Evidence Combination Based on Credal Belief
Redistribution for Pattern Classification

Zhun-ga Liu, Yu Liu, Jean Dezert, Fabio Cuzzolin

Abstract—Evidence theory, also called belief functions theory,
provides an efficient tool to represent and combine uncertain
information for pattern classification. Evidence combination can
be interpreted, in some applications, as classifier fusion. The
sources of evidence corresponding to multiple classifiers usually
exhibit different classification qualities, and they are often dis-
counted using different weights before combination. In order
to achieve the best possible fusion performance, a new Credal
Belief Redistribution (CBR) method is proposed to revise such
evidence. The rationale of CBR consists in transferring belief
from one class not just to other classes but also to the associated
disjunctions of classes (i.e., meta-classes). As classification accu-
racy for different objects in a given classifier can also vary, the
evidence is revised according to prior knowledge mined from its
training neighbors. If the selected neighbors are relatively close
to the evidence, a large amount of belief will be discounted for
redistribution. Otherwise, only a small fraction of belief will enter
the redistribution procedure. An imprecision matrix estimated
based on these neighbors is employed to specifically redistribute
the discounted beliefs. This matrix expresses the likelihood of
misclassification (i.e., the probability of a test pattern belonging
to a class different from the one assigned to it by the classifier).
In CBR, the discounted beliefs are divided into two parts. One
part is transferred between singleton classes, whereas the other
is cautiously committed to the associated meta-classes. By doing
this, one can efficiently reduce the chance of misclassification
by modeling partial imprecision. The multiple revised pieces
of evidence are finally combined by Dempster-Shafer rule to
reduce uncertainty and further improve classification accuracy.
The effectiveness of CBR is extensively validated on several real
datasets from the UCI repository, and critically compared with
that of other related fusion methods.

Index terms- evidence theory, belief functions, pattern classi-
fication, discounting, classifier fusion.

I. INTRODUCTION

In a multi-source information fusion system, the fusion
generally exploits the complementary knowledge provided by
different sources to reduce uncertainty and improve accuracy
for decision making support. Information fusion techniques
can be broadly divided into three levels [1]: signal level,
feature-level and decision-level fusion. In this work, we
mainly focus on decision-level fusion methods [2], which can
efficiently deal with the heterogeneous information sources
probed by different sensors. At decision level such sources
of information are typically mapped to probabilities, belief
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functions, fuzzy membership functions, or other uncertainty
measures. Decision level information fusion can then be inter-
preted as classifier fusion, in which each information source
corresponds to a classifier.

In this context, belief functions theory [3]-[6], also called
evidence theory or Dempster-Shafer Theory (DST), provides
an efficient tool to characterize and combine uncertain infor-
mation [7], and has been widely applied to pattern classifi-
cation [8]-[14], clustering [15]-[17] and information fusion
[18]-[22], among others. In [9], for instance, an Evidential
K-Nearest Neighbors (EK-NN) classifier is presented. Each
neighbor provides a piece of classification evidence repre-
sented by a Basic Belief Assignment (BBA), and the resulting
K BBAs are combined by DS rule for making the final
class decision. In order to reduce the computational burden
of EK-NN, an Evidential Neural Network (ENN) is further
developed in [8], generally delivering good performance with
relatively lower complexity. For combining classifiers in the
DS framework, a general t-norm based combination rule is
developed in [18] to deal with non-independent information.
Such a rule ranges in behaviour between the DS and the
cautious rules as a function of a parameter, which can be
optimized based on training data. In [19], a class-indifferent
method is developed to combine classifiers based on DST,
in which a classifier’s output is represented by evidential
structures in terms of triplets and quadruplets. In order to
achieve good fusion performance, the method prioritizes the
class decisions to be combined, and employs an ‘ignorance’
element to model unknown information.

Information sources corresponding to multiple classifiers
may have different reliabilities, which can be represented using
different weighting factors in the fusion procedure. Reliability
evaluation then plays an important role in weighted fusion
methods [30]. In the multi-classifier fusion methods [23], [31],
the weight of each classifier is often determined according to
its training accuracy [24]. The higher the accuracy, the bigger
the weight. Some often used weighted combination methods
are introduced in [24], including simple, re-scaled, best-worst
and quadratic best-worst weighted rule, and weighted ma-
jority rule. Weights can also be automatically learned using
the training data [25], [26], and the optimal weight choice
corresponds to the best fusion result under a certain criterion,
e.g. minimal distance between fusion result and ground truth.
When prior, training knowledge is not available, the degree
of conflict among different sources of evidence can also be
used to estimate the weight of each piece of evidence [27]. If
one source exhibits large conflict with the others, this source
will be considered not very reliable, and weighted less. Pieces



of evidence consistent with the others will be assigned larger
weights [28]. Conflict can be measured based on evidential
distance or other similar metrics [29], [32], [33].

Once the weight of each classifier output (i.e., each basic be-
lief assignment) is determined, weighted combination methods
can be applied. In the traditional weighted averaging rule, the
mean of the different pieces of evidence with different weights
is calculated [34]. In Shafer’s classical evidence discounting
operation [3], part of the belief on each class is assigned
to the whole universe of possible classes (‘discounted’) in
proportion to the weight of the corresponding evidence, and
the ‘ignorance’ element (the whole universe or ‘frame’, in
Shafer’s approach) plays a neutral role in the fusion process.
Such traditional discounting strategies are mainly used to tune
the influence of each source on the fusion result, but they
cannot improve the accuracy of each source, because the
belief/probability of each class is proportionally decreased
or increased in the discounting procedure. As a response,
contextual discounting [35] has been developed, as an ex-
tension of classical discounting, to take into account more
refined reliability knowledge. A discount rate vector is used to
represent the degrees of belief in sensor reliability in different
conditions. Such a vector can be learnt by error minimization
in the labeled data space. In a previous work [26], some
of us have also developed a weighted evidence combination
method for multiple classifiers. In [26], an iterative optimiza-
tion strategy is presented to seek the proper weighting factors
(including classifier weight, pattern weight, etc) by minimizing
the distances between combination results and ground truth
over the whole training set. For decision making support, a
cautious rule is introduced. Any pattern hard to classify in
terms of fusion results is assigned to a set of classes, as
partial imprecision open to be refined by other techniques is
considered preferable to definite errors in some applications.
In [26], reliability is estimated using the entire training data,
and classification results produced by the same classifier on
different patterns have the same reliability.

For a given classifier, however, classification results for
different patterns may also have different reliabilities. For
example, patterns in the center of the region spanned by a
class are usually more accurately classified than those lying
in areas where several classes overlap. In [36], a contextual
reliability evaluation method is developed for classifier fusion
based on the concepts of ‘inner’ and ‘relative’ reliability.
The inner reliability reflecting the quality of each classifier
is evaluated based on the neighborhoods of each pattern, and
it can be used to revise the classifier output by discounting
some beliefs in favour of partial ignorance. Relative reliability
is calculated based on an incompatibility measure among
classifiers. Classical evidence discounting is applied using
relative reliability to reduce conflict. Dempster’s rule is finally
employed to combine the discounted classifier outputs for
final classification. Unfortunately, pattern attribute information
may be unavailable in some applications, in which the fusion
core only has at disposal decision-level knowledge coming
from different sources. Moreover, the neighborhoods used to
evaluate inner reliability may or may not represent well the
test pattern to classify. Therefore, inner reliability so defined

cannot be completely trusted for discounting purposes.

A. Contributions

In order to achieve the best possible fusion performance, a
new Credal Beliefs Redistribution (CBR) method is proposed
for combining classifiers. In CBR, the quality of each classifier
output, represented by a BBA m, is evaluated based on its
training neighbors. If these neighbors are very close to m,
this indicates that they are likely to provide important prior
knowledge for BBA correction, and a large proportion of belief
is redistributed. Otherwise, the proportion of belief entering
the redistribution process is small. Belief is redistributed based
on an imprecision matrix ®, which is estimated based on the
local structure of the neighborhood. Entry ¢; ; in ® represents
the prior probability of the pattern to belong to class w; when
classified as w; by the classifier at hand, thus encoding the
degree to which the classifier is undecided/confused between
classes w; and w;.

As part of the proposed Credal Beliefs Redistribution ap-
proach, both an ‘optimistic’ and a ‘pessimistic’ redistribution
strategy are presented. As a function of the imprecision matrix,
belief can be directly transferred among different singleton
classes following the optimistic strategy. CBR also allows
belief to be transferred from a single class (e.g., w;) to a
meta-class containing it (e.g., the disjunction of two classes
w; U wyj) in a more pessimistic/cautious way. A balance pa-
rameter allows CBR to provide a reasonable trade-off between
preserving the specificity of the revised BBA and mitigating
the risk of mistaken BBA revisions whenever the imprecision
matrix is not completely reliable.

B. Paper outline

This paper is organized as follows. The basics of evidence
theory are briefly introduced in next Section. The Credal Belief
Redistribution method is detailed in Section III. In section IV,
suitable experiments are presented to test CBR’s performance,
in comparison with the state of the art. Conclusions are
provided in section V.

II. BASICS OF EVIDENCE THEORY

Evidence theory [3] is a general theory for reasoning under
uncertainty, based on the notion of belief function. Belief
functions assume a frame of discernment Q) = {w1,...,w.},
which consists of a finite discrete set of mutually exclusive
and exhaustive hypotheses — in our case, these correspond to
the possible classes.

A Basic Belief Assignment (BBA) is defined over the power
set 2% of Q, which collects all the subsets of §2. For example,
if Q = {wl,wg,wg}, then 2% = {@,wl,wg,wg,wl U wsg,wi U
ws,wz Uws, Q}. A BBA is then a function m(.) from 2% to
[0, 1], which satisfies the following constraints:

S m(4) =1

Ag2® (1)

m(0) = 0.

A is called a focal element of m(.) if m(A) > 0. When
the cardinality |A| of A is greater than 2 (|A| > 2), A is



called meta-element here. A Bayesian BBA is such that all
its focal elements are singletons elements of the frame of
discernment. In this case, the Bayesian BBA is homogeneous
to a (subjective) probability measure. If the focal elements
of a BBA just consist of the singleton elements and of the
‘ignorance’ element (2, the BBA is called simple.

In a classification context m(A), the ‘mass’ of A, can be
interpreted as the degree of classification of the object at hand
associated with A. If |A| > 2 (e.g. A = w; Uw;), m(A4) also
reflects a classifier’s degree of confusion among elements of
A (e.g. w;,wj). The quantity m(€2) measures total ignorance,
i.e., the reluctance to commit the object to any particular class.

Please note that multi-label learning, the situation in which
the object to classify can simultaneously belong to multiple
classes (i.e., a set of classes) is not considered in this work.
In this paper it is assumed that the object truly belongs to
only one class, and that a set of classes (a meta-element, or
meta-class) reflects imprecision in the classification under the
framework of belief functions. Any meta-element A implies
that the object is likely to belong to one of the classes in A,
but that the true class of the object cannot be resolved.

The belief function Bel(.) and plausibility function PI(.)
associated with a BBA m(.) are defined as

Bel(A)= Y m(B); PI(A)= Y m(B) VAe2®
BCA BNA#)

2
and correspond to lower and upper bounds to the probability
of the events A, respectively.

Multiple sources of evidence each represented by a BBA
can be combined by Dempster’s rule (here called DS rule for
short). The DS combination of my, ..., m,, is defined by

2 -li mi(B)

i=A
mDS(A):[ml@@mn](A): i=1 _
1= % IImi(G)
‘61 Ci=0 =1
3)

for A # (), B;, C; € 22, whereas mpg(0)) = 0 for A = ().

DS rule is associative. Hence, multiple BBAs can be com-
bined one by one, and the order of the combination has no
influence on the final result. DS rule has been widely applied,
but it should be approached with caution when the sources of
evidence are highly in conflict, and in some special case even
when conflict is low [37].

When the sources of evidence have different reliabilities,
they can be discounted using their reliability value to reduce
their weight in the fusion process. Given a BBA m with
reliability (discounting factor) equal to «, classical discounting
[3], due to Shafer, yields:

{"‘m(A) —a-m(Ad) ACQA+Q,

*m(Q) =1—a+a-m(Q). @

It can be seen from Eq. (4) that the discounted beliefs are
all committed to the ignorance element {2 in proportion to
the discounting factor. The smaller the reliability value «,

the higher the degree of ignorance. If a = 1, this BBA
is considered as completely reliable, and is not altered by
discounting. If o = 0, the mass of all its focal elements is
reassigned to {2, and the discounted BBA is the ‘vacuous’
belief function such that “m(£2) = 1, which plays a neutral
role in DS combination.

Such discounting operation is mainly used to tune the
influence of each source of evidence during fusion, but it
cannot improve its accuracy. Consider, for example, a source
of evidence committing maximum belief to a specific class
w;, whereas the true class for the pattern at hand is w;, j # i.
After traditional discounting (4), the maximum mass among
all singleton classes remains on w; (rather than on wj), no
matter what the discounting factor is.

III. CREDAL BELIEF REDISTRIBUTION METHOD FOR
PATTERN CLASSIFICATION

Decision-level information fusion is widely used for target
(pattern) classification [2]. In some applications, the fusion
center just receives multiple independent information sources
expressing the probabilities/beliefs of the object belonging to
each class, and the original observation collecting the pattern’s
attributes is not available. Such information fusion system can
be seen as combining multiple classification results for pattern
classification.

Evidence theory as an important decision-level fusion
method has been applied to classifier fusion for dealing
with uncertain information [18], [19], with each classifier
corresponding to one source of evidence. Classifier output
can typically be represented by a probability (Bayesian BBA)
or a simple BBA, including one additional ‘ignorance’ class.
Therefore, in this work we mainly consider the combination
of classification results in form of Bayesian or simple BBAs.

Classifiers (information sources) are usually diverse in na-
ture. For instance, they might reach their classification results
based on different attributes. Such diversity can provide com-
plementary knowledge which is beneficial for fusion purposes.
However, significant diversity is likely to cause high conflict
among classifiers, leading different classifiers to make different
decisions. In real applications, the classifiers to be combined
generally have different ‘qualities’ (reliabilities).

In order to improve classification accuracy, we propose to
estimate an imprecision matrix to characterize in a rather
detailed, sophisticated way the reliability of a specific classifi-
cation result, for a specific test pattern. The imprecision matrix
is mined from the local structure of the training data around
the test object, and then used to revise each classifier’s output
via Credal Belief Redistribution (CBR) before combination.
This new method allows us to transfer belief from one class
to either other singleton classes or to meta-classes. In such
a way, the chance of poor classification results is mitigated
by properly modeling partial imprecision, with the chance of
it being further refined/clarified by combination with other
classifiers carrying complementary knowledge.

A. Notation and setting

Let us consider multiple classifiers Cy,...,C, learnt from
different attribute data. The outputs of these classifiers need



to be combined for pattern classification over the frame of
discernment 2 = {w1,...,w.} containing all possible classes.

Assume a training set of s labelled patterns is available. For
each classifier C;, [ = 1, ..., n, the result of the classification
of pattern x;, i = 1,..., s, is denoted by p; = (pi1,---,Dic)s
where p; ; = (wj;) represents the probability of x; being
committed to class w;. The true classification results on these
s patterns are expressed by the vectors tq,...,ts, such that
t;(wj) = 1and t;(wgy) = 0, g # j whenever the true class label

of x; is w;. For each classifier the outputs p;,2 =1, ..., s gen-
erated in correspondence to these s patterns are considered as
training data, whereas the patterns themselves x;,2 = 1,...,s

(the vectors of attribute values) are not used in the fusion.
Given a test pattern y, the probabilistic output of each
classifier C;, [ = 1,...,n can be represented by a (Bayesian)
BBA m;,l = 1,...,n. The final classification of y will be
determined by the combination of these BBAs. Since, as we
said, each classifier is, in general, characterized by a different
reliability level on the given classification task, and classifier
accuracy may also vary across patterns, it is crucial to carefully
evaluate the quality of the classification result for each target.

B. Estimation of the imprecision matrix

Let us see how to assess the quality of the classification
result m; produced by classifier C;, [ = 1,...,n. This is done
by evaluating the nearest neighbors of m; in the space of the
training data (the outputs generated by the training patterns).

First, the K nearest neighbors (K-NN) of m; are located,
and denoted by p1,...,Pxk, the corresponding ground truth
vectors being t1, ..., tx. If the K selected neighbors are quite
close to m;, they may provide important prior knowledge for
quality evaluation, according to which a large proportion of
belief originally committed by m; will be redistributed. If,
however, m;’s neighbors are not so close to it, the amount of
belief to be redistributed will be small. Namely, the fraction
of belief entering the redistribution procedure depends on the
distances between m; and its neighbors so defined. The larger
the distance, the smaller the proportion and vice-versa. This
fraction «y, called discounting factor, is computed as:

ap = e Mo )
with
K
> dik
k=1

o = =
Kd

1 s K
d= 122> din,
=1 k=1
where dj;, = |[m; — pg|| is the Euclidean distance between my
and its neighbor py, d;; is the distance between the training
data p; and its k., nearest neighbor.

The quantity ¢; can be computed step by step as follows.
Given m; and the s training datapoints p;,i = 1,...,s, we
can find the K nearest neighbors of m; and those of p;,i =
1,...,s in the training data space, respectively. The average
distance between m; and its K neighbors is calculated as d; =

K
> dii/ K. The average distance between p; and its K-NN is
k=1

_ K
similarly calculated as d; = > d;/K. The mean value of
k=1
the average distances from each training data to its K nearest
neighbors is finally given by d = % 3" d;. Summarising, §;

is thus the ratio between the mean dligtlance of m; to its K
nearest neighbors and the mean distance between training data.
This normalized distance measure is employed here to reduce
the influence of the value of K and of data dispersion on the
quality evaluation process.

Given the discounting factor (5), the discounted beliefs to
be redistributed are given by:

m;; = oqymy. 6)

The remaining fraction of belief is committed to each class as
in the original BBA, namely:

my; = (1 — a)my. @)

In classical discounting, the discounted beliefs are all com-
mitted to the total ignorance element {2 as shown in Eq. (4).
Such operation is mainly used to tune the influence of each
piece of evidence in the combination, but it has no effect on its
accuracy. In opposition, useful prior knowledge can be mined
from a BBA’s neighbors to revise the evidence it represents
via belief redistribution. More precisely, if the majority of
the K neighbors of BBA m; with ground truth label w; are
strongly committed to w; by a classifier, this indicates that the
prior probability that the pattern truly belongs to w;, while
it is actually classified as w;, is high. Thus, the weight of
the hypothesis that the target is classified as w; while it truly
belongs to class w; can be calculated by:

wii= Y e py(w), ®)
tk(qu)ZI

[m; —ps ||

where d = min|im; —py||

and )\; is a parameter distinct for

each classifier [. The quantity dj, is a measure of relative
distance, with as reference the minimum distance of m; to
its nearest neighbors. In (8), e~ % is a distance penalizing
factor which tunes the importance of each neighbor in the
quality evaluation process. Neighbors far from the test pattern
Y, quite reasonably, play a small role in the evaluation. This
allows quality evaluation to be robust to the choice of K,
since neighbors far from the test target (and therefore with a
rather small distance penalizing factor attached) will have a
very moderate influence. The K neighbors are found from the
training data set, and the true class labels of the K neighbors
(e.g. tr(.)) are given as the prior training knowledge.
Finally, the prior probability of the target belonging to

wj,j = 1,...,c when it is classified as w;,7 = 1,...,c can
be easily obtained via normalization:
W s
J,%
Gij = )

> wsm‘7
g

C
so that one has ) ¢; ; = 1.
j=1

The prior probgbility @45 reflects the degree of imprecision
of the classification related to the pair of classes w; and wj,



so that we can term the matrix ®; = [¢; j]cx. the imprecision
matrix attached to the classification result m;. As explained,
the imprecision matrix is estimated by applying K-NN to
the classification result, and different classification outcomes
correspond to different imprecision matrices, all computed in
the same manner.

C. Belief redistribution with imprecision matrix

The imprecision matrix provides prior classification knowl-
edge in a rather sophisticated form, which can be taken into
account for correcting the associated classification result via
proper belief redistribution. Assuming that the imprecision ma-
trix ®; is completely reliable when it comes to the considered
target, the mass values redistributed to w;,j = 1,...,c can be
computed as:

iy (wj) = Z¢i,jml1<wi)- (10)
i=1
This can be rewritten in matrix form as:
my; = &/ my;. (11)

Eq. (10) clearly shows how masses are redistributed among the
different singleton classes thanks to the imprecision matrix. In
particular, one imprecision matrix always exists that can map
the original BBA to the actual ground truth. This is shown by
Lemma 1 below.

Consider, however, that ®; is estimated based on the neigh-
bors of the classification results m;. Since such neighbors may
well differ from m; quite substantially, the resulting impreci-
sion matrix may be unreliable for the purpose of revising m,;.
An ‘unreliable’ imprecision matrix is one that may potentially
change the BBA to one that completely conflicts with the
ground truth, severely harming the classification process. This
point is also a corollary of Lemma 1.

Lemma 1. Let us consider a Bayesian BBA m defined over
the frame of discernment Q = {wy,...,w.}. Let m denote
the modified version of m after application of an imprecision
matrix ®. It must hold that for all j = 1,...,¢ 3P satisfying
m = ®'m, m(w;) = 1,m(w;) = 0,5 # i.

Proof. According to Eq. (11) one has m(w;) = 3 ¢; jm(w;).
When ¢, ; =1,i=1,...,c, one gets: =
m(w;) = Y m(w;) =1 and m(w;) = 0,7 # 1.

1=1
Thus, there exists one imprecision matrix ® with ¢; ; = 1,i =
1,...,c that can make all mass focus on class w;.

D. Cautious redistribution

To avoid the issue of unreliable imprecision matrices,
we illustrate an alternative cautious redistribution approach.
There, the probability ¢;; is considered to represent the
classification’s degree of imprecision concerning w; and w;
for the target at hand. In response, the masses m;; (w;) are
transferred to the meta-class w; Uw;,j = 1,...,c (i.e., the
disjunction of the considered pair of classes) rather than to
the singleton class w;, proportionally to ¢; ;,7 = 1,...,c. Any

individual meta-class, e.g. w; U w;, receives mass transferred
from both the involved singleton classes w; and w;, namely:

(12)

¢j.imin(wy) — My (wj Uw;);
bijmur (wi) — 1 (wi Uwy),

so that the total mass committed to the meta-class w; U wj is:

M (wi Uwj) = & jmui(w;) + o5iman(w;). (13)

In Eq. (13), my1(w; U w;) represents the degree of indistin-
guishability/imprecision associated with the pair of classes w;
and w; when classifying the test pattern at hand.

This is a very cautious belief redistribution method. As an
effect of this revision the plausibility value PI(.) (cfr. Eq.
(2)) of each class increases, whereas its belief value Bel(.)
decreases. When interpreting belief and plausibility functions
as lower and upper bounds to the value of an unknown, ‘true’
probability measure, it follows that the uncertainty interval
[Bel(.), Pl(.)] associated with the classification result become
wider. This is proved in Lemma 2.

Lemma 2. Let us consider one simple BBA m defined
over the frame of discernment Q2 = {ws,...,w.}. Assume m
is revised as in Eq. (13) using an imprecision matrix ®, and
denote by m the revised BBA. It holds that Pl(w;) > Pl(w;)
and Bel(w;) < Bel(w;),i=1,...,c.

Proof. According to Eq. (2), since m is simple (it has only
singletons and 2 as focal elements), we have that Pl(w;) =
m(w;) + m(Q). As for the revised BBA m:

Pl(w;) = Y _ m(A)
w; €A
= m(w;) + Y _m(w; Uw;) +m(Q)
i#£]
= giim(wi) + Y _[di m(wi) + ¢jim(w;)] +m(Q)
i#£j

- Z Gijm(wi) + Z[(bj,im(wj)] +m(Q).

=1 i+
Since ¢, ; € [0,1] Vi=1,...,¢,j=1,...,cand ) ¢;; =
j=1

1, it follows that:

Pl(wi) = m(wi) + Y _[d;im(w;)] + m(Q)
i#]
> m(w;) + m(Q) = Pl(w;).

Thus, one always has Pl(w;) > Pl(w;).
Since m is simple, Bel(w;) = m(w;). As for the revised BBA

Bel(w;) = m(w;) = ¢5im(w;) < m(w;),

and we have as desired.

Lemma 2 shows that the plausibility value of any (singleton)
class does not decrease after cautious redistribution, no matter
what the imprecision matrix is. When the imprecision matrix
estimated based on the pattern’s training neighbors is not very
reliable (in the sense explained above), the proposed cautious
redistribution is able to suppress the harmful influence of the



imprecision matrix on belief redistribution, and to increase its
robustness. Nevertheless, this cautious behavior is inherently
pessimistic, since it leads to higher imprecision which is
undesirable for efficient classification.

E. Credal redistribution

A sensible conclusion is that, when revising a BBA via
redistribution, it is not a good idea to exclusively adopt a single
strategy, either the optimistic one described in Eq. (10), or
the pessimistic one of Eq. (17), whereas it is best to strike a
balance between the two approaches. To this extent, a credal
redistribution method is introduced below, which allows belief
to be transferred not only to singleton classes but also to meta-
classes.

Namely, an additional parameter [; is introduced to balance
the assignment of belief to singleton classes in the optimistic
strategy, and to meta-classes in the pessimistic one. In this way,
the risk of classification error is reduced by properly modeling
the partial imprecision of the classification process. As we
mentioned, the imprecise information on the meta-classes
can be reduced by combination with other classifiers. Any
misclassification, however, is typically difficult to overcome
via fusion. Credal redistribution, then, provides a good trade-
off between classification accuracy and specificity.

Specifically, the masses committed to the singleton classes
w;,t = 1,...,c and meta-classes w; Uw;,i = 1,...,¢;5 =
1,...,c under credal redistribution can be determined, as a
function of the fraction m;; (6) of the original BBA, as:

i (w; Uw;) = B[ i jmn (wi) + ¢jimun (w))]; (14)
my(wi) = ¢jmin(w;) + (1= Br) Z Gi jmun(wi). (15)
i=1,i#j
In the revised BBA, the total belief on the singleton class w;
is then calculated by compounding Eq. (6) and (15) as:

1y (w;) = muz(wy) + M (w;)
= (1 = ay)mu(wy) + &, 5mu1 (wy)

c
+(1=06) Z Gijmun (wi).
i=1,i#j
Since no mass is committed to meta-classes in the original
BBA, the masses of the meta-classes in the revised BBA can
be directly obtained as:

(16)

ml(wi U wj) = mll(wi U wj)
= Bi[piymunr(wi) + djamu (w;)].

The mass of the ‘ignorance’ class m;({2) (if applicable)
remains the same after the redistribution procedure.

Each classifier output my,...,m, can be revised one by
one in the way described above. Then, the revised BBAs
m;,2 =1,...,n are combined by DS rule (3) to yield:

a7

m/ =1, ®m,... o m,, (18)

where @ denotes DS combination.

F. Influence of parameters

In the proposed credal redistribution method, three factors
play a very important role: the discounting factor «, the
imprecision matrix ¢ and the balance factor 5. A BBA can be
suitably corrected by tuning these parameters. Here we briefly
discuss their influence.

Assume that the test pattern to classify has true class label
w;, and that the original classifier output m is corrected
using an imprecision matrix ¢ determined as a function of
its training neighbors. If the output of the classifier on these
neighbors is quite different from m, the discounting factor
a will be very small, indicating that a small fraction of the
original mass is redistributed, with most of the original mass
preserved for each class. In this situation, the tuning of ® and
[ has little influence on the revision of m. If the classifier’s
outputs for the selected neighbors are very consistent with m,
a will be big and a large fraction of the original belief will
be redistributed.

According to credal redistribution, if the estimated impreci-
sion matrix ® is beneficial for correcting the classifier’s output
(i.e., the entries of ® in the i, column, ¢;;,j = 1,...,c are
large), the largest share of mass can be assigned to the true
class w; by ®. In such a situation the balance parameter 3
should be small, so that most belief is transferred from the
other singleton classes to the singleton class w;. In this way,
a more specific and accurate BBA can be obtained. Finally,
if the imprecision matrix ® is not very reliable (i.e., the
elements ¢. ;,j # 4 are large where 4 is the true class of
the target), using it may harm the revision of m. In this case
a large B value is required in order to redistribute belief to
meta-classes of the form w; U w;. This reduces the risk of
a misclassification error at the price of partial imprecision.
Criteria for choosing proper values for these parameters are
discussed in the remainder of the paper.

Let PO = [pgl), ...,pgl)] be a matrix whose columns are
the output of classifier C; on the available training patterns
X1y ooy Xge

Table 1
CREDAL BELIEF REDISTRIBUTION

Input:  Given classifiers: C;,l =1,...,n

Classifier output on training data: P(1) ... P(")

Classifier output on test data-point y: m;,l =1,...,n

Par: K: number of nearest neighbors
A; > 0: distance penalizing weight
v; > 0: discounting weight

b1 € [0,1]: balance number

I=1ton

Select the K-nearest neighbors of m; from P();
Calculate the discounting factor oy by Eq. (5);
Determine the redistributed masses by Egs. (6), (7);
Estimate the imprecision matrix ®; by Eq. (9);
Correct the classifier output m; as in Egs. (16), (17).

for

end

Combine corrected results for classification by Eq. (18).

For convenience of implementation, our credal belief redis-



tribution method for the combination of multiple classifiers
is outlined in Table I, which assumes that all parameters are
shared across the various classifiers.

G. lllustrative example

We think it is useful to provide a numerical example to
illustrate more clearly how to implement the proposed credal
belief redistribution method.

Let us consider a single source of evidence m defined over
a frame of discernment Q = {w1,ws,ws}, with m(wy) = 0.5,
m(ws) = 04, m(wsz) = 0.1. Assume that CBR yields
discounting factor o = 0.8, imprecision matrix ® = [¢]3x3 =

0.3 0.5 0.2

01 09 O

0.2 06 0.2
he discounted masses entering the redistribution process are

calculated by Eq. (6), m; = am, that is:

ml(wl) = 0.4,m1 (CUQ) = 0.32,m1(oJ3) = 0.08.

The remaining mass is retained by each class according to
my = (1 — a)m, so that one gets:

mg(wl) = O.l,mQ(WQ) = O.O8,m2(w3) = 0.02.

The masses of singleton classes revised from m; via the
imprecision matrix ¢ and the balance number S are obtained
via Eq.(15):

and balance number 5 = 0.5.

my(w1) = ¢1,1ma(wi) + Blog,1mi(we) + ¢31m1(w3)]

— 0.144:

my(we) = ¢2.2mi(wa) + Bld1,2m1(wi) + ¢3,2m1 (wW3)]
= 0.412;

mi(ws) = ¢3.3m1(ws) + Bld1,3m1(wi) + d2,3m1 (w2)]
= 0.056.

In the revised BBA, the total mass of each singleton class is
calculated by adding ms as in Equation (16):

m(w1) =m (wl) + mg(wl) = 0.244;
m(WQ) =m (WQ) + mg(wg) = 0.492;
T?L(o.)g) = ml(wg) + mQ(UJQ,) = 0.076.

The masses cautiously discounted to meta-elements from m;
are determined using Eq. (17), as a function of the imprecision
matrix and the balance number:

m(w; Uwz) = (1 = B)[p1,2m1(w1) + ¢2,1m1(w2)] = 0.116;
m(wl U (U3) = (1 — ﬁ)[¢173m1 (wl) + (bg,lml(w;g)] = 0.048;
m(we Uws) = (1 — 5)[(;52’31711(&}2) + ¢3.0my (UJ3)] = 0.024.

One can easily verify that normalization is satisfied.

In the original BBA m, most belief is committed to w;. The
available imprecision matrix, however, indicates that patterns
belonging to wy are likely to be misclassified as w; and wsg
since ¢12 and ¢3o are large values. Thus, in the revised
BBA m, large masses are transferred from w; and ws to
wo thanks to the imprecision matrix, which also causes some
imprecise information to focus on the meta-classes. As a result,
wy receives the largest belief/mass in m, and the degree of
‘confusion” m(w; U wg) between w; and wo is also high.
The risk of the revision affecting accuracy can be reduced

by modeling such imprecision, leaving open the possibility
that this may be subsequently clarified by combining 7 with
evidence provided by other sources (i.e., other classifiers).

H. Some discussion

1) CBR versus boosting: Although CBR, as an ensemble
classification method may show some superficial similarities
with the popular boosting and random forest methods [38],
[39], the underpinning principles in the two cases are quite
different.

In both boosting and random forests, the (weighted) av-
eraging or voting rule is usually employed to combine mul-
tiple (weak) sub-classifiers, and the generation of a diverse
collection of sub-classifiers plays a crucial role in improving
classification accuracy. In this work, however, the sources of
information (corresponding to the classifiers) are assumed to
be given, and the generation of sub-classifiers is out of the
scope of this paper.

What we propose, instead, is an efficient combination
method for dealing with the multiple classification results
produced by different sources of information, implemented
via an evidence combination method based on credal belief
redistribution. CBR is used to revise the given classification
results by properly redistributing the masses of the classes and
their disjoint unions under the framework of evidence theory,
after which the well-known DS rule is employed to combine
the revised classification output. Other differences between
CBR and boosting approaches are pointed out in Section IV-G.

2) Complexity analysis: In the proposed CBR method, for
each classification outcome its K nearest neighbors within the
training data are sought to estimate the related imprecision
matrix, which is in turn used to correct the classification result
via proper belief redistribution. This is a rather refined belief
redistribution method, as each classification result corresponds
to a distinct imprecision matrix. The complexity of K-NN is
O(s), s being the number of training data. If m is the number
of test patterns to be classified based on the combination of n
sources of information (i.e., classifiers), the K-NN algorithm
needs to be run m X n times to calculate m X n imprecision
matrices. After that, a linear revision of the classification result
is conducted, and DS rule is implemented for conjunctive
combination of the multiple sources of information. The
computing time of both these steps is not related to s. The
complexity of the proposed method is therefore O(s xm x n),
which is rather time consuming.

For other weighted fusion methods, such as the weighted
DS (WDS) combination rule or the weighted averaging fusion
(WAF) rule [24], each information source is given only one
weight to reflect its influence/importance in the fusion proce-
dure, which is shared by all the classification results produced
by this source, without the need to calculate a new weight for
each classification result before combination. As a result, their
computation burden is lower than that of CBR. However, as
we will empirically see in Section IV, this is a price worth
paying for a significantly improved classification accuracy.

3) Guidelines on parameter tuning: As explained our
credal belief redistribution method involves three tuning pa-
rameters: A\, v and . In particular, the proportion « € [0, 1] of



mass entering the redistribution procedure (Eq. (5)) is driven
by the parameter v, which is used to tune the influence of
the distance ratio 4. As the latter is a ratio between average
distances, rather than absolute ones, + is relatively robust to
the changes in distance values. Some heuristics have been
tested for the choice of 7, and good results can, on average, be
obtained when ~ lies in the interval of [0.5, 1.5]. This is briefly

K -
explained here. In applications, the ratio &; = Y dj/(Kd)

of the average distance between m; (the evidenléglto correct)
and its K nearest neighbors and the average distance between
training patterns usually lies in the interval [1/3, 3]. If §; = 1/3
and ~ € [0.5, 1.5], the proportion of redistributed mass lies in
the interval a; € [60.65%, 84.65%], by Eq. (5). If §; = 3, this
indicates that the neighbors are quite far from m;, and one
has o € [1.11%,22.31%)]. In general, such intervals in the
proportion coefficient look reasonable for v € [0.5,1.5]. v =1
usually can be recommended as default value for simplicity.

Parameter 3 € [0, 1] is used in Eq. (14) to balance the belief
redistribution processes concerning singleton classes and meta-
classes, respectively. The larger the value of 3, the more mass
is transferred from the singleton classes to the associated meta-
classes, and the higher the imprecision of the classification.
Whereas, if 3 is too small, the lion’s share of belief will be
directly transferred between singleton classes, which may lead
to misclassification when the imprecision matrix determined
based on the neighbors of the target pattern is not very reliable.

Default values of A = 1, v = 1 and 8 = 0.5 usually
yield good classification results according to our many tests
with different datasets, and are recommended in most cases.
Moreover, leave-one-out cross validation can be applied to
the training data to retrieve the optimal values of these three
parameters for a specific dataset. Such optimal parameter
values should minimize the distances between the combination
results and the ground truth, namely:

{%ﬂ,)\}:au"gminZHmf—tiH7 (19)
vBA i

where s is the number of training datapoints, m{ is the result

of combining multiple sources of evidence with respect to
the ¢-th training datapoint, and t; is the corresponding truth
vector. A grid search strategy can be used to find the optimal
values of v € [0.5,1.5] and 8 € [0, 1] within the respective
suggested intervals, using a small step length (e.g. 0.1). Once
~v and (B are set, the remaining parameter A > 0 can be
optimized by minimizing the above objective function (19).
The interior-point algorithm [40], [41] can be used to solve
such optimization problem. In Matlab™, the interior-point
algorithm is implemented by the function finincon to find the
optimal value of .

IV. EXPERIMENTAL VALIDATION

To validate the proposed Credal Belief Redistribution (CBR)
method for pattern classification via classifier combination,
in this Section we apply CBR to a number of benchmark
datasets and compare its performance with that of several other
related combination methods, such as DS rule, Weighted DS

rule (WDS), Averaging Fusion rule (AF), Weighted Averaging
Fusion rule (WAF) [24] and OWDS [26], the latter previously
proposed by some of us.

A. Base classifiers

In our tests, Support Vector Machine (SVM) [42], Naive
Bayesian classifier (BAY) [43], and Evidential Neural Net-
work (ENN) [8] are employed as base classifiers to generate
pieces of evidence. The SVM classifier adopts the one-versus-
rest decomposition strategy and the standard linear kernel,
and is trained using the L-BFGS (Limited-memory Broyden-
Fletcher-Goldfarb-Shanno) algorithm. The regularization co-
efficient is set to 0.1. The output of the SVM is converted
to a probability measure (a process often called ‘calibration’)
to preserve any useful classification information as much as
possible.

In a c-class problem, the output of an SVM for a test pattern
y is given by a vector f = (f1, fo, ..., f.), where f; represents
the value of the hyperplane function associated with the SVM
trained on class w; versus the other classes. The resulting prob-
ability distribution can be denoted by p = (u1, o, ..., fc),

fi—min f;
where py; = — * " The larger the hyperplane function

> (fg—min f;)
g=1 J
value the higher the probability, computed in a way similar
to max-min normalization. Of course, different kernels or
calibration strategies may be adopted, depending on the actual
application. In our naive Bayesian classifier implementation,
a Gaussian distribution is assumed to hold for each attribute.
In ENN, the maximum number of iterations is set to 500 and
the stopping threshold is 10, In all these base classifiers, the
optimal parameter values (e.g. for the regularization coefficient
in SVM, the maximum number of iterations and the stopping
threshold in ENN) can be determined, as usual, by cross-
validation on the training data'. Two popular ensemble learn-
ing methods, Adaboost [38] and Random Forest (RF) [39],
are also included for sake of comparison. Both the number of
learning cycles in Adaboost and the number of trees in RF are
set to 100.

B. Benchmark datasets

Fifteen datasets from the UCI repository (available at http://
archive.ics.uci.edu/ml) are used to evaluate the performance of
the various combination methods analyzed. The basic features
of these datasets, including number of classes, number of
attributes (#Attr.) and number of instances (#Inst.), are all
shown in Table II.

In our experimental setting, for each benchmark dataset the
attribute set is divided into n folds, and a different classifier is

IDefault parameter values, such as setting the regularization coefficient to
0.1, the maximum number of iterations to 500 and the stopping threshold to
104, are often used in applications. We found that good results on average
can be obtained using such values, according to our many tests on different
data sets: hence, we adopted those settings for sake of simplicity. In fact, it
turns out that the classification results are not very sensitive to the tuning of
these parameters, and small changes of these settings do not have a significant
effect on the performance of these classifiers.



Table IIT
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH SVM AS BASE CLASSIFIER (IN %).

Data  n ', 7" AF WAF DS WDS OWDS CBR
PB 5 [89.8820.08, 91.5010.26] 89.84L0.13 80.000.08 89.84L0.27 89.8410.29 O1.81+£0.36 93.52L0.52
PB 3 [90.4440.28, 93.77+0.13]  91.72+0.78 91.65+0.87 91.74+0.75 91.81+0.76 93.90+0.72  95.15+0.19
Te 10 [56.4440.34, 78.1820.17] 92.09+0.18 69.20+£0.26 92.31+0.16 92.64+0.29 92.64+0.38  98.02:-0.21
Te 4 [76.474+037, 87.5140.41] 96.42+0.20 95.98+0.15 96.65+0.14 96.97+0.15 97.08+0.13  99.22-0.11
Sat 12 [60.3042.01, 78.90+0.86] 79.89+0.28 71.03+1.76 78.03+0.53 79.67+0.44 80.53+0.35  84.630.18
Sat 3 [71.4840.24, 75.214+0.23] 76.38+0.25 76.24+023 75.98+0.13 7632+0.18 76.96+0.27  80.31+0.11
Ta 2 [36.821.95, 48.09+1.29] 47.69+3.98 43.98+4.48 47.16+4.46 47.16+4.14 49234+4.15  54.81+3.82
Veh 3 [49.76+1.95, 56.38+1.65] 60.28+1.51 62.88+1.52 59.22+048 61.70+1.52 63.35+1.57  64.50+1.48
Veh 6 [37.9442.51,50.71+1.52] 58.04+1.61 56744273 60.174£2.65 58.16+2.58 60.29+2.76  63.92+1.27
Rwq 5 [43.34£1.19, 54.60+£0.43] 54.03+0.34 55974027 55.04+0.55 54.724046 56.58+0.39  63.78+0.83
Rwq 2 [49.53£1.25, 56.04:£0.06] 57.54+0.16 55.724038 57.5440.25 58.04+0.27 59.85+0.31  62.74+0.88
New 2 [84.65+1.58, 89.30+£1.20] 88.84+134 90234122 88.84+1.50 90.70+1.42 93.06+1.51  92.94+1.93
ORHD 4 [66.73+0.42, 84.57+£0.35] 92.26+0.18 91.2540.28 92.374£0.23 92.244025 94.15+0.25  95.31+0.15
ORHD 8 [39.32:+0.47, 64.88+0.22] 77.694+0.22 77.4040.27 79.234+0.18 81.9840.26 83.10+0.29  85.08+0.21
Vow 3 [16.67£1.08, 34.75+1.24] 34.55+1.87 37.174£2.09 35.35+£1.63 42.63+£1.68 45.83+1.77 87.974+0.92
Vow 2 [33.84+0.17, 37.68+1.40] 43.6440.59 40.0040.06 44.65+1.19 44344027 48.38+0.86  89.34+1.17
Pen 4 [53.8320.82, 62.694+0.19] 78.7240.09 77.71£0.09 79.28+0.07 78.59+0.21 81.21+0.19  94.3740.33
Pen 8 [26.16+0.43, 44.814+0.80] 72.86+0.63 65.84+0.55 74.60+0.09 74.21+0.14 78354032  85.26::0.37
Hay 2 [43.1343.54, 43.75:3.82] 43.75+4.16 43.7543.57 46.25+0.73 45.004£2.70 46.89+3.15  52.10-:3.98
Kno 2  [83.83%1.46, 92.54+0.47] 88.31+£0.97 88.31+1.00 88.31+1.05 88.81+0.87 90.81+0.91  96.81-+0.45
ML 6 [35.004£1.95,48.614237] 61.11£1.47 58.89+2.08 61.94+£1.00 61.39+£1.53 63.174£2.27  86.64--2.92
ML 15 [25.2840.94, 44.724221] 59.44+224 33.06+2.19 60.83+2.73 59.72+2.50 61.95+2.65  83.64--2.89
Seg 2 [41.90£1.05, 80.43£1.13] 74944284 72.5542.68 74.46+2.16 83.94+1.86 84.8442.15 86.51+1.34
Seg 5 [31.69+0.85, 80.13£0.90]  79.18+1.09 88.48+1.19 77.84+1.55 86.71+1.26 90.58+1.33  91.40+0.33
WQ 2 [46.8240.19, 48.65-0.56] 48.63+0.62 48.53+0.50 48.67+0.29 48.61+038 51.594+0.52  61.98:£0.76

Table IT
BASIC CHARACTERISTICS OF THE DATASETS EMPLOYED HERE.

Dataset #Classes #Attr.  #Inst.
Page-blocks (PB) 5 10 5472
Texture (Te) 11 40 5500
Satimage (Sat) 7 36 6435
Tae (Ta) 3 5 151
Vehicle (Veh) 4 18 946
Red wine quality (Rwq) 6 11 1599
Newthyroid (New) 3 4 215
Opt. Rec. Hand. Digits(ORHD) 10 64 5620
Vowel-context (Vow) 11 10 990
Pen-Based Recognition (Pen) 10 16 10992
Hayes-Roth (Hay) 3 5 160
Knowledge (Kno) 4 5 403
Movement-libras (ML) 15 90 360
Segment (Seg) 7 19 2310
Wine quality (WQ) 7 11 4898

trained on a distinct fold of the attribute set’>. This generates
n sources of information associated with the learnt classifiers.
In total we consider 25 cases (each corresponding to a dataset
with a specific value of n), and test the performance of our
proposed CBR approach over these cases. For each case,
the base classifiers generate n pieces of classification results
for each query pattern to classify, each represented by a

2Naive Bayes is not applicable to the Pen and ORHD datasets, for the
within-class variance of several attributes is not positive. Consequently, 13
datasets are used in conjunction with the Naive Bayesian classifier. Adaboost
and random forest are implemented using all the original attributes.

(Bayesian/simple) BBA. These are combined as described in
Section III to obtain the final class decision. The number of
base classifiers n ranges from 2 to 15 for different datasets®.

In WDS and WAF, the weighting factors are determined ac-
cording to the normalized training accuracy of each classifier,
as done in [24]. This is expressed by Equation (20):

m
E i
i=1

where 77; denotes the individual accuracy of classifier C; on
the whole data set, given by 7; = %%, N being the number of
patterns correctly classified and 1" the total number of patterns.

wy = ; (20)

C. Performance evaluation

k-fold cross validation [44] is often used for classification
performance evaluation, but k£ remains a free parameter [44].
Here we use the simplest 2-fold cross validation method?,
since training and test sets are of equal size, and each sample
can be respectively used for training and testing on each fold.
For each fold, the program is randomly run 10 times, and

3In this paper the sources of information are considered already given, and
our proposed combination method focusses on the best way to combine any
number n of such sources. We are not concerned with selecting the optimal
number of sources to combine, as this is a given in our approach. In out
tests we create n sources for each dataset by randomly splitting the set of
attributes (feature components) into n folds, and learning a classifier for each
fold. The classification performance is reported in Tables III, IV and V for two
possibly such splits to show that CBR consistently outperforms its competitors
no matter the number of sources considered.

4The commonly used 10-fold cross validation approach can be also applied
here. In our tests, however, it produces performances close to that of 2-fold
cross validation.



we report CBR’s classification performance for K (number of
training neighbors considered) in the range {5,6,...,15}. The
mean classification accuracy together with the related standard
deviation for the various competing combination methods,
using respectively SVM, ENN and Bayesian base classifiers,
are reported in Tables III, IV and V. The maximal and minimal
accuracy of the individual classifiers are also presented as
n* £ max 755 n' £ min 7;. The highest classification accuracy
for eachjdata set acro;s the various methods is labeled in bold.

A sign test is used to check whether significant differences

exist between our proposed CBR and other methods. In the
sign test, a Z value is calculated as:

(r—0.5)—0.5N
0.5N ’
where r > 0.5N is the number of cases in which CBR delivers

higher accuracy than the compared method, and N is the total
number of cases to test. The results are shown in Table VI.

zZ 4 21)

Table VI
PERFORMANCE COMPARISON BETWEEN CBR AND OTHER METHODS VIA
THE SIGN TEST.

AF  WAF DS WDS OWDS
Zsym 4.8 4.8 4.8 4.8 4.4
Zygnw o 44 4.8 4.8 44 4.0
Zpay 436 436 436 3.93 4.36

D. Discussion

From Tables III-V, one can appreciate how combining clas-
sifiers generally produces higher accuracy than the individual
models, in most cases. This indicates that the different classi-
fiers may provide important complementary knowledge, a very
helpful feature for improving classification performance.

One can also note that the proposed CBR method typically
yields the highest accuracy, when compared to other com-
bination methods (i.e., DS, WDS, AF, WAF). In traditional
weighted fusion methods, the weight is mainly used to control
the influence of each classifier in the fusion procedure. In
the weighted averaging fusion (WAF) rule, for instance, the
probability of each class in the classifier’s output is reduced
in proportion to the given weight in the fusion process. In the
weighted DS (WDS) rule, the belief on each class is roughly
discounted (reassigned) to the ‘total ignorance’ class.

As already pointed out, such weighted fusion strategy
cannot improve the accuracy of each individual piece of
classification result at all. In our previous OWDS method,
the weighting factors are optimized using the whole training
data, and different targets share a common weight for a given
classifier.

In actual reality, classification accuracy varies across differ-
ent test patterns for any given classifier. In our proposed CBR
method, an efficient and sophisticated belief redistribution
strategy is plugged in to correct the output of a classifier
for each test pattern. The involved weighting parameters
(discounting factor, imprecision matrix and balance number)
are estimated as a function of the training neighbors of the

classifier output for each specific test pattern, inspired by the
notion that the local structure of such neighborhoods can well
reveal useful information on the classifier’s performance in
the local region around the target. Moreover, in CBR belief is
allowed to be discounted not only to other singleton classes,
but also to the associated the meta-classes according to the im-
precision matrix. By doing this, one can properly redistribute
masses among different classes to improve accuracy. When the
imprecision matrix is not reliable enough, CBR also provides
a robust belief redistribution strategy based on meta-classes,
aimed at reducing misclassification risks by modeling partial
imprecision/confusion involving pairs of classes. These are the
reasons why CBR globally outperforms other fusion methods.
Quantitatively, the Z values produced by the sign test for
all competing fusion methods, and reported in Table VI, are
all bigger than Zj ¢5,2 = 1.96. This confirms that CBR yields
significantly better performance than other fusion methods.

E. Influence of K

In order to test the influence of K on the classification
performance of CBR, curves plotting accuracy versus K €
[5,15], for different base classifiers on various datasets, are
reported in Figure 1. In the legends, C-n (e.g., SVM-5) means
base classifier C (e.g., SVM) and number of classifiers being
combined equal to n (e.g., 5). The x-axis represents K values,
and y-axis represents the classification accuracy.

As it can be appreciated, variations in accuracy associated
with different K values as generally very small. This is
because training neighbors far from the pattern to classify end
up playing a minor role in the belief redistribution procedure.
This indicates that the performance of CBR is robust to the
tuning of K, as desirable for real applications.

F. Computational cost

The execution time (in seconds, s) of the different methods
with SVM as base classifier is shown in Table VII.

Table VII shows that the proposed CBR method is indeed
more time consuming than other methods, since the K nearest
neighbors of each classification result need to be found to
estimate the imprecision matrix. A tradeoff thus exists be-
tween accuracy and computation when using this approach.
Generally speaking, CBR is more suitable for applications in
which high classification accuracy is required whereas efficient
computation is not a strong requirement.

G. Comparison with boosting

Two popular ensemble learning methods, i.e. Adaboost [38]
and Random Forest (RF) [39], are also included here for
sake of comparison, and their classification results are shown
in Table VIII. For each dataset, two cases (two values of
n) are considered in our evaluation of CBR. We selected
the case with the highest accuracy here for comparison, and
the corresponding accuracy is also reported in Table VIII
for the convenience. A total of 15 datasets were considered
in this experiment. We found that random forests produce
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Plots of CBR’s classification accuracy as a function of K € [5,15], over different datasets and for different base classifiers.



Table IV
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH ENN BASE CLASSIFIER (IN %).

Data n [nl , n*] AF WAF DS WDS OWDS CBR
PB 5 [89.7740.01, 90.97+£0.05] 89.774+0.01 89.77+£0.01 89.77+£0.01 89.774+0.01 90.234+0.05 91.32+0.20
PB 3 [89.7740.01, 91.384+0.06] 89.774+0.01 89.774+0.01 89.774+0.01 89.774+0.01 90.354+0.03  91.324+0.27
Te 10  [50.85+0.69, 68.55+1.70] 80.76£1.05 59.13+0.39 80.334+0.87 80.65+1.44 82.53+0.91 89.89+0.46
Te 4 [56.3840.56, 67.47+0.26] 79.224+0.24 76.71+0.47 80.05+0.46 79.044+0.31 81.65+0.39 89.31+0.55
Sat 12 [69.23+0.51, 82.3542.27] 84.34+0.31 73.70+£0.45 84.074+0.18 84.16+0.31 85.03+£0.25 85.52+0.23
Sat 3 [77.564+1.21, 78.484+1.03] 83.20£1.19 83.12+1.04 83.34+0.87 83.484+0.97 84.194+1.02 85.99+1.14
Ta 2 [31.7843.52, 37.51+£4.48] 38.834+2.01 37.94+2.11 39.27+2.65 39.05+1.97 42.614+2.86 46.80+3.65
Veh 3 [41.134+1.91, 42.43+1.01] 52.724+1.56 49.65+0.89 52.13+0.61 52.60+1.54 54.10+0.94 56.67+1.18
Veh 6 [37.2340.36, 49.29+£3.72] 55.794+1.08 55.32+0.21 55.444+0.89 55.3240.89 56.824+091 59.99+1.91
Rwq 5 [40.714£0.43, 56.72+0.56] 56.47+1.11 57.72+£1.09 56.66+1.02 57.35+40.94 59.254+0.72 60.82+0.16
Rwq 2 [47.724+0.90, 47.84+0.42] 49.844+1.09 49.72+0.93 49.59+1.46 49.724+1.17 51.63+1.29 58.47+0.36
New 2 [80.4642.16, 92.11£3.19] 92.114£2.13 92.58+1.68 92.58+1.94 93.04+1.61 93.15+1.55 92.62+1.26
ORHD 4 [65.1440.85, 72.10+£1.72] 85.044+0.20 86.35+£0.45 85.09+0.29 85.444+0.34 86.21£0.25 91.03+0.31
ORHD 8 [43.7240.16, 66.76+0.23] 88.244+0.43 65.70+£0.23 87.86+0.15 88.564+0.38 88.914+0.21 89.47+0.23
Vow 3 [34.7542.52, 42.02+£2.12] 65.2542.73 58.59+3.09 67.78+£2.65 67.27+3.20 69.354+2.29 84.39+3.32
Vow 2 [35.5640.76, 55.96+2.24] 61.01+2.68 55.45+2.86 61.11+£2.44 61.01+£2.05 64.254+2.18 86.22+2.39
Pen 4 [54.4541.56, 64.69+£0.93] 80.194+0.82 79.97+1.14 81.04+£0.60 80.294+0.39 83.334+0.46 87.22+0.80
Pen 5 [48.4440.87, 62.44+1.76] 81.51+0.81 79.79+0.07 81.39+1.02 81.87+1.03 84.164+0.89 85.44+0.62
Hay 2 [54.374+0.44, 58.13+£0.88] 70.63+0.44 66.88+0.88 66.25+1.76 68.13+0.44 69.054+0.52 68.81+0.75
Kno 2 [71.3943.31, 77.36+2.82] 85.824+0.86 86.32+1.80 87.06+1.25 86.574+2.24 88.15+1.16 96.45+1.44
ML 6 [30.5641.37, 45.83+£2.55] 62.504+3.92 56.39+£1.96 64.17+£1.96 63.33+3.92 67.204+3.84 73.06+3.53
ML 15 [24.72+0.20, 40.00+1.18] 65.00£3.73 30.56+3.14 66.944+2.35 65.00£3.14 68.13+£3.42 70.71+2.39
Seg 2 [47.104£0.93, 69.52+1.01] 79.78+2.18 78.83+£2.08 82.55+2.22 79.004+2.35 83.26+2.85 85.71+1.27
Seg 5 [36.41£1.21, 71.00+£2.47] 78.40+0.84 79.05£1.15 84.68+0.46 77.10+0.82 85.65+0.73 91.15+0.55
wQ 2 [44.7540.31, 45.02+0.30] 44.814+0.37 44.92+0.05 44.86+0.31 44.794+0.40 45.68+0.45 57.47+0.65

Table V
CLASSIFICATION ACCURACY OF DIFFERENT COMBINATION METHODS WITH BAYESIAN BASE CLASSIFIER (IN %).

Data n [nl , n"] AF WAF DS WDS OWDS CBR
PB 5 [87.19£2.98, 91.94+0.20] 91.784+0.12 88.23+0.21 93.064+0.14 92.14+0.10 93.81£0.11 94.10+0.12
PB 3 [86.11£2.27, 92.344+0.36] 92.91£1.50 90.81£2.12 93.924+0.49 93.1740.36 93.92+0.43 94.4440.29
Te 10  [46.05+0.17, 66.534+0.21] 74.35+0.16 53.51+0.19 77.4540.12 75.00+£0.09  77.554+0.15 85.36+0.34
Te 4 [54.15£0.04, 66.80+0.21] 72.02+0.36 70.91+0.34 77.45+0.16 73.3840.49  77.97+0.38 83.08+0.41
Sat 12 [61.71£0.28, 79.554+0.09] 77.28+£0.05 77.27+0.06 76.85+0.07 77.11£0.12  77.68+0.09  79.10+0.11
Sat 3 [76.2740.08, 79.53+0.09] 81.18+£0.08 81.17+£0.09 80.00+0.12 80.64+0.10 80.82 £0.16 81.64+0.23
Ta 2 [39.96+2.01, 47.01+2.64] 48.56+2.13 49.24+1.36 49.01+2.89 48.964+291 50.1842.65 54.05+3.28
Veh 3 [39.7241.34, 51.89+1.92] 49.53+2.59 52.25+1.42 47.2843.93 50.3542.17 52.194£2.75 59.77+3.18
Veh 6 [36.764+1.50, 43.38+0.17] 47.2840.67 49.53+2.34 45.514+0.08 48.234+0.33 57.95+0.46  63.84+1.09
Rwq 5 [39.15£0.68, 55.10+0.33] 56.10£0.55 56.22+0.52 56.224+0.73 56.60+0.80 57.65 £0.86 63.49+1.05
Rwq 2 [42.90+2.15, 56.10+0.23] 55.85+1.72 53.66+1.52 56.85+1.18 57.164+0.88  59.08+1.01 62.75+1.04
New 2 [88.8540.83, 91.65+0.60] 95.82+0.53 95.83+0.76 95.82+0.53 95.834+0.96 95.83+0.83 95.90+0.91
Vow 3 [36.9741.14, 42.3241.79] 67.88£1.00 61.62+2.24 71.624+0.29 68.084+2.57 75.354+1.89  91.74+1.48
Vow 2 [47.68+1.21, 58.994+0.86] 66.97+2.71 63.74+£1.76 71.62+1.62 66.67+1.52  75.96+1.65 90.56+1.19
Hay 2 [53.1342.03, 56.254+1.20] 61.87+4.19 58.754+3.70 59.384+3.72 65.63+3.92 64.234+3.83 64.3243.40
Kno 2 [31.8441.56, 79.10+1.35] 80.10£1.43 80.10+£1.51 83.33+1.52 79.85+1.36 81.85£1.49  82.63+1.60
ML 6 [27.78+1.59, 40.00+1.67] 50.284+0.86 47.50+2.24 69.44+1.20 50.004+0.93 71.33+1.18  73.48+1.89
ML 15 [21.11£0.83, 33.064+1.87] 48.06+t1.74 27.78+2.78 69.444+4.03 48.894+2.53 7245 £2.41 77.17+2.39
Seg 2 [49.91£0.41, 79.524+0.76] 67.53£0.40 59.57+0.26 80.394+0.57 80.174+0.70  83.52+0.55 86.941+0.87
Seg 5 [30.2240.32, 75.89+0.74] 77.194£0.82 80.09+0.34 80.39+0.54 80.224+1.06 83.98+0.73 89.28+0.92
wQ 2 [41.40+0.29, 46.824+0.37] 47.73£0.19 46.04+0.62 48.00+0.06 48.044+0.22 50.85+0.42  60.77+0.72

performances comparable to that of CBR. While CBR yields
higher accuracy than RF on some datasets, RF outperforms
CBR on others. More precisely, in our tests CBR coupled with
SVM is able to produce higher accuracy than Adaboost and
RF on 9 datasets, whereas RF yields the highest accuracy on
the remaining 6 benchmarks.

We need to stress, however, that CBR operates on a principle
which is quite distinct from those upon which both Adaboost

and random forests are built. Specifically, in this work the
various pieces of information (i.e., the classifiers outputs)
are passed to a fusion center, where the CBR approach is
used to efficiently combine classification results. The original
attribute values of the patterns are not at all involved in such
a decision level fusion process. In contrast, both Adaboost
and RF require access to the attribute values of the patterns
in order to generate (weak) sub-classifiers, which are then



Table VIII

CLASSIFICATION ACCURACY OF RANDOM FOREST, ADABOOST AND CBR METHODS(IN %).

Data Ada RF CBR
PB 93.444+0.20 97.14+0.23 95.15+0.19
Te 56.92+3.84 78.96+0.64 99.22+0.11
Sat 78.604+0.46  90.68+0.19 84.63+0.18
Ta 40.01+3.42 51.334+3.78 54.81+3.82
Veh 54.484+2.49 73.784+0.87 64.5041.48
Rwq 56.35+0.36  63.66+1.09 63.78+0.83
New 94.234+1.15 94.70+0.76  92.94+1.93
ORHD 68.10£1.09 87.964+0.44 95.31+0.15
Vow 30.234+3.11  72.38+2.24 89.34+1.17
Pen 51.304+1.35 88.55+0.25 94.37+0.33
Hay 56.634+5.23  79.63+3.04 52.10£3.98
Kno 79.23+1.68 93.76+£1.07 96.81+£0.45
ML 18.924+1.67 45.11£2.79 86.64+2.92
Seg 69.844+1.84 91.04+0.47 91.40+0.33
wQ 47.36+1.29 63.47+£0.56 61.98+0.76

Table VII
EXECUTION TIME(S) OF THE DIFFERENT COMBINATION METHODS WITH
SVM AS BASE CLASSIFIER.

Data n AF WAF DS WDS  OWDS CBR
PB 5 02421 0.2429 03819 0.3860 0.3941  0.5996
PB 3 02418 02420 03784 03817 0.3910  0.5253
Te 10 0.0041 0.0046 0.0544 0.0612 0.0779  1.1307
Te 4 0.0038 0.0038 0.0285 0.0312 0.0360 1.1307
Sat 1203205 03277 05720 05913  0.6054  0.8337
Sat 3 03175 03175 0.2337 02856 02915  0.8337
Ta 2 00011 0.0011 0.0020 0.0032 0.0041  0.0063
Veh 3 0.0007 0.0007 0.0023 0.0029 0.0037 0.0176
Veh 6 0.0011 0.0011 0.0036 0.0049 0.0053 0.0197

Rwq 5 00012 0.0012 0.0069 0.0074 0.0079  0.0753

Rwq 2 00011 0.0011 0.0037 0.0044 0.0048 0.0420

New 2 0.0002 0.0002 0.0006 0.0008 0.0008 0.0026

ORHD 4 0.0041 0.0042 0.0258 0.0294  0.0337  0.7269
ORHD 8 0.0041 0.0042 0.0462 0.0498 0.0522  0.9690

Vow 3 0.0008 0.0008 0.0038 0.0043 0.0056  0.0547

Vow 2 0.0008 0.0008 0.0027 0.0032 0.0032  0.0429
Pen 4 0.0084 0.0084 0.0678 0.0714 0.0764  1.3895
Pen 8§ 0.0085 0.0088 0.1013 0.1098 0.1115  1.9052

Hay 2 0.0002 0.0002 0.0005 0.0008 0.0008 0.0020

Kno 2 0.0003 0.0003 0.0010 0.0014 0.0015  0.0059
ML 6  0.0005 0.0005 0.0027 0.0036 0.0045  0.0563
ML 15 0.0005 0.0005 0.0067 0.0090 0.0107 0.1189
Seg 2 00014 0.0015 0.0076 0.0085 0.0092  0.0856
Seg 5 00017 0.0018 0.0094 0.0113 0.0129 0.1521

wQ 2 0.0027 0.0031 0.0138 0.0155 0.0159 0.2572

integrated to improve accuracy. CBR and these two ensemble
learning methods, therefore, are really designed to deal with
completely different fusion settings. Whenever the fusion
center receives multiple classification results from different
information sources but the original pattern attributes cannot
be obtained, then CBR is a sensible option. If pattern attributes
are available, RF is a reasonable alternative choice for the
classification task.

V. CONCLUSIONS

Evidence theory has been widely applied to classifier fusion,
as each classifier output can be represented by a piece of
evidence in the form of a Basic Belief Assignment. The
various pieces of evidences may have different qualities of

classification, and they are usually discounted using different
weights before combination.

In order to achieve the best possible fusion performance, in
this paper a new Credal Belief Redistribution (CBR) method
was proposed to amend the evidence prior to combination. In
CBR, the K-Nearest Neighbors of each piece of evidence are
found at first to calculate the parameters of the discounting
process. The amount of mass/belief to be redistributed mainly
depends on the distance between the piece of evidence and
its training neighbors. Larger distances allow less mass to
enter the redistribution procedure. An imprecision matrix is
estimated based on the K neareast neighbors to characterize
the degree of imprecision of the classification, i.e., the prob-
ability of a target to belong to each possible class, given the
classification result declared by the classifier at hand. Since the
neighbors may or may not adequately represent the evidence,
we cannot completely trust the related imprecision matrix for
evidence correction. As a consequence, CBR allows us to
reassign masses from single classes to both other singleton
classes or to meta-classes (i.e., disjunctions of two classes).
The transfer of belief between different singleton classes can
efficiently improve the accuracy of evidence when the impre-
cision matrix is very reliable, but carries misclassification risks
when this is not the case. Redistributing a fraction of the mass
to the meta-classes can mitigate this risk by properly modeling
partial imprecision. As a result, CBR is able to well balance
degree of specificity and misclassification risk in the evidence
correction process. The multiple pieces of corrected evidence
are finally combined by DS rule for pattern classification.

Various real datasets from the UCI repository were em-
ployed to evaluate the performance of CBR. Our experimental
results show that CBR can indeed improve classification
accuracy over other related fusion methods. The classification
accuracy of CBR is robust to the choice of K, the number of
neighbors, which is appealing for real applications.

As a limitation, the computation burden of CBR is signif-
icant, but unavoidable in our strive to improve accuracy. So
the application of CBR, as currently formulated, is constrained
in cases in which fast computation is required, for instance



when dealing with truly big datasets. In our future work we
will indeed work towards developing a faster, more efficient
credal belief redistribution method, by adding elements of
unsupervised learning. Namely, close classification results can
be grouped together in order to have to calculate only one
imprecision matrix per group, thus significantly reducing the
computation burden. In parallel, we seek to extend CBR’s
range of applications to include complex, real-world tasks,
such as multi-source information fusion (using e.g. SAR,
traditional and infrared imagery) for target identification in
uncertain environments.
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