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Abstract. Ozone forms in the Earth’s atmosphere from the

photodissociation of molecular oxygen, primarily in the trop-

ical stratosphere. It is then transported to the extratropics

by the Brewer–Dobson circulation (BDC), forming a pro-

tective “ozone layer” around the globe. Human emissions of

halogen-containing ozone-depleting substances (hODSs) led

to a decline in stratospheric ozone until they were banned

by the Montreal Protocol, and since 1998 ozone in the upper

stratosphere is rising again, likely the recovery from halogen-

induced losses. Total column measurements of ozone be-

tween the Earth’s surface and the top of the atmosphere in-

dicate that the ozone layer has stopped declining across the

globe, but no clear increase has been observed at latitudes

between 60◦ S and 60◦ N outside the polar regions (60–90◦).

Here we report evidence from multiple satellite measure-

ments that ozone in the lower stratosphere between 60◦ S

and 60◦ N has indeed continued to decline since 1998. We

find that, even though upper stratospheric ozone is recover-
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ing, the continuing downward trend in the lower stratosphere

prevails, resulting in a downward trend in stratospheric col-

umn ozone between 60◦ S and 60◦ N. We find that total col-

umn ozone between 60◦ S and 60◦ N appears not to have

decreased only because of increases in tropospheric column

ozone that compensate for the stratospheric decreases. The

reasons for the continued reduction of lower stratospheric

ozone are not clear; models do not reproduce these trends,

and thus the causes now urgently need to be established.

1 Introduction

The stratospheric ozone layer protects surface life from

harmful solar ultraviolet radiation. In the second half of the

20th century, halogen-containing ozone-depleting substances

(hODSs) resulting from human activity, mainly in the form

of chlorofluorocarbons, led to the decline of the ozone layer

(Molina and Rowland, 1974). The ozone hole over the South

Pole was the clearest example of ozone depletion, but total

column ozone was declining between 60◦ S and 60◦ N (Far-

man et al., 1985; WMO/NASA, 1988; WMO, 2011, 2014).

The Montreal Protocol came into effect in 1989, banning

multiple substances responsible for ozone layer depletion,

and by the mid-2000s it had become apparent that a decline

in total column ozone had stopped at almost all non-polar

latitudes since around 1997 (WMO, 2007).

The general expectation is that global mean stratospheric

column ozone will increase as hODSs continue to decline,

but increasing total column ozone due to decreasing ODSs

has not yet been reported (WMO, 2014); a cooling strato-

sphere is also thought to aid the recovery of ozone by slow-

ing temperature-dependent reaction rates and by accelerat-

ing ozone transport through the meridional Brewer–Dobson

circulation (BDC). Chemistry–climate models (CCMs) pre-

dict that mean total column ozone will increase, but this also

remains uncertain since projections rely substantially on the

CO2, N2O, and CH4 emissions scenarios (Revell et al., 2012;

Nowack et al., 2015).

Only recently has a total column ozone recovery been de-

tected over Antarctica during the austral spring (Solomon

et al., 2016). However, non-polar (< 60◦) total column ozone

levels have remained stable since 2000 (WMO, 2014), with

most latitudes displaying a positive, but non-significant,

decadal trend (WMO, 2014). Results from Frith et al. (2014)

and Weber et al. (2017) suggest a potential peak in positive

trends around 2011, after which positive trends decreased,

and while uncertainties shrink, significance remains elusive.

Despite a lack of clear recovery in total column ozone,

ozone appears to be significantly recovering in the upper

stratosphere above 10 hPa in multiple ozone composites that

merge observations from various space missions, especially

at mid-latitudes (Kyrölä et al., 2013; Laine et al., 2014;

WMO, 2014; Tummon et al., 2015; Harris et al., 2015; Stein-

brecht et al., 2017; Ball et al., 2017; Frith et al., 2017; Sofieva

et al., 2017; Bourassa et al., 2017). Trends are almost al-

ways presented as percentage change per decade, which does

not illuminate the contribution to the column ozone changes.

Thus, a recovery in upper stratospheric ozone does not mean

that stratospheric ozone as a whole is recovering. Indeed, if

total column ozone does not display any significant changes

since 1997, while the upper stratosphere displays significant

increases, then either the uncertainties due to unattributed dy-

namical variability interfere in the significance of the trend

determined through regression analysis, or there are coun-

teracting trends at lower levels of the stratosphere or in the

troposphere.

Suggestions of a decrease in lower stratospheric ozone

have been presented elsewhere (Kyrölä et al., 2013; Geb-

hardt et al., 2014; Sioris et al., 2014; Nair et al., 2015;

Vigouroux et al., 2015). However, it has been difficult to

confirm (WMO, 2014; Harris et al., 2015; Steinbrecht et al.,

2017) because (i) ozone is typically integrated over wide lat-

itude bands and/or total column ozone is considered, both of

which may lead to cancellation of opposing trends; (ii) large

dynamical variability unaccounted for in regression analy-

sis together with shorter time series lead to higher uncer-

tainties (Tegtmeier et al., 2013); (iii) below 20 km there are

large ozone gradients, with low ozone concentrations close to

the tropopause; and (iv) composite-data merging techniques

have hindered identification of robust changes (Harris et al.,

2015; Ball et al., 2017).

In addition to only reporting decadal percentage changes,

most studies typically do not consider altitudes below 20 km

(∼ 60 hPa), missing stratospheric changes down to 16 km in

the tropics (30◦ S–30◦ N) or ∼ 12 km at mid-latitudes (60–

30◦), regions that contain a large fraction of, and drive most

sub-decadal variability in, total column ozone. Absolute un-

certainties between limb sounding instruments have been re-

ported to be up to ∼ 10–15 % near 16 km (Tegtmeier et al.,

2013), which should be accounted for from bias corrections

when composites are constructed, but which may also reduce

confidence in variability and trends in the lower stratosphere.

Nevertheless, a recent study by Bourassa et al. (2017) ex-

tended their analysis of the SAGE-II/OSIRIS ozone compos-

ite down to 18 km, where widespread, partially significant,

negative ozone trends (1998–2016) can be seen at all lati-

tudes from 50◦ S to 50◦ N. Models do predict a future decline

in tropical lower stratospheric ozone (Eyring et al., 2010;

WMO, 2011), but evidence for recent BDC-driven ozone de-

creases remain weak, and decreases identified at 32–36 km

(near 10 hPa) are largely thought to be due to high ozone

levels over 2000–2003 (WMO, 2014), and thus may be an

artefact of the analysis period rather than a BDC change.

Finally, issues remain in the attribution and identification

of ozone recovery usually performed through multiple lin-

ear regression (MLR) analysis that can lead to biased trend

estimates (Damadeo et al., 2014; Ball et al., 2017) due to

geolocation biases (Sofieva et al., 2014), vertical resolution
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(Kramarova et al., 2013), and satellite drifts and biases from

merging data into composites (WMO, 2014; Tummon et al.,

2015; Harris et al., 2015; Ball et al., 2017). Most studies con-

sider either piecewise linear trends (PWLTs) or the equiv-

alent effective stratospheric chlorine (EESC) proxy to rep-

resent the influence of hODSs on long-term ozone changes

(Newman et al., 2007). Chehade et al. (2014) and Frith et al.

(2014) both concluded that total column ozone trends up to

2012 and 2013 estimated from PWLTs or EESC prior to 1997

agree well, but post-1997 the EESC proxy implies significant

and positive increases, while PWLTs are generally smaller

and non-significant at most non-polar latitudes. This suggests

that post-1997 changes in total column ozone may no longer

be well represented by an EESC regressor. Since PWLT rep-

resents the overall trend without any specific physical attri-

bution, the total column ozone may indeed be increasing at a

slower rate than EESC estimates suggest, or not at all.

Here, we quantify the absolute changes in ozone in dif-

ferent regions of the stratosphere and troposphere and their

contributions to total column ozone since 1998 at different

latitudes and between 60◦ S and 60◦ N using a robust regres-

sion analysis approach (Sect. 2.1): dynamical linear mod-

elling (DLM) (Laine et al., 2014; Ball et al., 2017). DLM

provides a major step forward by estimating smoothly vary-

ing, non-linear background trends, without prescribing an

EESC explanatory variable or restrictive piecewise linear as-

sumptions. Although this precludes a clear physical attribu-

tion, similar to PWLT, it allows for an assessment of how

ozone is evolving on decadal and longer timescales and to

identify if and when an inflection in ozone occurs. We use

updated ozone composites extended to 2015–2016 (Sect. 3)

and put the DLM results of the longer time series in the con-

text of previously reported percentage change trends, usually

reported from 20 km upwards, but here extended down to the

tropopause (Sect. 4.1). We then consider the absolute contri-

bution to total column ozone of partial column ozone from

the upper, middle, lower, and whole stratosphere (Sect. 4.2),

and then the tropospheric contribution (Sect. 4.3). We finally

show results from two CCMs in specified dynamics mode

(Sect. 4.4), and in Sect. 5 we discuss our findings and con-

clude.

2 Methods

2.1 Regression analysis

The standard method to estimate decadal trends or changes in

ozone, MLR, is known to have estimator bias and regressor

aliasing (Marsh and Garcia, 2007; Chiodo et al., 2014). To

minimise these effects we use a more robust method using

a Bayesian inference approach through DLM (Laine et al.,

2014; Ball et al., 2017; see Laine et al., 2014 for a detailed

description of the DLM model and implementation). DLM

is similar to MLR in that the same regressors (see Sect. 2.2,

below) are used for known drivers of ozone variability, and

an autoregressive term is included. However, the trend is not

predetermined with a linear, or piecewise linear, model, but

is allowed to smoothly vary in time, and the degree of trend

non-linearity is an additional free parameter to be jointly in-

ferred from the data. We infer posterior distributions on the

non-linear trends by Markov chain Monte Carlo (MCMC)

sampling; the background trend levels at every month are in-

cluded as free parameters, with a data-driven prior on the

smoothness of the month-to-month trend variability. DLM

analyses have more principled uncertainties than MLR since

they are based on a more flexible model and formally inte-

grate over uncertainties in the regression coefficients, (non-

stationary) seasonal cycle, autoregressive coefficients, and

parameters characterising the degree of non-linearity in the

trend. The time-varying background changes are inferred

rather than specified by, for example, an estimate of EESC

(Newman et al., 2007) or PWLT; there is no need for assump-

tions about when and where a decline in hODSs occurs.

2.2 Regressor variables

Similar to MLR, we use regressor time series that represent

known drivers of stratospheric ozone variability. These in-

clude the 30 cm radio flux (F30) as a solar proxy (as it better

represents UV variability than the commonly used F10.7 cm

flux; Dudok de Wit et al., 2014), a latitudinally resolved

stratospheric aerosol optical depth for volcanic eruptions

(Thomason et al., 2017), an ENSO index (NCAR, 2013) rep-

resenting El Niño–Southern Oscillation variability1, and the

Quasi-Biennial Oscillation at 30 and 50 hPa2. For total col-

umn ozone and partial column ozone trend estimates, we

also use the Arctic and Antarctic Oscillation3 proxy for the

Northern and Southern hemispheres. We use a second or-

der autoregressive (AR2) process (Tiao et al., 1990) to avoid

the autocorrelation of residuals. We remove the 2-year pe-

riod following the Pinatubo eruption, i.e. June 1991 to May

1993, from the analysis to avoid problems related to im-

pacts of satellite ozone retrieval due to stratospheric aerosol

loading (Davis et al., 2016), and aliasing between regressors

within the regression analysis (Chiodo et al., 2014; Kuchar

et al., 2017); the volcanic aerosols still show slowly varying

changes, which are important to consider as a regressor since

volcanic aerosols have a larger impact on ozone in the lower

stratosphere than the upper.

1From NOAA: http://www.esrl.noaa.gov/psd/enso/mei/table.

html.
2From Freie Universität Berlin: http://www.geo.fu-berlin.de/en/

met/ag/strat/produkte/qbo/index.html.
3From http://www.cpc.ncep.noaa.gov/products/precip/CWlink/

daily_ao_index/teleconnections.shtml.
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2.3 Statistics

We do not apply any statistical tests and therefore avoid

making assumptions about the (posterior) distributions. The

posterior distributions that represent the change since Jan-

uary 1998 are formed from the (n = 100 000) DLM samples

from the MCMC exploration of the model parameters (see

Sect. 2.1). Then, probability density functions (PDFs) are es-

timated as histograms of the sampled DLM changes from

1998. Finally, the probabilities represent the percentage of

the posteriors that are negative; therefore, the posteriors and

probabilities presented in all figures represent the full infor-

mation about the change in ozone since 1998 obtained from

the DLM analysis; these are not always normally distributed.

Positive increases have values less than 50 % and therefore

increases at 80, 90, and 95 % probabilities are indicated by

their respective contours in Fig. 1 and have values less than

or equal to 20, 10, and 5 % in Fig. 2 (see also Figs. S1, S3,

S4, S6, S9, and S10 in the Supplement).

3 Ozone data

3.1 Satellite ozone composites

A summary of the ozone merged datasets – SWOOSH (Davis

et al., 2016), GOZCARDS (Froidevaux et al., 2015), SBUV-

MOD (Frith et al., 2017), SBUV-Merged-Cohesive (Wild

and Long, 2018), SAGE-II/CCI/OMPS (Sofieva et al., 2017),

and SAGE-II/OSIRIS/OMPS (Bourassa et al., 2014) – and an

intercomparison of the publicly available data up to 2012 can

be found in Tummon et al. (2015); data up to 2016 are avail-

able upon request from composite principal investigators (see

also Steinbrecht et al., 2017). These data are monthly, zonally

averaged, homogenised, and bias-corrected ozone datasets.

Nevertheless, merged product uncertainties remain large in

the upper troposphere and lower stratosphere (UTLS) region

in merged products, with estimated monthly uncertainties

of 3–9 % in SAGE-II-CCI-OMPS (Sofieva et al., 2017) and

drifts of ∼ 1 % per decade in the OSIRIS period of SAGE-II-

OSIRIS-OMPS (Bourassa et al., 2017). Although data qual-

ity degrades in the UTLS, biases are still removed through

the same procedure as other parts of the stratosphere and are

thought to be performed optimally (Sofieva et al., 2014); re-

sults agree with studies focused on the tropical UTLS (Sioris

et al., 2014). Additional uncertainties remain unquantified,

such as those in the SBUV (vertically resolved) composites

due to very low resolution in the lower stratosphere (Frith

et al., 2017) and uncertainties that result from the unit con-

version from number density to volume mixing ratio in the

SWOOSH and GOZCARDS composites that require infor-

mation about local temperature. We note, however, that for-

mal definitions and calculations of uncertainties vary be-

tween composites and cannot necessarily be directly com-

pared (Harris et al., 2015; Ball et al., 2017).

We consider the period 1985–2016 in all cases, except

SAGE-II/CCI/OMPS up to 2015, as it ends in July 2016.

We consider the latitudinal range 60◦ S to 60◦ N where all

composites have latitudinal coverage and from 13 to 48 km

in SAGE-II/CCI/OMPS and SAGE-II/OSIRIS/OMPS, the

approximately equivalent pressure range of 147–1 hPa that

we consider in SWOOSH, GOZCARDS, and Merged-

SWOOSH/GOZCARDS; for SBUV-NOAA, SBUV-NASA,

and Merged-SBUV we consider 50–1 hPa. SWOOSH,

SBUV-Merged-Cohesive, and GOZCARDS have been up-

dated since previous intercomparisons (Tummon et al., 2015;

Harris et al., 2015); see Table 1 for more information. GOZ-

CARDS v2.20, used here, includes SAGE-II v7.0 and has

a finer vertical resolution than earlier versions. It must be

stressed that the resolution of SBUV instruments below

25 km (22 hPa) is low (McPeters et al., 2013; Kramarova

et al., 2013); thus, linear trends estimated at 25–46 hPa also

encompass altitudes lower than those that they formally rep-

resent (see Sect. 4 for a discussion on this).

3.2 Merged-SWOOSH/GOZCARDS and

Merged-SBUV

SWOOSH and GOZCARDS are composites constructed

with similar instrument data (Tummon et al., 2015;

Ball et al., 2017) but with different preprocessing and

merging techniques; the same is true for SBUV-MOD

and SBUV-Merged-Cohesive, which are constructed us-

ing nadir-viewing backscatter instruments. The Merged-

SWOOSH/GOZCARDS and Merged-SBUV results pre-

sented here combine these two pairs of composites (Alsing

and Ball, 2017), which show slightly different spatial vari-

ability (see Fig. S1) (Tummon et al., 2015; Harris et al.,

2015; Steinbrecht et al., 2017; Frith et al., 2017). Part of the

reason is related to offsets and drifts in the data that con-

tinue to be one of the largest remaining sources of uncer-

tainty within, and between, ozone composites (Harris et al.,

2015; Ball et al., 2017; Frith et al., 2017). These artefacts

can be largely accounted for using the Bayesian integrated

and consolidated (BASIC) methodology developed by Ball

et al. (2017), which we apply to both pairs of data separately;

examples of corrected time series in the lower stratosphere

are given in Fig. S2, and others can be found in Ball et al.

(2017). This method also fills data gaps, which is reasonable

if they are discontinuous for only a few months. This is true

for these datasets but is not for the SAGE-II/CCI/OMPS and

SAGE-II/OSIRIS/OMPS.

3.3 Total column ozone

We use merged SBUV v8.6 (Frith et al., 2014) for com-

parison of results with total column ozone observations,

which are available on a 5◦ latitude grid from 1970 onwards.

We verify the stability of SBUV total column ozone after

1997 by comparing SBUV total column ozone overpass data

Atmos. Chem. Phys., 18, 1379–1394, 2018 www.atmos-chem-phys.net/18/1379/2018/
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Table 1. List of datasets and coverage considered in this study; some data products cover ranges outside those quoted/used here. Data units

are either Dobson units (DU), volume mixing ratio (vmr) in parts per million (ppm), or number density (n-den) in cm−3.

Name Region Alt. or press. range Location Version Units Merged?

SBUV-MOD1 Total column 0–400 km Space v8.6 DU No

Arosa1 Total column 0–400 km Ground – DU No

SBUV-MOD Stratosphere 50–1 hPa Space v8.62 vmr Yes3

SBUV-Mer. Coh. Stratosphere 50–1 hPa Space LOTUS2 vmr Yes3

GOZCARDS Stratosphere 147–1 hPa Space v2.202 vmr Yes4

SWOOSH Stratosphere 147–1 hPa Space v2.6 vmr Yes4

SAGE-II-OSIRIS-OMPS Stratosphere 13–48 km Space LOTUS2 n-den No

SAGE-II-CCI-OMPS1 Stratosphere 13–48 km Space Sofieva et al. (2017) n-den No

OMI/MLS Troposphere 0–16 km Space v9/v4.2 DU No

WACCM-SD All 0–120 km Model v4 vmr No

SOCOL-SD All 0–80 km Model v3 vmr No

1 All data consider the January 1985–December 2016 period, except SAGE-II-CCI-OMPS (1985–2015), Arosa (1970–2015), and SBUV-MOD total column
ozone (1970–2016). 2 All marked datasets were made available through the SPARC Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS)
activity; unmarked datasets are publicly available. 3 SBUV-MOD and SBUV-Merged-Cohesive were merged to form Merged-SBUV using the BASIC
algorithm laid out in Ball et al. (2017). 4 GOZCARDS and SWOOSH were merged to form Merged-SWOOSH/GOZCARDS using the BASIC algorithm laid
out in Ball et al. (2017).

with the independent Arosa ground measurements, which are

available from 1926 to present (Scarnato et al., 2010).

3.4 Tropospheric column ozone

For tropospheric ozone, we consider Aura satellite Ozone

Monitoring Instrument and Microwave Limb Sounder

(OMI/MLS) tropospheric column ozone measurements, dis-

cussed by Ziemke et al. (2006). The tropospheric ozone is es-

timated through a residual method that derives daily maps of

tropospheric column ozone by subtracting MLS stratospheric

column ozone from co-located OMI total column ozone. The

OMI/MLS data, including data quality and data description,

are publicly available4. Coverage of the OMI/MLS ozone is

monthly (October 2004–present) and at 1◦
× 1.25◦ horizon-

tal resolution, which we have zonally averaged to make com-

parisons here.

4 Results

4.1 Post-1997 ozone changes resolved by latitude and

altitude

Concentrations of active stratospheric hODSs reached a

maximum in ∼ 1997 (Newman et al., 2007), and verti-

cally resolved satellite measurements show evidence that

upper stratospheric ozone (10–1 hPa; ∼ 32–48 km) started

recovering soon after (WMO, 2014). Figure 1 presents

post-1998 ozone changes from four ozone composites that

combine multiple satellite instruments (see Sect. 3). The

4From the NASA Goddard website https://acd-ext.gsfc.nasa.

gov/Data_services/cloud_slice/.

Merged-SBUV and Merged-SWOOSH/GOZCARDS com-

posites show 95 % probability that upper stratospheric ozone

at almost all latitudes between 60◦ S and 60◦ N has in-

creased. This is less robust in SAGE-II/CCI/OMPS and

SAGE-II/OSIRIS/OMPS, which show differences at equa-

torial latitudes (10◦ S–10◦ N). The reason for the difference

is not clear, but we note that in this region nearly 50 %

of the data are missing in the first 5 years (1998–2002),

while Merged-SWOOSH/GOZCARDS and Merged-SBUV

have no missing data (Harris et al., 2015).

In contrast to the upper stratosphere, all four composites

show a consistent ozone decrease below 32 hPa and 24 km

at all latitudes (Fig. 1). The regions where probabilities are

high (> 80, 90, and 95 %; see legend) are similar in all com-

posites, except for Merged-SBUV, which has a lower ver-

tical resolution. Right of Fig. 1a are two examples of the

Merged-SBUV vertical resolution, indicating the contribu-

tion to ozone at a particular layer at tropical (solid) and north-

ern mid-latitudes (dashed) (Kramarova et al., 2013). The

profiles peaking at 3 hPa (red) span ∼1–8 hPa and contain

only upper stratospheric changes. However, while changes at

25 hPa (blue) show insignificant changes in the other higher-

resolution composites, the Merged-SBUV profile ranges be-

tween ∼ 15 and 100 hPa, thus including the lowest part of

the stratosphere where changes in the other composites are

negative. We cannot use Merged-SBUV for comparison of

resolved ozone changes, although a total column ozone prod-

uct based upon these data can be used for comparison later

(Sect. 4.3). While Merged-SBUV has a different spatial pat-

tern, the increases in the upper, and decreases in the lower,

stratosphere qualitatively agree with the other composites.
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Figure 1. Zonally averaged change in ozone between 1998 and 2016. From (a–d) the Merged-SBUV, Merged-SWOOSH/GOZCARDS,

SAGE-II/CCI/OMPS (CCI), and SAGE-II/OSIRIS/OMPS (SOO) composites. Red represents increases, blue decreases (%; see right legend).

Contours represent probability levels of positive or negative changes (see left legend). Grey shaded regions represent unavailable data. Pink

dashed lines delimit regions integrated into partial ozone columns in Fig. 2 (and Figs. S3, S4, S6, S9, and S10). To the right of Merged-

SBUV are the instrument observing profiles centred at 3 hPa (red, upper) and 25 hPa (blue) at northern mid-latitudes (dashed) and in the

tropics (solid) from Kramarova et al. (2013). SAGE-II/CCI/OMPS changes are for 1998–2015.

These results strongly indicate that ozone has declined in the

lower stratosphere since 1998.

We note that our spatial results (Figs. 1 and S1) show sim-

ilar patterns and changes to those presented in other studies,

(e.g.WMO, 2014, Bourassa et al., 2014, Sofieva et al., 2017,

Steinbrecht et al., 2017), though these typically do not ex-

tend below 20 km and thus often do not show the extensive

decrease in lower stratospheric ozone that we do. Bourassa

et al. (2017) extend down to 18 km and, indeed, show a larger

region of decreasing ozone trends, but even this does not ex-

tend as far down as our results, i.e. ∼17 km for 30◦ S–30◦ N

and 13 km outside this region. Our results do not qualita-

tively disagree with previous studies and approaches (WMO,

2014). However, 4 additional years of data (Tummon et al.,

2015; Harris et al., 2015), an improved regression analysis

method (Laine et al., 2014; Ball et al., 2017) (see Sect. 2),

and techniques to account for data artefacts (Ball et al., 2017)

increase our confidence in the identified changes in the lower

stratosphere.

4.2 Stratospheric and total column ozone post-1997

changes

The spatial trends presented in Fig. 1 are informative for

understanding where, and assessing why, changes in strato-

spheric ozone are occurring. However, stratospheric ozone

changes are usually reported as decadal percentage change

vertical profiles or spatial maps (e.g. as in Fig. 1), which

hides the absolute changes in ozone and the contribution to

the total column, which are almost never reported. A recov-

ery in the upper stratosphere is important to identify, but this

region contributes a smaller fraction to the total column than

the middle and lower stratosphere. Thus, smaller percentage

changes over a reduced altitude range in the lower strato-

sphere can actually produce larger integrated changes than in

the more extended regions higher up.

In Fig. 2 we present changes in partial column ozone in

Dobson units (DU) from Merged-SWOOSH/GOZCARDS

for the whole stratospheric column and for the upper (10–

1 hPa) and lower stratosphere (147–32 hPa or 13–24 km

at > 30◦; 100–32 hPa or 17–24 km at < 30◦). We note

that the tropopause, the boundary layer between the tropo-

sphere and stratosphere, varies seasonally but is on aver-

age around 16 km (tropics) and 10–12 km (mid-latitudes);

our conservative choice of slightly higher altitudes en-

sures that we avoid including the troposphere. Due to the

near-complete temporal and vertical coverage, we focus

on the Merged-SWOOSH/GOZCARDS composite (SAGE-

II/OSIRIS/OMPS and SAGE-II/CCI/OMPS are provided in

Figs. S3 and S4, respectively5). Figure 2 shows posterior dis-

tributions of the 1998–2016 ozone changes, with black num-

bers representing the percentage of the distribution that is

negative, in 10◦ bands (left) and integrated into a “global”

(defined as 60◦ S–60◦ N) partial column ozone (right), along

with the total column ozone observed by SBUV (red curves

and numbers; upper row).

5It should be noted that while each latitude band partial column

ozone of SAGE-II/OSIRIS/OMPS and SAGE-II/CCI/OMPS typi-

cally has between 60 and 90 % of months where data are available

for 1985–2015/2016, integrating bands across all latitudes leads to

a reduction of available months (see Fig. S5), though estimates of

the change since 1998 can still be made and uncertainties due to

the reduced data are captured in the posteriors given in Figs. S3

and S4; this does not affect SBUV total column ozone or Merged-

SWOOSH/GOZCARDS.
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(a)

(b)

(c)

Figure 2. Merged-SWOOSH/GOZCARDS posterior distributions (shaded) for the 1998–2016 total and partial column ozone changes.

(a) Whole stratospheric column and (b) upper and (c) lower stratosphere in 10◦ bands for all latitudes (left) and integrated from 60◦ S to 60◦ N

(“Global”, right). The stratosphere extends deeper at mid-latitudes than equatorial latitudes (marked above each latitude). Numbers above

each distribution represent the distribution percentage that is negative; colours are graded relative to the percentage distribution (positive,

red-hues, with values < 50; negative, blue). SBUV total column ozone (red curves) is given in the upper row and negative distribution

percentages are given as red numbers.

Upper stratospheric ozone (Fig. 2, middle row) has in-

creased since 1998 in almost all latitude bands, in half the

cases at > 90 % probability and > 95 % at 40–60◦ in both

hemispheres. Integrated between 60◦ S and 60◦ N, the prob-

ability exceeds 99 % that upper stratospheric ozone has in-

creased, confirming that the Montreal Protocol has indeed

been successful in reversing trends in this altitude range.

Changes in the lower stratosphere (Fig. 2, lower row)

show ozone decreases, typically exceeding 90 % probabil-

ity (50◦ S–50◦ N). There is a 99 % probability that lower

stratospheric ozone integrated over 60◦ S–60◦ N has de-

creased since 1998; SAGE-II/OSIRIS/OMPS and SAGE-

II/CCI/OMPS both support this result with 87 and 99 % prob-

abilities, respectively (see Figs. S3 and S4).

Integrating the whole stratosphere vertically to form the

stratospheric column ozone (Fig. 2, upper row), we see that

all distributions imply a decrease (i.e. values > 50 %); prob-

ability is generally higher in tropical latitudes (30◦ S–30◦ N).

Integrating over all latitudes, stratospheric column ozone be-

tween 60◦ S and 60◦ N (right) indicates that stratospheric

ozone has decreased with 95 % probability. We compare the

Merged-SWOOSH/GOZCARDS change with SBUV total

column ozone (total column ozone posteriors shown as red

lines in Fig. 2a), the latter of which includes both the tropo-

sphere and stratosphere. The SBUV total column ozone in-

tegrated over 60◦ S–60◦ N indicates that total column ozone

has, in contrast to the stratospheric column ozone, changed

little compared to 1998.

We note that uncertainty remains in the middle strato-

sphere (see Fig. S6), with Merged-SWOOSH/GOZCARDS,

SAGE-II/CCI/OMPS, and SAGE-II/OSIRIS/OMPS display-

ing different changes. SAGE-II/OSIRIS/OMPS, in particu-

lar, shows a significant positive trend, which leads to the

60◦ S–60◦ N integrated stratospheric column ozone indicat-

ing no change since 1998 (see Fig. S3). This is likely a result

of how the data were merged to form composites (see ex-

amples in Fig. S7) at 30 km for northern mid-latitudes and

17 km for southern mid-latitudes, where steps and drifts can

be seen in different composites and is an issue that remains

to be resolved (Harris et al., 2015; Ball et al., 2017; Stein-

brecht et al., 2017). Nevertheless, the changes in the upper

and lower stratosphere are consistent in all ozone composites,

and a latitudinally integrated stratospheric column ozone de-
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Figure 3. Total and partial column ozone anomalies inte-

grated over 60◦ S–60◦ N between 1985 and 2016. Deseasonalised

and regression model time series are given for the Merged-

SWOOSH/GOZCARDS composite (grey and black, respectively)

for (a) the whole stratospheric column and (b) upper, (c) middle,

and (d) lower stratospheric partial column ozone. The DLM non-

linear trend is the smoothly varying thick black line. In (a), the

deseasonalised SBUV total column ozone is also given (orange),

with the regression model (red) and the non-linear trend (thick, red).

Data are shifted so that the trend line is zero in 1998. DLM results

for WACCM-SD (blue) and SOCOL-SD (purple) from Fig. S11 are

also shown; model results in (a) are for the stratospheric column.

cline is indicated by both Merged-SWOOSH/GOZCARDS

and SAGE-II/CCI/OMPS.

To make these latitudinally integrated (60◦ S–60◦ N)

results clear, we show the SBUV total column ozone

(orange and red represent deseasonalised time series

and regression model fit, respectively) and Merged-

SWOOSH/GOZCARDS stratospheric column ozone (grey

and black) in Fig. 3a; in all of the panels in Fig. 3, the

time series are bias-shifted so that the smoothly varying non-

linear trend crosses the zero line in January 1998, so that

relative changes can be clearly compared. It is interesting

to note here that the SBUV total column ozone non-linear

trend initially increases from 1998 and then peaks around

2011, before decreasing. Frith et al. (2014) and Weber et al.

(2017) found similar behaviour when applying linear trend

fits to SBUV total column ozone, fixing the start date in Jan-

uary 2000 and incrementally increasing the end date, i.e.

the largest positive trend was found for the period 2000–

2011 and thereafter trends decreased. Their analyses ended

in 2013 and 2016, and the non-linear trend from our DLM

analysis here shows identical behaviour and shows a con-

tinued decrease until 2016, which suggests that total col-

umn ozone has now returned to 1998 levels despite an ini-

tial upward trend. Qualitatively similar behaviour is seen

in the Merged-SWOOSH/GOZCARDS stratospheric column

ozone, though less pronounced because of its larger overall

downward behaviour (see below, Sect. 4.3), which lends sup-

porting, independent evidence that such a turnover in ozone

trends might be real. The stratospheric column ozone from

Merged-SWOOSH/GOZCARDS continued to decrease after

1998 and, while this decline stalled in the late 2000s, since

2012 it has continued to decrease. The overall result is that

stratospheric column ozone is on average lower today than in

1998 by ∼ 1.9 DU.

The different stratospheric regimes that contribute to

the stratospheric column ozone behaviour can be see in

Fig. 3b–d, where we show upper, middle (10–32 hPa),

and lower stratospheric ozone time series from Merged-

SWOOSH/GOZCARDS. A recovery is clear in the upper

stratosphere in Fig. 3b, increasing by a mean of ∼0.8 DU,

and trends have been relatively flat since 1998 in the middle

stratosphere (Fig. 3c), with a mean decrease of ∼ 0.4 DU.

However, the result from Merged-SWOOSH/GOZCARDS

in the lower stratosphere (Fig. 3d) indicates not only that

ozone there has declined by ∼ 2.2 DU since 1998, and has

been the main contributor to the stratospheric column ozone

decrease, but that the lower stratospheric ozone has seen

a continuous and uninterrupted decrease. We note that a

large proportion of the post-1997 decline occurred between

2003 and 2006, during which overlaps and switchovers be-

tween different combinations of instrument data were used

to form the composites, most notably from the low-sampling

SAGE-II instrument that ended operation in 2005; that said,

all composites display similar behaviour, and overlaps and

switchovers between different instrument data occur at dif-

ferent times (see Fig. 1 in both Tummon et al., 2015, and

Sofieva et al., 2017).

4.3 Tropospheric ozone contribution to total column

ozone

The stratosphere accounts for the majority (∼ 90 %) of to-

tal column ozone; thus, intuitively attribution to total column
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Figure 4. The 60◦ S–60◦ N total tropospheric column ozone between 2004 and 2016. OMI/MLS integrated ozone (grey line) and deseason-

alised time series (black) are shown. The 2005 and 2016 periods are plotted in blue and red, respectively, and the mean and two standard

errors on the mean for these two years are plotted on the right, with the mean value given alongside. The mean linear trend estimate (dashed

line) and the 1 standard deviation uncertainty are also provided.

ozone changes would be expected to come primarily from

this region. However, the results in Figs. 2 and 3 suggest

a discrepancy between stratospheric column ozone and to-

tal column ozone. Despite this, there is no serious conflict

between the different changes indicated by integrated 60◦ S–

60◦ N stratospheric column ozone and total column ozone

distributions (Fig. 2a) and trends (Fig. 3a) when the remain-

ing 10 % of the total column ozone, i.e. tropospheric ozone,

is considered, as we show in the following.

First, it is important to establish confidence in the SBUV

total column ozone observations. These have been very sta-

ble since 1998 when comparing SBUV total column ozone

overpass data to the independent ground-based Arosa total

column ozone observations (see Fig. S8). This, therefore,

provides confidence in the result that there is little net change

in total column ozone since 1998. Additionally, Chehade

et al. (2014) reported that other total column ozone com-

posites agree very well with the SBUV total column ozone

and there is little difference between the various total col-

umn ozone composites when performing trend analysis (see

also Garane et al., 2017).

In a second step, we consider 60◦ S–60◦ N latitudinally in-

tegrated tropospheric ozone changes. In Fig. 4, we present re-

cent estimates from OMI/MLS measurements (60◦ S–60◦ N)

of tropospheric column ozone from 2004 to 2016 (grey),

along with deseasonalised anomalies (solid black); the de-

seasonalised years 2005 and 2016 are indicated in blue and

red – the means (right) indicate a significant increase in

ozone. A linear fit to the deseasonalised time series indicates

an increase in tropospheric ozone of 1.68 DU per decade;

if this has held true for the entire 19-year period (1998–

2016) it implies a mean increase of ∼ 3 DU, which would

more than account for the difference between the 60◦ S–

60◦ N stratospheric column ozone and total column ozone

peaks (∼ 2 DU) in the right of Fig. 2a.

Supporting evidence for tropospheric ozone increases

comes from work reconstructing stratospheric ozone changes

in a CCM. Shepherd et al. (2014) indicate that tropo-

spheric ozone in the northern (35◦–55◦ N) and southern mid-

latitudes (35◦–55◦ S) ozone may have increased by ∼ 1 DU

(1998–2011), while equatorial (25◦ S–25◦ N) may have in-

creased by ∼ 1.5 DU. While we consider a longer period,

this qualitatively agrees with the latitude-resolved distribu-

tions in Fig. 2, which shows that all total column ozone pos-

teriors indicate smaller probabilities of a decrease, or larger

increases, compared to the Merged-SWOOSH/GOZCARDS

stratospheric column ozone changes.

Returning to the OMI/MLS tropospheric column ozone,

latitudinally resolved 2005–2015 changes show significant

increases everywhere, except a non-significant increase at

50–60◦ S (see Fig S13). The latitudinal structure, with

peaks at ∼ 30◦ in both hemispheres and minima at south-

ern equatorial and high latitudes, bears resemblance to

the piecewise linear post-1998 total column ozone trends

in Fig. 9 of Chehade et al. (2014) and Fig. 10 of Frith

et al. (2014), although more detailed comparisons should be

made. OMI/MLS results are not independent from Merged-

SWOOSH/GOZCARDS as Aura/MLS forms a part of this

composite post-2005 but is independent from SBUV total

column ozone. McPeters et al. (2015) state that OMI total

column ozone is stable enough for trend studies, with a drift

of less than 1 % per decade compared to SBUV total col-

umn ozone and is one of the highest-quality ozone datasets.

Ziemke and Cooper (2017) found no statistically significant

drift with respect to independent measures or between MLS

and OMI stratospheric column ozone residuals, although a

small drift of +0.5 DU per decade was detected in OMI/MLS

tropospheric column ozone caused by an error in the OMI

total ozone, which was rectified for the version we consider

here.

www.atmos-chem-phys.net/18/1379/2018/ Atmos. Chem. Phys., 18, 1379–1394, 2018



1388 W. T. Ball et al.: Continuous stratospheric ozone decline

Figure 5. As for Fig. 1 but for (a) WACCM-SD and (b) SOCOL-

SD.

A deeper investigation is needed to understand the contri-

butions of tropospheric column ozone and stratospheric col-

umn ozone to total column ozone, especially considering un-

certainties carefully, but this is beyond the scope of this work.

We note that studies using various data sources show less sig-

nificant regional increases (and some decreases), with global

estimates ranging from 0.2 to 0.7 % per year (∼ 0.6–2 DU per

decade) (Cooper et al., 2014; Ebojie et al., 2016; Heue et al.,

2016), though these estimates considered different time peri-

ods. This suggests a large range of uncertainty, but even the

lower end of the estimated increases in tropospheric column

ozone are in line with the missing part of the total column

ozone change, after considering stratospheric column ozone

that we estimate here. Tropospheric ozone is not the main

focus of the study here, but the evidence presented overall

suggests that the missing component in the declining strato-

spheric column ozone distributions and trends, with respect

to constant total column ozone, is indeed from increasing tro-

pospheric ozone.

4.4 Comparison of stratospheric spatial and partial

column ozone trends with models

The observational results for the lower, and whole, strato-

sphere presented thus far have not been previously reported.

However, it is not clear that this represents a departure from

our understanding of stratospheric trends as presented in

modelling studies. We present the percentage ozone change

from two state-of-the-art CCMs in Fig. 5: (a) the NCAR

Community Earth System Model (CESM) Whole Atmo-

sphere Community Climate Model-4 (WACCM; Marsh et al.,

2013) and (b) the SOlar Climate Ozone Links (SOCOL;

Stenke et al., 2013) model. Both simulations were performed

with the Chemistry Climate Model Initiative phase 1 (CCMI-

1) boundary conditions in specified dynamics (SD) mode

(see Morgenstern et al., 2017, for information on CCMI and

boundary conditions used in models). SD uses reanalysis

products to constrain model dynamics towards observations

so as to best represent the dynamics of the atmosphere, while

leaving chemistry to respond freely to these changes. Such an

approach has proven highly accurate at reproducing ozone

variability on monthly to decadal timescales in the equato-

rial upper stratosphere (Ball et al., 2016). WACCM-SD uses

version 1 of the Modern-Era Retrospective Analysis for Re-

search and Analysis (MERRA-1; Rienecker et al., 2011) re-

analysis6, while SOCOL-SD uses ERA-Interim (Dee et al.,

2011). Thus, the two models are both independent in terms

of how they are constructed and the source of nudging fields

used but have similar boundary conditions as prescribed by

CCMI-1.

In Fig. 5 both models display broadly similar behaviour

in the upper stratosphere above 10 hPa, roughly in line with

the observations (Fig. 1). Spatially, in the middle stratosphere

there are differences in sign, but generally significance is

low: WACCM-SD displays broadly positive changes except

in the tropics at 10 and 30 hPa, SOCOL-SD displays a neg-

ative spot centred in the tropics at 10 hPa, and mid-latitudes

are often positive and significant. In the lower stratosphere,

SOCOL-SD displays negative trends in the Southern Hemi-

sphere lower stratosphere but positive trends in the North-

ern Hemisphere, while WACCM-SD is generally positive ev-

erywhere and significant at the lowest altitudes, except at

30–40 hPa in the tropics where a negative tendency is seen.

In both SOCOL-SD and WACCM-SD, trends in the lower

stratosphere are generally not significant and do not display

the clear and significant decreases found in the observations.

Posterior distributions similar to those of Fig. 2 are presented

for SOCOL-SD and WACCM-SD in Figs. S9 and S10, re-

spectively. The displayed behaviour is spatially similar to

that described here for the models in Fig. 5, and no significant

decreases are found (two SOCOL-SD latitude bands display

negative changes in the lower stratosphere with ∼ 75 % prob-

ability: 30–40◦ S and 10–20◦ N). It is worth noting that in

both cases the integrated, 60◦ S–60◦ N, trends in the strato-

spheric column ozone and upper stratosphere are all pos-

itive with probabilities of an increase exceeding 95 % and

positive in the lower stratosphere, with 69 and 85 % prob-

ability of an increase in SOCOL-SD and WACCM-SD, re-

spectively. The non-linear DLM trends (Fig. 3) of WACCM-

SD (blue) and SOCOL-SD (purple) emphasise the behaviour

clearly differs from the observations, especially in the lower

stratosphere (the deseasonalised and regression model time

series are omitted from Fig. 3 for clarity but are provided

6Use of MERRA-2 reanalysis (Gelaro et al., 2017) makes little

difference, except in the upper stratosphere after 2004, where pos-

itive trends are larger when using MERRA-2 (see Fig. S12). The

WACCM-SD run with MERRA-2 uses CESM 1.2.2 at 1.9 × 2.5

horizontal resolution and 88 vertical layers up to 140 km, using pre-

scribed aerosols from the RCP8.5 scenario.
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in Fig. S11). It is worth mentioning that the behaviour of

stratospheric column ozone from the models was similar to

SBUV total column ozone (Fig. 3a) until around 2012, after

which modelled ozone continued to increase while observa-

tions show a gradual decline until 2016 (see discussion in

Sect. 4.2).

The CCMVal-2 (SPARC, 2010) multi-model-mean 2000–

2013 ozone changes in the WMO (2014) ozone assessment

(chap. 2, Fig. 10) show a positive, but insignificant, change

in the lower stratosphere at mid-latitudes, which suggests

models may not be simulating that region correctly, consis-

tent with the two models ending in 2014–2015. While CCMs

capture historical ozone behaviour in the upper stratosphere

well, it is less clear in the UTLS region. Fig. 7.27–7.28 of the

SPARC (2010) report indicate large differences compared to

observations in winter–spring, perhaps related to factors af-

fecting model transport (e.g. resolution, and gravity wave

parameterisations). Whether these differences result from

model design, incorrect boundary conditions (e.g. underes-

timated anthropogenic (Yu et al., 2017) or volcanic (Bandoro

et al., 2018) aerosol contributions), or missing chemistry re-

mains an open question.

5 Conclusions

Following the successful implementation of the Montreal

Protocol, total column ozone stabilised at the end of the

1990s, but the search for the first signs of recovery in total

column ozone integrated between 60◦ S and 60◦ N have not

yet been successful (Weber et al., 2017; Chipperfield et al.,

2017). The lower stratosphere, below 24 km (∼ 32 hPa), con-

tains a large fraction of the total column ozone and is a re-

gion of large natural variability that has previously inhibited

detection of significant trends (Weatherhead and Andersen,

2006). With longer time series, improved composites, and

integration of the lower stratospheric column, we can now

detect statistically significant trends in this region. We find

that the negative ozone trend within the lower stratosphere

between 1998 and 2016 is the main reason why a statistically

significant recovery in total column ozone has remained elu-

sive. Our main findings are as follows:

i. We further confirm other studies that the Montreal Pro-

tocol is successfully reducing the impact of halogenated

ozone-depleting substances as indicated by the highly

probable recovery (> 95 %) measured in upper strato-

spheric regions (1–10 hPa or 32–48 km).

ii. Lower stratospheric ozone (between 147 and 32 hPa

(13–24 km) at mid-latitudes, or 100 and 32 hPa (17–

24 km) at tropical latitudes) has continued to decrease

since 1998 between 60◦ S and 60◦ N, with a probability

of 99 % in two of the three analysed datasets and 87 %

in the third.

iii. The main stratospheric dataset considered indicates a

highly probable (95 %) decrease in the ozone layer since

1998, i.e. in stratospheric ozone (between 147 and 1 hPa

(13–48 km) at mid-latitudes, or 100 and 1 hPa (17–

48 km) at tropical latitudes) integrated over latitudes

60◦ S–60◦ N – the other composites support this result

when considering the associated caveats of each.

iv. There is no significant change in total column ozone

between 1998 and 2016, which includes both tropo-

spheric ozone and the stratospheric ozone layer – indeed

no change is the most probable result indicated, which

our findings imply is a consequence of increasing tropo-

spheric ozone, together with the slowed rate of decrease

in stratospheric ozone following the Montreal Protocol.

v. State-of-the-art models, nudged to have historical at-

mospheric dynamics as realistic as possible, do not re-

produce these observed decreases in lower stratospheric

ozone.

We posit several possible explanations for the continuing

decline in lower stratospheric ozone, beginning with those

related to dynamics. First, part of the tropical and subtrop-

ical (< 30◦) lower stratospheric decline may be linked to a

greenhouse-gas-related BDC acceleration (Randel and Wu,

2007; Oman et al., 2010; WMO, 2014) indicated from CCM

simulations, although observational evidence remains weak,

and a faster BDC in general would slow ozone destruc-

tion cycles and hence mid-latitude ozone would increase

and overcompensate for the tropical ozone reduction (WMO,

2014). Second, a rise in the tropopause (Santer et al., 2003),

due to the warming troposphere, could lead to a decrease

in ozone at mid-latitudes (Steinbrecht et al., 1998; Varot-

sos et al., 2004), but the tropopause rise is also affected

by the ozone loss itself (Son et al., 2009), rendering its at-

tribution difficult. Third, here we hypothesise a so-far-not-

discussed mechanism: an acceleration of the lower strato-

sphere BDC shallow branch (Randel and Wu, 2007; Oman

et al., 2010) might increase transport of ozone-poor air to the

mid-latitudes from the tropical lower stratosphere (Johnston,

1975; Perliski et al., 1989). The quality of the applied dy-

namical fields in the specified dynamics models considered

in this study, or the way models handle transport in the lower

stratosphere (SPARC, 2010; Dietmüller et al., 2017), may be

dynamically related reasons why models do not reproduce

the observed lower stratospheric ozone changes.

While dynamically driven explanations may be fully re-

sponsible for tropical lower stratospheric ozone changes,

at mid-latitudes additional chemically driven contributions

from increasing anthropogenic and natural very-short-lived

substances (VSLSs) containing chlorine or bromine may

play a role (Hossaini et al., 2015). Modelling studies imply

that VSLSs preferentially destroy lower stratospheric ozone,

though the effect outside of the polar latitudes is expected

to be small (Hossaini et al., 2015, 2017). While VSLSs are
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thought to delay the recovery of the ozone layer, much un-

certainty remains since observations and reaction rate kinet-

ics are only available for some VSLSs (Oram et al., 2017).

The uncertainties in model chemical boundary conditions,

e.g. the prescribed emissions of VSLSs, therefore, may also

be a reason why models do not reproduce the trends we re-

port here.

The Montreal Protocol is working, but if the negative trend

in lower stratospheric ozone persists, its efficiency might be

disputed. Restoration of the ozone layer is essential to re-

duce the harmful effects of solar UV radiation (WMO, 2014)

that impact human and ecosystem health (Slaper et al., 1996).

Presently, models do not robustly reproduce the decline in

lower stratospheric ozone identified here. This will be imper-

ative, both to predict future changes and to determine if it is

possible to prevent further decreases.

Data availability. Merged-SWOOSH/GOZCARDS and Merged-

SBUV, named “BASICSG” and “BASICSBUV” following the merg-

ing method used from Ball et al. (2017), are available for down-

load from https://data.mendeley.com/datasets/2mgx2xzzpk/2 (Als-

ing and Ball, 2017).
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