences regarding which
surrogate to use.

Decision Engine

The decision engine predicts whether it will be beneficial
to offload code at any particular moment. The engine relies
on the offloading dimensions defined in the code offload
descriptor and a C4.5 decision tree classifier learned on the
EMCO server. We emphasize that EMCO is agnostic to the
underlying decision engine and other techniques, including
fuzzy logic, probabilistic models, logic-based reasoners and
so forth, can equally well be integrated as with EMCO.
The motivation for using C4.5 is that it can be effectively
learned on the cloud, the output can be serialized and
communicated back to the client with minimal data costs,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 10

Snippet 1 Computational offloading descriptor in JSON
{

"mobileApplication": "Chess",

"deviceID": "i9300",

"what-to-offload": [

{

"candidates-methods": "miniMax, betaPruning", %META-DATA

}

],

"when-to-offload": [

{

"bandwidth-threshold": "50", %META-DATA

"interface": "LTE", %META-DATA

}

],

"where-to-offload": [

{

"option1-surrogates": "{(miniMax, m1.large),

(betaPrunning, m2.4xlarge)}", %META-DATA

"option2-surrogates" : "{(miniMax, m1.micro)}", %META-DATA

}

],

"location": [

{

"GPS-coordinates": "60.20453, 24.96185", %META-DATA

"Preferable SSID" : "HUPnet", %META-DATA

}

]

}

the decision making mechanism is lightweight to run on the
client, and the decision paths can be easily scrutinized and
communicated to developers whenever needed [32].

Evidence Cache

Similarly to the server, the EMCO client utilizes a cache to
maintain results of methods that are executed in the cloud.
We store the results of method invocations into a hash table
as key-value pairs, where the key is the name of the app
appended with the name of the method, and the value
contains the object sent from the cloud, the type in which
the object should be cast during runtime and a time to live
(TTL) value. The TTL value prevents to store permanently
a result in the mobile. Thus, the result is assigned with a
temporal lifespan. In this context, if the result is not used
during that lifespan, then it is automatically removed from
the hash table. The TTL value is updated every time the
cache result is utilized in order to increase its lifespan.

4.4 Worked Examples

To illustrate EMCO in action, we consider two example
scenarios, one related to a chess app that allows playing
against an AI agent and the other related to a backtracking-
based 3D model loading app; see Sec. 5.1 for description of
the apps. We consider context descriptors associated with
these apps shown in Snippets 2 and 3, respectively. The
values of the context variables in the examples correspond
to the average values of the parameters in the crowdsensing
experiments described in Section 3 and are representative of
the real-world circumstances where offloading takes place.

For the context associated with the chess app (Snippet 2),
WiFi and LTE have similar latencies. Hence, EMCO’s de-
cision of whether to offload (and if so, where to offload)
largely depends on the computational capability of the
surrogate and the mobile device. In Snippet 3, on the other
hand, WiFi has high latency (147ms) which would result in
LTE being used as the communication technology (latency
39ms). In both scenarios the surrogate used for offloading

Snippet 2 Chess experimental context.

l a b e l =Ctx1 , device=i9300 , CPU=20%
LTE=40ms, 3G=139ms , WiFi=27ms
method=Minimax , parameters=" chessboard−15" ,
energy =533 J ,
surrogates=["m1. small " (response time (load = 1)) ,

"m1. medium" (load =1) , "m1. l a r g e " (load =1) ,
"m3. medium" (load =3) , "m3. l a r g e " (load =2) ,
"m3. x large " (load =6) , "m3. 2 x large " (load =10) ,
"m2. 4 x large " (load =8)

]

Snippet 3 Backtracking experimental context.

l a b e l =Ctx0 , device=i9250 , CPU=43%
LTE=39ms, 3G=138ms , WiFi=147ms
method=ObjLoader , parameters=" model . 3 ds " ,
energy =212 J ,
surrogates=["m1. small " (load =1) ,

"m1. medium" (load =1) , "m1. l a r g e " (load =11) ,
"m3. medium" (load =30) , "m3. l a r g e " (load =10) ,
"m3. x large " (load =22) , "m3. 2 x large " (load =70) ,
"m2. 4 x large " (load =50)

]

can be chosen based on estimated response time to minimize
latency. Note that since both scenarios represent computa-
tionally intensive tasks, the effect of network bandwidth is
not apparent. For data-intensive, real-time tasks, such as
face manipulation on a live camera stream, the combined
effect of bandwidth, latency, energy, and remote surrogate
response time need to be taken into account. We have
included the type of the device and its current CPU usage
as part of the examples as both the savings from offloading
and the energy footprint of the method depend on device
characteristics and CPU load.

Snippet 4 Two alternative Chess contexts.

l a b e l =Ctx2 , device=i9300 , CPU=80%
LTE=73ms, 3G=365ms , WiFi=80ms
method=Minimax , parameters=" chessboard−30" ,
energy =97 J

l a b e l =Ctx3 , device=i9300 , CPU=40%
LTE=65ms, 3G=411ms , WiFi=287ms
method=Minimax , parameters=" chessboard−19" ,
energy =528 J

Another benefit of EMCO is that it can react to dynamic
changes in the offloading context. For example, the offload-
ing decision can be adapted based on the location where
the app is being used. To illustrate this, we consider two
additional contexts shown in Snippet 4. The latencies in
these contexts correspond to average latencies within two
distinct cities (Ctx2 and Ctx3) and have been derived from
of our study in Section 3.2. We also consider different stages
of the game, chessboard-19 and chessboard-30, where 19
and 30 correspond to the number of moves made. The
former corresponds to an intermediary state which has
many possible moves whereas the latter corresponds to a
late stage of the game with fewer possible moves and hence
lower computational requirements; see Figure 7. We next

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 11

(a) chessboard-15 (b) chessboard-19 (c) chessboard-30

Fig. 7: Three execution states for the chess app: (a, b)
intermediate stage (15th and 19th moves) that are compu-
tationally intensive, and (c) a later stage of the game (30th
move) which is computationally lightweight to solve.

analyze how EMCO behaves when the configuration of the
chess application changes from Ctx1, to Ctx2 and Ctx3.

Assume first that the context of the chess application
changes to Ctx2. This triggers an automated update of the
values of the network interfaces using information from
the community of devices running EMCO. We assume that
the status of the cloud infrastructure remains the same.
In Ctx2, LTE performs better than WiFi whereas in Ctx1
WiFi performed better. Consequently, EMCO would trigger
a change of network interface to LTE. The example in Ctx2
corresponds to a later stage of the game (See Figure 7b)
and thus the computational requirements are likely to be
lower than in Ctx1. While in theory the request could be
served on the local device, the high CPU load on the client
in the example context would trigger EMCO to offload the
request. As the computational requirements are likely to be
low, any available surrogate can be chosen without signifi-
cant influence on performance. Alternatively, the diagnosis
generated by EMCO can be useful for optimizing resource
allocation [36] to select the server with the cheapest cost
that provides the same quality of service. Consider next a
change from Ctx2 to Ctx3, the second in Snippet 4. The con-
text corresponds to an intermediate state of the game and
hence computing requirements are higher than in Ctx2. This
would result in EMCO optimizing surrogate selection, e.g.,
to use a m2.4xlarge surrogate to optimize response time. In
summary, these examples highlight EMCO’s capability to
make fine-grained adjustments depending on the currently
prevailing offloading context and determine not only when
to offload, but to which surrogate to offload.

5 EVALUATION

EMCO has been designed to improve the user experience
of mobile apps through better offload decision making. This
results in reduced energy footprint and improved respon-
siveness. This section evaluates EMCO, demonstrating that
it achieves its design goals and improves on current state-of-
the-art solutions. Our main experiments have been carried
out through a a real-world testbed deployment of EMCO.
We also consider simulation-based experiments carried out
using crowdsensing and offline profiling of applications.

5.1 Experimental Setup and Testbed

Our main experiment considers a typical scenario where
a mobile app is associated with cloud infrastructure to
improve energy and performance on the users’ devices. We
consider two simple examples of such apps: a backtracking-
based 3D model loader app and a chess app with an AI
agent. These apps were designed to incorporate common
computational operations that are used in apps with heavy
computational requirements and battery footprint. Our im-
plementations are freely available for research purposes.

Backtracking8 overlays a 3D model on the surface of the
mobile camera. A user can interact with a model once is
displayed, e.g., moving and turning. Our implementation
is equipped with ten models (in 3ds format) with the
size of each model being between 500KB and 2000KB.
Loading and displaying the mesh of each model requires
a significant amount of processing and hence each model
is loaded individually as required by the user. The heavy
processing requirements of model loading make the app
a good candidate for offloading. Loading the model in
the cloud enables splitting it into parts so that the only
parts the user interacts with are sent to the mobile de-
vice. Examples of similar apps include Augment http://
www.augment.com/augmented-reality-apps/ and Glovius
3D CAD viewer https://www.glovius.com/.

Chess9 allows user to play (chess) against an AI agent
on multiple levels of difficulty. The agent uses a minimax
algorithm to determine the best move to make. The portion
of code that corresponds to the minimax logic is the most
intensive task in the application and hence a good candidate
for offloading. Note, that the processing requirements of the
minimax vary considerably depending on the state of the
chess board with early and late moves typically being less
intensive than intermediate ones; see Figure 7.

To conduct our experiments, we have deployed EMCO
in Amazon (Ireland region / eu-west-1) using latest gen-
eral purpose instances10 (m3.medium, m3.large, m3.xlarge,
m3.2xlarge) and a memory-optimized instance (m2.4xlarge).
As client devices we consider two smartphone models: i9300
(Samsung Galaxy S3) and i9250 (Google Nexus). We follow
the principle that an offloading request should both improve
(or at least preserve) app responsiveness while reducing en-
ergy consumption of the client [29]. The appropriate level of
responsiveness depends on the type of application. For ex-
ample, real-time games or video applications would expect
to have a speed of 30-60 frames per second, while interactive
non-realtime applications can have response times up to one
second. The energy footprint of the client is measured using
a Monsoon Power Monitor11.

5.2 Characterizing Offloading Context

As the first step of our evaluation we consider a benchmark
where we collect evidence for characterizing the execution

8. https://github.com/huberflores/MeshOffloading
9. https://github.com/huberflores/CodeOffloadingChess
10. We have also considered general purpose instances of previous

generation: m1.small, m1.medium, and m1.large. These instances con-
sistently resulted in worse performance than local execution on the
mobile client and hence we have excluded then from our discussion.

11. http://www.msoon.com/LabEquipment/PowerMonitor/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35

R
es

p
o
n
se

 t
im

e
[i

n
 s

ec
o
n
d
s]

Task execution

High processing Low processing

Local (i9300)
Local (i9250)

m3.medium
m3.large

m3.xlarge
m3.2xlarge
m2.4xlarge

(a)

 1

 5

 10

 15

 20

 25

 30

 35

i9300

i9250-(N
exus)

m
3.m

edium

m
3.large

m
3.xlarge

m
3.2xlarge

m
2.4xlarge

Pre-cached

E
x
ec

u
ti

o
n
 t

im
e

[i
n
 s

ec
o
n
d
s] Processing-time

Communication-latency

(b)

 0.1

 1

 10

 100

 1000

 10000

Local(i9300)

Local(i9250)

m
3.m

edium

m
3.large

m
3.2xlarge

m
2.4xlarge

pre-cached

E
n
er

g
y
 [

in
 J

o
u
le

s]

(c)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

R
es

p
o
n
se

 t
im

e
[i

n
 s

ec
o
n
d
s]

Task execution

Local (i9300)
Local (i9250)

m3.medium
m3.large

m3.xlarge
m3.2xlarge
m2.4xlarge

(d)

 1
 5

 10

 15

 20

 25

 30

 35

 40

 45

i9300

i9250-(N
exus)

m
3.m

edium

m
3.large

m
3.xlarge

m
3.2xlarge

m
2.4xlarge

Pre-cached

E
x
ec

u
ti

o
n
 t

im
e

[i
n
 s

ec
o
n
d
s] Processing-time

Communication-latency

(e)

 0.1

 1

 10

 100

 1000

 10000

Local(i9300)

Local(i9250)

m
3.m

edium

m
3.large

m
3.2xlarge

m
2.4xlarge

pre-cached

E
n
er

g
y
 [

in
 J

o
u
le

s]

(f)

Fig. 8: App performance: (a), (b), and (c) from the chess application and (d), (e), and (f) from the backtracking app. The first
column of each row corresponds to response time with a specific execution environment (surrogate or local) and app state
(the number of moves since game start for chess and the index of the model being loaded for backtracking). The second
column is the average execution time of the task, and the third column show the energy consumption of the client.

of our test apps. We execute both apps 48 times on each
of the five surrogates (i.e., 240 remote execution trials) and
100 times on each mobile device (i.e., 200 local execution
trials). For the chess app, the number of offloading requests
depends on the length of the chess match. In total we
observed 7200 requests, i.e., approximately 30 moves per
game. For the backtracking app we loaded all 10 models
during each trial, resulting in 2400 offloading requests (48
trials × 5 surrogates × 10 models). The surrogate used for
offloading requests was selected in a round-robin fashion
from the instances which were available.

The results of our benchmarks are shown in Figure 8. For
both apps we observe that offloading generally improves
both response time and energy footprint. However, we can
also observe that the magnitude of the benefits depends on
the execution context. This is particularly true for the chess
app where we can see a large variation in response time
depending on the complexity of the game state (Figure 7).
For later stages of the game the benefits of offloading start to
be marginal compared to local execution - unless the request
is found in the pre-cache which results in latency becoming
the dominant factor for offloading decisions.

5.3 Response Time and Energy Footprint

We next evaluate the gains in response time and energy
obtained by using EMCO. As part of the experiment we also
assess the performance gains provided by caching results
of offloading requests and reusing them. We perform the
evaluation by executing the apps locally on the device and
offloading them into all available surrogates and measuring
the associated response time and energy consumption.

Figure 8c and Figure 8f show the energy consumed
in each offloading case for each application, respectively.
From the results we can observe that the effort to offload is
different depending on the time of active communication.
From the figure we can also observe caching to further
reduce energy consumption and response time.

Existing offloading methods bind mobile devices to any
available server in the deployment and it remains static
server during application usage. In contrast, EMCO imple-
ments a mechanism that allows requests to be treated in-
dependently, which means that can be handled by multiple
servers based on its processing requirements. To compare
EMCO against current state-of-the-art, we have developed
a generic code offloading framework which (i) makes of-
floading decisions based on network latency and estimated
energy, but (ii) has no support for diagnosing cloud perfor-
mance and allocates requests to a random server instead
(in the experiments these correspond to m3.medium for
the chess app and m3.2xlarge for the backtracking app).
Our baseline does not directly follow any single system,
but incorporates mechanisms commonly found in current
offloading frameworks12 [2], [3], [6], [8].

The response times of EMCO and the baseline are shown
in Figure 9a. For the chess app (top figure), we can observe
that EMCO is capable of adjusting the offloading environ-
ment according to characteristics of the computing task and
current context, which results in a stable and fast response
time throughout. The performance of the baseline suffers
during complex intermediate states as the system cannot

12. https://github.com/huberflores/CodeOffloadingAnnotations

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 13

 0
 10
 20
 30
 40

 0 5 10 15 20 25 30 35

[i
n
 s

ec
o
n
d
s]

Request execution

Chess app

No-diagnosis
Diagnosis

 0

 10

 20

 30

 1 2 3 4 5 6 7 8 9 10

[i
n
 s

ec
o
n
d
s]

Request execution

Backtracking app

No-diagnosis
Diagnosis

(a)

 0

 10000

 20000

 30000

No-diagnosis Diagnosis

E
n
er

g
y
 [

in
 J

o
u
le

s]

Chess
Backtracking

(b)

 0

 0.1

 0.2

 0.3

m
1.sm

all

m
1.m

edium

m
1.large

m
3.m

edium

m
3.large

m
3.xlarge

m
3.2xlarge

m
2.4xlarge

T
im

e
[i

n
 s

ec
o
n
d
s]

(c)

Fig. 9: (a): Request response time of both scenarios with and without diagnosis, (b): energy spent by the client, and
(c): response time of pre-cached results in different instances types.

adapt to the changing computational requirements. Further-
more, the baseline is incapable of adjusting its performance
to different load conditions on the surrogate which fur-
ther causes fluctuations in performance. In particular, the
performance of the lower-end general purpose instances,
m3.medium and m3.xlarge, degrades in heavy workload
conditions (Figure 10a) and thus ideally the app must of-
fload to m3.large, m3.2xlarge or m2.4xlarge. Since our goal
is to minimize response time and energy, EMCO offloads
in these situations to m2.4xlarge. By using the diagnosed
configuration, the chess app accelerates its responsiveness
five-fold compared to local execution. Moreover, dynamic
surrogate selection reduces 30% and 10% of the energy
required in the communication with the cloud when com-
pared with random surrogate selection in the chess and
backtracking app scenarios, respectively.

For the backtracking app (bottom of Figure 9a) offload-
ing should ideally use as surrogate m3.medium, m3.large,
m3.xlarge, m3.2xlarge or m2.4xlarge. However, under heavy
workload conditions, the app should be offloaded to
m3.large as it is the lowest general purpose instance which
is capable of providing major gains in throughput in such
circumstances. Since the generic framework is allocated
with a powerful machine randomly, it can provide similar
performance especially when the number of surrogates to
choose from is small. However, the likelihood of achieving
that same level of performance every time depends on the
available cloud resources. Moreover, despite the fact that
both frameworks provide similar response times rates to
users, only EMCO is able to achieve further acceleration
through the identification of reusable offloading results
from its crowdsensing process. Thus, by using pre-cached
functionality, EMCO accelerates about 30 times the response
time of applications installed in devices such as i9250.

Figure 9b compares the energy consumption of the client
under EMCO and the baseline system. We observe accumu-
lative gains in energy obtained by EMCO in a continuous
offloading environment. This also can be seen as the dif-
ference between plain instrumentation and instrumentation
with data analytic support (EMCO). Based on these results,
we can conclude that EMCO is more effective as it saves
more energy in comparison with existing offloading frame-
works. EMCO’s decision engine also appears to be lighter in
comparison to the mechanisms used by MAUI and related

frameworks. Specifically, when we compare the MAUI lin-
ear programming (LP) mechanism with our decision engine
using the same amount of parameters, the results show that
EMCO consumes ≈12% less energy. The processing steps
required to take a decision using LP depends on the number
of parameters introduced in the engine.

The utilization of a powerful server is naturally associ-
ated with a cost. To mitigate the cost of running increas-
ingly powerful servers, after pre-cache results are stored,
they can be shared with lower capability servers, which
can then respond to duplicated offloading requests. For
instance, pre-cached results processed in m3.2xlarge can be
transferred to m1.small, such that m1.small can then serve
the result without any processing, yielding rates compa-
rable to a m3.2xlarge. We conduct multiple experiments
to determine the response time of a reusable result using
different instances types. Figure 9c shows the results. We
can observe that the response time of a reusable result
is stable on different instances types on Amazon, average
≈0.253, standard deviation (SD) ≈0.016. We also notice that
a cached result served from any surrogate outperforms a
fresh result computed by the most powerful surrogates
shown in Figures 8b and 8e.

5.4 Generalizability

We next demonstrate that the benefits of EMCO translate
to a wider range of apps and that EMCO is capable of
optimizing their performance in a wide set of execution
contexts. We accomplish this through an evaluation of 10
apps in simulated offloading contexts. In our evaluation,
each app creates virtual offloading requests whose context
parameters are determined using the crowdsensed datasets
considered in our work. By simulating the context we can
ensure the parameters are representative of real world situa-
tions encountered by users. Simulation also helps to provide
reproducibility for our analysis.

For the evaluation, we chose 10 open source apps from
the F-droid13 repository; see Table 2. We chose the most
popular applications from the repository that had compu-
tationally intensive parts that benefit from offloading. We
used a combination of community analysis and static pro-
filing to determine which apps contained computationally

13. https://f-droid.org/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 14

 1

 10

 100

 2 4 6 8 10 14 20

R
es

p
o

n
se

 t
im

e
[i

n
 s

ec
o

n
d

s]

Number of concurrent mobile users

m3-medium
m3-large

m3-xlarge
m3-2xlarge
m2-4xlarge

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
at

io
 u

sa
g

e
[g

ig
ab

y
te

s]

Number of concurrent mobile users

Android-x86
LAPSI

(b)

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 1 60 120 180 240

D
el

iv
er

y
 t

im
e

[i
n

 s
ec

o
n

d
s]

Number of messages (GCM)

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2

R
es

p
o

n
se

 t
im

e
[i

n
 s

ec
o

n
d

s]

Time [in hours]

(d)

Fig. 10: (a) EMCO’s ability for handling concurrent users; (b) Memory usage comparison between Android-x86 and LAPSI;
(c) Response time of app reconfiguration via push notification; (d) CPU load of a EMCO server when handling up to 20
concurrent requests, first hour without execution monitoring second hour with monitoring.

intensive tasks. Specifically, Carat community analysis [19]
was first used to assess the overall performance of the app.
Only apps with a rate of 0.004 or higher were considered,
which translates to roughly 7 hour battery lifetime for the
device while the app is running continuously. Next, we
performed static profiling over the app’s code and validated
its resource intensiveness using the AT&T Video Optimizer14.
For each app, we chose all so-called outlier methods, which
are methods with a high processing step count and whose
execution time exceeds the average processing requirement
of the rest of the app significantly. Note that, as we use
execution time and processing counts for choosing which
methods to simulate, this also helps to ensure the methods
can indeed be accelerated. As an example, app1 contains one
outlier method that requires ≈ 2 seconds to complete, while
all remaining methods can be executed in 800 milliseconds
or less. The final set of apps were from the following
categories: puzzles (app1, app3, app6, app7, app8), games
(app2, app4, app5, app10) and tools (app9); see Table 2 for
the package names of the apps.

For each computationally intensive method we create
virtual offloading requests where network latency was de-
termined based on the NetRadar dataset (see Section 3).
We assume that the cloud deployment consists of three
instances (t2.nano, t2.medium, and m4.10xlarge). To deter-
mine the response time of the application, we calculated an
expected runtime for the app and combined it with latency
values of the simulated request. The expected runtime was
determined by (i) calculating a bound for the execution
of the method through static profiling, and (ii) scaling the
estimated runtime with an acceleration level corresponding
to the currently selected cloud instance derived through
benchmarking of each cloud instance; see [30] for validation
of this method. For each method we created 1, 000 virtual
requests, and calculated response time using both the diag-
nosis approach of EMCO and a no-diagnosis variant used
in existing systems. The results in [30] show that, while the
acceleration levels of cloud instances contain variation, the
magnitude of performance improvements (or decrease) is
stable between different types of cloud instances.

The results of our evaluation are shown in Table 2. In
the evaluation we consider the upper bound on execution
time obtained through static profiling as the response time
requirement of each app, and calculate the fraction of times

14. https://developer.att.com/video-optimizer

this can be achieved. EMCO is capable of satisfying the
requirements in 78.88% of cases, whereas existing tech-
niques succeed only in 47.28% of the requests. From the
table we can also observe that the extent of delay in failed
cases is significantly smaller for EMCO (454ms) than for the
no-diagnosis baseline (843ms). In other words, EMCO not
only performs significantly better in terms of meeting the
response time requirements, but significantly reduces delays
in cases where the requirements cannot be met.

To put the results into context, we performed a cost-
benefit analysis by deriving utilities for EMCO and the base-
line solution. First we calculate the overall cost of offloading
by associating a monetary cost for serving each simulated
request. The cost was determined so that higher cost reflects
access to better resources. As each request was offloaded, we
normalized the total cost of all requests to the range [0, 1] so
that a value of 0 corresponds to always using the slowest
instance, and a cost of 1 to always using the fastest instance.
For normalizing the costs, we assign weights 0.5, 1.0, and
150.0 to the three instance types, which reflects the current
pricing structure of Amazon Ireland and serves as represen-
tative example of real-world costs. To determine an utility
for each request, we assume meeting the response time
requirement provides a reward R, whereas failing to meet
the requirement results in a penalty P = αtR. Here α is a
scaling factor that determines the importance of succeeding
relative to failing to meet the user specified response rate re-
quirements. The variable t is the extent at which the request
exceeds the response rate requirement. Using the values in
Table 2, it can be shown that EMCO provides better utility-
cost ratio than existing approaches whenever α > 0.0808,
i.e., whenever the penalty for failing the response is at least
8% of the value of succeeding. If the penalty of exceeding
the response time is very low, offloading to the slowest
instance is naturally the best policy. To this end, the higher
cost of EMCO compared to the no-diagnosis case is a direct
consequence of having higher success rate, and hence using
more resources. In practice we would expect the penalty of
failure exceeding the reward of meeting the response time
requirement (i.e. α > 1), implying that EMCO performs
better in most cases of practical interest.

5.5 Scalability

We next consider the scaling performance of the server
under heavy load of incoming requests. We carry out our

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 15

Id/App package/No.Methods Resp. Time Req. [s]
Fulfilled [%] Cost [0-1] Exceeded by [s]

No-diag Diag No-diag Diag No-diag Diag
app1 / org.ligi.gobandroid / 1 2 56.8% 90.5% 0.35 0.49 0.67 0.5

app2 / emre.android.atomix / 3 1 19.5% 47.7% 0.33 0.88 0.84 0.38
app3 / com.uberspot.a2048 / 2 2 58.9% 89.4% 0.34 0.50 0.92 0.49
app4 / org.bobstuff.bobball / 1 2.5 69% 92.9% 0.35 0.32 0.73 0.33
app5 / org.scoutant.blokish / 4 1.5 25.4% 56.1% 0.34 0.87 0.99 0.43

app6 / name.boyle.chris.sgtpuzzles / 1 2 50.8% 88% 0.33 0.60 0.86 0.56
app7 / io.github.kobuge.games.minilens / 3 2 61.6% 89.7% 0.34 0.50 0.88 0.51

app8 / com.petero.droidfish / 2 2.5 69.1% 94.5% 0.35 0.38 0.98 0.41
app9 / fr.ubordeaux.math.paridroid / 5 2 44.2% 91.5% 0.36 0.64 0.78 0.61

app10 / net.minetest.minetest / 1 1 17.5% 48.5% 0.36 1.0 0.78 0.32
Average for all apps 1.85 47.28% 78.88% 0.34 0.62 0.843 0.454

TABLE 2: Crowd-sensed context evaluation, results of 1000 requests per method and ratio of request times below
responsiveness requirements (% fulfilled).

evaluation by straining the cloud infrastructure with syn-
thetic requests created by our trace simulator (described
in Sec. 3.3) and measuring throughput as a function of
load. In our benchmarks, we only consider server instances
that provide better response time than local execution (i.e.,
m1.small, m1.medium, and m1.large were excluded). As
part of the evaluation we also compare the scaling perfor-
mance of our LAPSI surrogate against a deployment using
Android-x86 surrogates.

Figure 10a shows the response rate of the different cloud
instances as the number of concurrent users increases. We
observe that the capability to handle concurrent requests
mirrors the available resources with the response rate slow-
ing linearly as the number of concurrent requests increases.
As expected, we can also observe that the magnitude of the
slope depends on the available resources of the server with
the most powerful servers having the smallest coefficients.
Three surrogates (m3.xlarge, m3.2xlarge, m2.4xlarge) can
support over 20 concurrent users before the response rate
drops below local execution, whereas two of the surrogates
(m3.medium, m3.large) can support 10 concurrent users
before dropping below local execution. The response times
include also latency induced by EMCO, which typically is
around 100 milliseconds. Figure 10b shows the memory use
of LAPSI surrogates compared to Android-x86 surrogates.
The memory use of the Android-x86 surrogates rapidly
increases, with 7 concurrent users requiring over a gigabyte
of writable memory. The total memory footprint (including
shared memory) of these 7 users fills the 8 GB memory of a
m3.large instance, so that no more Android-x86 surrogates
can run on the instance. In contrast, with our LAPSI de-
ployment the increase in memory use is modest. To put our
result into context, an Android-x86 deployment would need
to boot up a new instance to serve each 7 users wishing
to use the same application at the same time, whereas our
deployment can serve over 28 users simultaneously with
the same amount of resources. This makes LAPSI better
suited for deployments targeting communities of users. In
EMCO, horizontal scaling is achieved using a notification
server as load balancer. The notifications allow the mobile to
reconfigure the surrogate in which it is currently subscribed.
As part of the experiment we also benchmark our push
notification mechanism by measuring its delivery rate. We
fix the message size of the notifications to 254 bytes, which
is the minimum amount of data required to reconfigure

the surrogate. We first send 15 consecutive messages (once
per second), after which we have a half an hour period of
inactivity. We repeat these phases over a 8 hour period,
resulting in a total of 240 messages. The sleep periods
are used to mitigate the possibility of the cloud provider
associating our experiments with denial of service attack
and the duration of the experiments was designed to collect
samples at different times of day.

Figure 10c shows the response time results for the notifi-
cation messages. The average time is 0.75 seconds (median
0.66, SD 0.69). Note that the response time depends on
the underlying messaging protocol and the availability of
the server at the cloud provider [33]. The overall delay
in surrogate migration depends also on the events taking
place on the server side. The slowest case is when a new
child node is created (i.e., when server utilization reaches
maximum limit) which results in approximately one minute
reconfiguration time. This consists of allocating a new server
by the cloud provider (approximately 40 seconds on Ama-
zon) and reconfiguring clients through push notifications.
When a child node is removed (i.e., when server utilization
falls below a lower limit), reconfiguration is faster as the
subscribed devices are simply moved to the parent node
and the only delay results from push notifications.

Finally, we demonstrate the benefits of using a separate
monitoring server as part of the EMCO architecture. Fig-
ure 10d shows the performance of a m2.4xlarge surrogate
during a 2h period with 20 concurrent users. During the
first hour, no performance metrics are gathered, whereas
during the second hour the surrogate was configured to col-
lect performance measures. From the figure we can clearly
see that monitoring cloud execution burdens the surrogate,
degrading its performance, whereas the performance of
the surrogate is stable when no metrics are gathered. Ac-
cordingly, our experiment demonstrates that separating the
monitoring of cloud execution to a separate server enables
faster and more stable response time.

5.6 Optimality of Decision Making

As the final step of evaluation we consider the optimality
of the EMCO decision engine. To carry out the evaluation,
we consider our benchmark evaluation in Section 5.2 and
establish a ground truth by comparing the computational
effort of the device between remote and local execution. We
use crowsourced data to characterize execution contexts to
allow EMCO to make informed decisions.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 16

We conduct our evaluation using five-fold cross-
validation, i.e., all measurements in four folds are used to
train our decision engine (i.e., C4.5 decision tree classifier)
and its predictions are compared to ground truth for the
remaining fold. In 99.82% of the situations, EMCO was
correctly able to choose the option with the smallest energy
cost between local and remote execution. Generally the
performance depends on the extent of intersecting areas in
the rate distributions, which represent conditions where the
benefit of offloading is uncertain or counterproductive. In
our experiments, the amount of training data was sufficient
for learning a model that has few intersections. During
early stages of the app, the performance is likely to be
lower (worst-case performance 77%). However, as shown in
Section 3, a community of moderate size typically produces
the necessary amount of measurements for minimizing in-
tersections arising from uncertainty within a day or two.

6 DISCUSSION

A key benefit of EMCO is that it facilitates bootstrapping
of offloading decision making. While the amount of data
that is required for a characterizing the execution of a
particular app depends on the complexity of the app, its
usage contexts, and execution environment, in most cases
EMCO can provide substantial improvements in the boot-
strapping process. Indeed, the more variability there is in
the execution, the more substantial the benefits EMCO can
bring through community analysis. We note that, while not a
core focus for the present paper, another benefit of EMCO is
that the number of intersecting segments between local and
remote distributions provides an estimate of the uncertainty
in the app execution, which in turn can be used to estimate
the point where sufficient amount of data has been collected.
Estimating this on individual devices is difficult as one
device typically only experiences a small set of execution
contexts and the performance of the system is likely to
degrade when a previously unseen context occurs.

As with any other history-based approach, the perfor-
mance of EMCO gradually improves as more evidence is
gathered from the community of devices. When no data
is available to bootstrap the system, the decision inference
considers only contextual parameters collected in real-time
from the context profiles similarly to other proposed frame-
works. However, even in such case, major performance im-
provements can be obtained compared to other frameworks.
For example, our dynamic surrogate migration mechanism
is capable of providing access to surrogates in a service-
oriented style. We have also experimentally demonstrated
that, once sufficient amounts of evidence have been col-
lected, our framework outperforms existing solutions by
providing better support for making offloading decisions.
As most of the evidence analysis takes place in the cloud,
the effort required by the mobile device to execute EMCO
is minimal compared with other frameworks. For example,
both linear programming [2] and Hidden markov mod-
els [37] require processing raw data from system profilers
in order to determine when to offload. In contrast, EMCO
avoids raw data processing as the constructed models are
sent from the cloud to mobile devices. While transferring
data to the cloud requires some energy, these costs typically

are minimal [19] and their effect on battery can be mitigated
by piggybacking data as part of application requests.

Recently, the Android runtime (ART)15 has been intro-
duced as a novel runtime compiler that is intended as
replacement for Dalvik. ART has been designed to operate
using Dex bytecode, which is the same format as used by
Dalvik and hence LAPSI and EMCO can be easily ported
to ART. Compared to our LAPSI implementation, the main
difference with ART is that it implements Ahead-of-Time
(AOT) compilation instead of Just-in-Time (JIT). This means
that an application that uses ART is compiled once during
the first execution, and the static portions of the app will
not be compiled again for subsequent executions. This is
closely related to the pre-caching functionality used as part
of EMCO. However, our solution is more general as it has
been designed to support also collaborative reuse of method
invocations between devices.

Our results have shown the potential of migrating cloud
surrogates dynamically based on concurrent load, execution
context, and other factors. This differs from existing systems
which either provide no means of effectively matching the
client with the cloud infrastructure or make the decision the
responsibility of the app designer [6]. In the former case,
the effectiveness depends on the optimality of the initial
allocation, whereas in the latter case the effectiveness is
reliant on the designers knowledge of the intricacies of of-
floading contexts. Our use of crowdsensing to monitor cloud
execution provides more flexibility in the process, allowing
us to dynamically determine the optimal acceleration level
and to adapt to varying loads on the cloud size. EMCO
also lends itself to more elaborate cloud allocation, e.g.,
by associating a cost (or utility) for energy, surrogate type,
and responsiveness, we can minimize the cost of surrogate
allocation for each client.

EMCO can be applied in many variable context scenar-
ios. For example, an interstate bus line or a high-speed train
with onboard WiFi is suspectible to constantly changing
network conditions, which can result in poor app respon-
siveness. Routing offloading requests of connected clients
with EMCO mitigates response time variations and pro-
vides a superior experience for latency-critical applications.
As another example, EMCO can diagnose situations for op-
portunistic offloading. For example we can use the commu-
nity to identify application combinations that increase CPU
usage while running in the background. From our study
presented in section 3.1, we can observe 60% − 70% CPU
use with 13.65% of apps (TripAdvisor, Whatsapp, Facebook,
Waze, among others). By detecting currently active apps,
we can utilize offloading for less intensive tasks to reduce
energy drain caused by heavy CPU usage. However, since
resource allocation has a higher impact in computational
offloading compared to other opportunities, we focus our
diagnosis on resource allocation. A wider range of context
values for opportunistic offloading can be handled, e.g.,
using a decision tree [32] and ranking the context values
in order of their impact on offloading.

EMCO also implements an energy profiler that esti-
mates the energy required from a portion of code. How-
ever, estimation of energy consumption with any kind of

15. https://source.android.com/devices/tech/dalvik/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 17

software tool, e.g., PowerTutor, suffers from an estimation
error. EMCO overcomes this problem by supplementing
local estimates made on the device with community-based
estimates that aggregate over a large community of devices.
By collecting many samples from the same task, EMCO is
able to reduce the error to determine when a computational
task requires high energy consumption for the device or
not.

7 SUMMARY

The present paper contributed by proposing crowdsourced
evidence traces as a novel mechanism to optimize offloading
decision making. As our first contribution we performed an
analysis of two crowdsensed datasets to demonstrate that
crowdsensing is a feasible mechanism for characterizing
parameters relevant for offloading decision making. As our
second contribution, we proposed a toolkit and platform,
EMCO, that analyzes these traces to identify reusable and
generic contexts where offloading is beneficial. Further per-
formance gains are achieved through caching and a novel
cloud surrogate LAPSI that we have developed and in-
tegrated as part of EMCO. Experiments carried out on a
testbed deployment in Amazon EC2 Ireland demonstrated
that EMCO can consistently accelerate app execution while
at the same time reducing application footprint. In addition,
we evaluate offloading optimization through crowd-sensed
context diversity over multiple off-the-shelf applications.
We also demonstrated that EMCO provides better scalability
than current cloud platforms, being able to serve a larger
number of clients without variations in performance. We
provide our framework, use case and tools as open source
in GitHub along with the LAPSI located in Amazon EC2.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their in-
sightful comments. This research has been supported, in
part, by projects 26211515 and 16214817 from the Research
Grants Council of Hong Kong.

REFERENCES

[1] S. Ickin, K. Wac, M. Fiedler, L. Janowski, J. Hong, and A. K.
Dey, “Factors influencing quality of experience of commonly used
mobile applications,” IEEE Communications Magazine, vol. 50, no. 4,
pp. 48–56, 2012.

[2] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proceedings of the ACM International Confer-
ence on Mobile systems, applications, and services (MobiSys 2010), (San
Francisco, CA, USA.), June 15–18, 2010.

[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proceedings of the Annual IEEE
International Conference on Computer Communications (INFOCOM
2012), (Orlando, Florida, USA), March 25–30, 2012.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and cloud,”
in Proceedings of the Annual Conference on Computer systems (EuroSys
2011), (Salzburg, Austria), April 10–13, 2011.

[5] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“Comet: code offload by migrating execution transparently,” in
Proceedings of the USENIX Conference on Operating Systems Design
and Implementation (OSDI 2012), (Hollywood, CA, USA), October
08–10, 2012.

[6] C. Shi et al., “Cosmos: Computation offloading as a service for
mobile devices,” Procedings of the ACM International Symposium of
Mobile Ad Hoc Networking and Computing (MobiHoc 2014), August
11–14, 2014.

[7] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen, M. Kemp-
painen, and P. Hui, “Smartdiet: offloading popular apps to save
energy,” in Proceedings of the ACM Conference on Applications,
technologies, architectures, and protocols for computer communication
(SIGCOMM 2012), (Helsinki, Finland), August 13–17, 2012.

[8] H. Flores, R. Sharma, D. Ferreira, V. Kostakos, J. Manner,
S. Tarkoma, P. Hui, and Y. Li, “Social-aware hybrid mobile of-
floading,” Pervasive and Mobile Computing, 2016.

[9] M. Conti, M. Kumar et al., “Opportunities in opportunistic com-
puting,” IEEE Computer, vol. 43, no. 1, pp. 42–50, 2010.

[10] E. Peltonen, E. Lagerspetz, P. Nurmi, and S. Tarkoma, “Energy
modeling of system settings: A crowdsourced approach,” in Pro-
ceedings of International Conference on Pervasive Computing and Com-
munications (PerCom 2015), (St. Louis, MO, USA), March 23–27,
2015.

[11] H. Flores and S. Srirama, “Mobile code offloading: should it be
a local decision or global inference?” in Proceedings of the ACM
International Conference on Mobile systems, applications, and services
(MobiSys 2013), (Taipei, Taiwan), June 25–28, 2013.

[12] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-g. Chun, L. Huang,
P. Maniatis, M. Naik, and Y. Paek, “Mantis: Efficient predictions of
execution time, energy usage, memory usage and network usage
on smart mobile devices,” IEEE Transactions on Mobile Computing,
vol. 14, no. 10, pp. 2059–2072, 2015.

[13] S. Sigg, E. Lagerspetz, E. Peltonen, P. Nurmi, and S. Tarkoma.
(2016) Sovereignty of the Apps: There’s more to Relevance than
Downloads. https://arxiv.org/abs/1611.10161.

[14] H. Ma et al., “Opportunities in mobile crowd sensing,” IEEE
Communications Magazine, vol. 52, no. 8, pp. 29–35, 2014.

[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[16] M.-R. Ra et al., “Odessa: enabling interactive perception applica-
tions on mobile devices,” in Proceedings of the ACM International
Conference on Mobile systems, applications, and services (MobiSys
2011), (Washington, DC, USA), June 28 – July 1, 2011.

[17] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic,
“Adaptive offloading for pervasive computing,” IEEE Pervasive
Computing, vol. 3, no. 3, pp. 66–73, 2004.

[18] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp.
51–56, 2010.

[19] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma,
“Carat: Collaborative energy diagnosis for mobile devices,” in
Proceedings of the ACM Conference on Embedded Networked Sensor
Systems (SenSys 2013), (Rome, Italy), November 11–14, 2013.

[20] S. Sonntag, J. Manner, and L. Schulte, “Netradar-measuring the
wireless world,” in Proceedings of IEEE International Symposium on
Modeling & Optimization in Mobile, Ad Hoc & Wireless Networks
(WiOpt 2013), (Tsukuba Science City, Japan), May 13–17, 2013.

[21] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I.
Yang, “The case for cyber foraging,” in Proceedings of ACM SIGOPS
European Workshop 2002, (Saint-Emilion, France), July 01, 2002.

[22] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud comput-
ing: A survey,” Future Generation Computer Systems, vol. 29, no. 1,
pp. 84–106, 2013.

[23] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing
the state of mobile cloud computing,” in Proceedings of ACM
MobiSys Workshop 2012, (Low Wood Bay, Lake District, United
Kingdom), June 25–29, 2012.

[24] M. A. Hassan et al., “Pomac: Properly offloading mobile applica-
tions to clouds,” Energy (J), vol. 25, p. 50, 2014.

[25] Y. Kwon, H. Yi, D. Kwon, S. Yang, Y. Cho, and Y. Paek, “Precise
execution offloading for applications with dynamic behavior in
mobile cloud computing,” Pervasive and Mobile Computing, 2015.

[26] M. V. Barbera, S. Kosta, A. Mei, V. C. Perta, and J. Stefa, “Mobile
offloading in the wild: Findings and lessons learned through a
real-life experiment with a new cloud-aware system,” in Pro-
ceedings of the Annual IEEE International Conference on Computer
Communications (INFOCOM 2014), (Toronto, Canada), April 27 –
May 2, 2014.

[27] H. Flores and S. Srirama, “Adaptive code offloading for mo-
bile cloud applications: Exploiting fuzzy sets and evidence-based

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, NOVEMBER 201X 18

learning,” in Proceedings of ACM MobiSys Workshop 2013, (Taipei,
Taiwan), June 25–28, 2013.

[28] F. A. Silva et al., “Benchmark applications used in mobile cloud
computing research: a systematic mapping study,” The Journal of
Supercomputing, vol. 72, no. 4, pp. 1431–1452, 2016.

[29] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya,
“Mobile code offloading: From concept to practice and beyond,”
IEEE Communications Magazine, vol. 53, no. 4, pp. 80–88, 2015.

[30] H. Flores, X. Su, V. Kostakos, J. Riekki, E. Lagerspetz, S. Tarkoma,
P. Hui, Y. Li, and J. Manner, “Modeling mobile code acceleration in
the cloud,” in Proceedings of the Annual IEEE International Conference
on Distributed Computing Systems (ICDCS 2017), (Atlanta, GA,
USA), June 5-8, 2017.

[31] K. Nozaki, H. Ishibuchi, and H. Tanaka, “A simple but powerful
heuristic method for generating fuzzy rules from numerical data,”
Fuzzy sets and systems, vol. 86, no. 3, pp. 251–270, 1997.

[32] E. Peltonen, E. Lagerspetz, P. Nurmi, and S. Tarkoma, “Constella:
Crowdsourced system setting recommendations for mobile de-
vices,” Pervasive and Mobile Computing, vol. 26, pp. 71–90, 2016.

[33] H. Flores and S. N. Srirama., “Mobile cloud messaging supported
by xmpp primitives,” in Proceedings of ACM MobiSys Workshop
2013, (Taipei, Taiwan), June 25–28, 2013.

[34] M. Toyama, S. Kurumatani, J. Heo, K. Terada, and E. Y. Chen,
“Android as a server platform,” in Proceedings of IEEE Consumer
Communications and Networking Conference (CCNC 2011), (Las Ve-
gas, Nevada, USA), January 9–12 2011.

[35] M. Gordon et al., “Power tutor, a power monitor for android-based
mobile platforms,” 2009.

[36] M. Mazzucco, M. Vasar, and M. Dumas, “Squeezing out the
cloud via profit-maximizing resource allocation policies,” in IEEE
International Symposium on Modeling, Analysis & Simulation of Com-
puter and Telecommunication Systems (MASCOTS 2012), (Arlington,
Virginia, USA), August 7–9, 2012.

[37] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow,
“Sociablesense: exploring the trade-offs of adaptive sampling and
computation offloading for social sensing,” in Proceedings of the
Annual International Conference on Mobile computing and Networking
(MobiCom 2011), (Las Vegas, Nevada, USA), September 19–23 2011.

Huber Flores is a postdoctoral research scien-
tist in the Department of Computer Science at
the University of Helsinki, Finland. He obtained
his PhD in computer science from the Faculty of
Mathematics and Computer Science, University
of Tartu, Estonia. He is also member of ACM
(SIGMOBILE) and IEEE. His major research in-
terests include mobile offloading, mobile middle-
ware architectures, and mobile cloud computing.
Email: huber.flores@helsinki.fi

Pan Hui received his PhD from the Computer
Laboratory at University of Cambridge. He is the
Nokia Chair in Data Science and Professor of
Computer Science at the University of Helsinki,
the director of HKUST-DT System and Media
Lab at the Hong Kong University of Science
and Technology, and an adjunct professor of
social computing and networking at Aalto Uni-
versity. He worked for Intel Research Cambridge
and Thomson Research Paris and was a Dis-
tinguished Scientist at Deutsche Telekom Lab-

oratories. He has published more than 200 research papers and with
over 13,000 citations. He is an associate editor for IEEE Transactions
on Mobile Computing and IEEE Transactions on Cloud Computing and
an ACM Distinguished Scientist. Email: panhui@cse.ust.hk

Petteri Nurmi is a Senior Researcher at the
University of Helsinki and Science Advisor at
Moprim. He received his PhD in Computer Sci-
ence from the University of Helsinki in 2009 and
he is an adjunct professor of Computer Science
at University of Helsinki since 2012. His research
focuses on sensing, covering system design, al-
gorithms, theoretical models, and new applica-
tion areas. He has published over 80 scientific
publications. Email: petteri.nurmi@helsinki.fi

Eemil Lagerspetz is a postdoctoral scholar at
the University of Helsinki. He completed his PhD
in 2014 at the University of Helsinki. His research
pertains to the analysis of large datasets, mo-
bile computing, and energy efficiency. Dr. Lager-
spetz has received the University of Helsinki
Doctoral Dissertation Award in 2015, Jorma
Ollila Grant in 2015, and the Marc Weiser Best
Paper Award at IEEE PerCom in 2015. Email:
eemil.lagerspetz@helsinki.fi

Sasu Tarkoma is a Professor of Computer Sci-
ence at University of Helsinki since 2009. He
received his Ph.D. degree in 2006 in Computer
Science from the University of Helsinki. He has
worked in the IT industry as a consultant and
chief system architect as well as principal re-
searcher and laboratory expert at Nokia Re-
search Center. He has over 140 scientific pub-
lications, 4 books and 4 US Patents. Email:
sasu.tarkoma@helsinki.fi

Jukka Manner received his PhD computer sci-
ence from the University of Helsinki in 2004.
He is a full professor (tenured) of networking
technology at Aalto University, Department of
Communications and Networking (Comnet). His
research and teaching focuses on networking,
software and distributed systems, with a strong
focus on wireless and mobile networks, transport
protocols, energy efficient ICT and cyber secu-
rity. Email: jukka.manner@aalto.fi

Vassilis Kostakos is Professor of Human Com-
puter Interaction at the School of Computing
and Information Systems at the University of
Melbourne. He has held appointments at the
University of Oulu, University of Madeira and
Carnegie Mellon University. He has been a Fel-
low of the Academy of Finland Distinguished
Professor Programme, and a Marie Curie Fellow.
He conducts research on ubiquitous and per-
vasive computing, human-computer interaction,
and social and dynamic networks. Email: vas-

silis.kostakos@unimelb.edu.au

Yong Li is currently a Faculty Member of the
Department of Electronic Engineering, Tsinghua
University. He received his PhD in electronic
engineering from Tsinghua University, Beijing,
China in 2012. He has previously worked as
Visiting Research Associate with Telekom In-
novation Laboratories, The Hong Kong Univer-
sity of Science and Technology. His research
interests are in the areas of networking and
communications, including mobile opportunis-
tic networks, device-to-device communication,

software-defined networks, network virtualization, and future Internet.
Email: liyong07@tsinghua.edu.cn

Xiang Su is a postdoctoral researcher in com-
puter science in the Center of Ubiquitous Com-
puting at the University of Oulu. Su received a
PhD in technology from the University of Oulu.
His research interests include semantic tech-
nologies, the Internet of Things (IoT), knowledge
representations, and context modeling and rea-
soning. Email: xiang.su@oulu.fi.

