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A B S T R A C T

We perform a joint likelihood analysis of the power spectra of the 2dF Galaxy Redshift

Survey (2dFGRS) and the cosmic microwave background (CMB) anisotropies under the

assumptions that the initial fluctuations were adiabatic, Gaussian and well described by power

laws with scalar and tensor indices of ns and nt. On its own, the 2dFGRS sets tight limits on

the parameter combination Vmh, but relatively weak limits on the fraction of the cosmic matter

density in baryons Vb/Vm. (Here h is Hubble’s constant H0 in units of 100 km s21 Mpc21. The

cosmic densities in baryons, cold dark matter and vacuum energy are denoted by Vb, Vc and

VL, respectively. The total matter density is Vm ¼ Vb þVc and the curvature is fixed by

Vk ¼ 1 2 Vm 2 VL:Þ The CMB anisotropy data alone set poor constraints on the

cosmological constant and Hubble constant because of a ‘geometrical degeneracy’ among

parameters. Furthermore, if tensor modes are allowed, the CMB data allow a wide range of

values for the physical densities in baryons and cold dark matter ðvb ¼ Vbh2 and vc ¼ Vch2Þ.

Combining the CMB and 2dFGRS data sets helps to break both the geometrical and tensor

mode degeneracies. The values of the parameters derived here are consistent with the

predictions of the simplest models of inflation, with the baryon density derived from

primordial nucleosynthesis and with direct measurements of the Hubble parameter. In

particular, we find strong evidence for a positive cosmological constant with a ^2s range of

0:65 , VL , 0:85, independently of constraints on VL derived from Type Ia supernovae.
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1 I N T R O D U C T I O N

Until recently, cosmology was a subject starved of data, with poor

or non-existent constraints on fundamental quantities such as the

curvature of the Universe, the power spectrum of density

irregularities and the cosmic densities in baryons, cold dark matter

and vacuum energy. The situation has changed dramatically over

the last few years. Following the discovery of the cosmic

microwave background (CMB) anisotropies (Smoot et al. 1992) it

was realized that many of the fundamental parameters of our

Universe could be determined via accurate, high-resolution

measurements of the CMB (e.g. Bond et al. 1994; Jungman et al.

1996). This has now become a reality through a number of

exquisite ground-based and balloon experiments (see Halverson

et al. 2001; Lee et al. 2001; Netterfield et al. 2002). Constraints on

cosmological parameters derived from these experiments are

described in several recent papers (de Bernadis et al. 2002; Pryke

et al. 2001; Stompor et al. 2001; Wang, Tegmark & Zaldarriaga

2001).

Significant advances have also been made in surveying large-

scale structure in the Universe. The development of wide-field

correctors and multifibre spectroscopy means that it is now

possible to measure redshifts of hundreds of thousands of galaxies.

Two such redshift surveys are underway. The 2dF Galaxy Redshift

Survey (2dFGRS) utilizes the 2dF instrument at the Anglo-

Australian Telescope and is based on a revised version of the

Automated Plate Measurement (APM) Galaxy Survey (Maddox

et al. 1990) limited at bJ ¼ 19:45. Redshifts have now been

measured for over 175 000 galaxies (see Colless et al. 2001 for a

description of this survey). The Sloan Digital Sky Survey (SDSS;

York et al. 2000) is a CCD imaging and spectroscopic survey that

aims to measure redshifts for a sample of 900 000 galaxies. An

analysis of the galaxy power spectrum from the 2dFGRS is

described by Percival et al. (2001, hereafter P01). First results on

galaxy clustering from a subsample of the SDSS are presented by

Zehavi et al. (2002).

In addition, a number of other investigations have greatly

improved the accuracy of various cosmological parameters. For

example, surveys of high-redshift Type Ia supernovae have

revealed tantalizing evidence for an accelerating Universe (Riess

et al. 1998; Perlmutter et al. 1999); the Hubble Space Telescope

(HST) Hubble key project has concluded that H0 ¼ 72 ^

8 km s21 Mpc21 (Freedman et al. 2001); primordial nucleosynth-

esis and deuterium abundance measurements from quasar

absorption lines imply a baryon density vb ¼ 0:020 ^ 0:002

(Burles & Tytler 1998a,b; Burles, Nollett & Turner 2001). With

these and many other ambitious projects at various stages of

development (e.g. weak shear lensing surveys, CMB interfero-

meters, CMB polarization experiments, the MAP, Planck and

SNAP satellites1) it is clear that the era of quantitative cosmology

has arrived.

In this paper, we perform a combined likelihood analysis of the

CMB anisotropy data and of the 2dFGRS galaxy power spectrum

measured by P01. We assume that the initial fluctuations were

Gaussian, adiabatic and described by power-law fluctuation

spectra. Matter is assumed to consist of baryons and cold dark

matter (CDM) and neutrinos are assumed to have negligible rest

masses (i.e. we exclude the possibility of a strong degeneracy

amongst neutrino mass eigenstates; see Valle 2002). We allow

tensor and scalar modes and place no constraints on their respective

spectral indices and relative amplitudes. Almost all previous

analyses of the CMB anisotropies have neglected tensor modes.

However, including tensor modes introduces a major new

degeneracy (referred to as the tensor degeneracy in this paper)

that significantly widens the range of allowed parameters (see

Efstathiou & Bond 1999; Wang et al. 2002; Efstathiou 2002). The

tensor degeneracy can be broken by invoking additional data sets.

Wang et al. (2001) combine the CMB data with measurements of

the galaxy power spectrum from the IRAS Point Source Catalogue

redshift (PSCz) survey (Hamilton, Tegmark & Padmanabahn

2000), estimates of the power spectrum on small scales from

observations of the Lya forest (Croft et al. 2001) and limits on the

Hubble constant from the HST Hubble Key Project. Here we

investigate how the major parameter degeneracies can be broken

by combining the CMB data with the 2dFGRS power spectrum.

The 2dFGRS power spectrum is based on a large survey, with well-

controlled errors, and as demonstrated by P01 already sets

interesting limits on the matter content of the Universe. Our

expectation (see Efstathiou 2001) is that a joint analysis of the

CMB and 2dFGRS will produce accurate estimates of the baryonic

and matter densities of the Universe and set useful limits on a

cosmological constant. This expectation is borne out by the results

described in the rest of this paper.

2 L I K E L I H O O D A N A LY S I S

2.1 Analysis of the 2dFGRS power spectrum

We use the estimates of the galaxy power spectrum and associated

covariance matrix computed by P01. As in P01, we fit these

estimates to theoretical models of the linear matter power spectrum

of CDM models using the fitting formulae of Eisenstein & Hu

(1998). The fits are restricted to the wavenumber range 0:02 ,

k/ðh Mpc21Þ , 0:15: Redshift-space distortions (see Peacock et al.

2001) and non-linear evolution of the power spectrum have

negligible effect on the shape of the power spectrum at these

wavenumbers. We will assume that the galaxy power spectrum

within this wavenumber range is directly proportional to the linear

matter power spectrum. This is a key assumption in the analysis

presented in this paper and is partially justified by tests on N-body

simulations using physically motivated biasing schemes as

described in section 4 of P01. The lower wavenumber limit is

imposed (conservatively) to reduce the sensitivity of the analysis to

fits to the redshift distribution of galaxies, which are computed

independently for different zones of the survey. As the 2dFGRS has

a complex geometry, the theoretical power spectra must be

convolved with the spherical average over wavenumber of the

survey ‘window function’. These convolved theoretical estimates

are used together with the spherically averaged estimates of the

power spectrum of the data and the covariance matrix (computed

from Gaussian realizations of the 2dFGRS) to form a likelihood

function. We refer the reader to P01 for a full discussion of each of

these steps in the analysis.

In general, the linear power spectrum with wavenumber

measured in inverse Mpc depends on the baryonic and CDM

physical densities (vb and vc), the scalar spectral index ns and an

overall amplitude A (the amplitude is treated as an ‘ignorable’

parameter in this paper and so its precise definition is unimportant).

However, because we use redshift to measure distances, the wave-

number of the observations scales as h Mpc21. The comparison of

theory with observations therefore requires the introduction of the

1 Descriptions of these satellites can be found on the following web pages:

http://snap.lbl.gov/, http://map.gsfc.nasa.gov and http://astro.estec.esa.nl/

SA-general/Projects/Planck.
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parameter h. In fact, the set of variables A, ns, Vmh, vb/vm and h

are natural variables for an analysis of large-scale structure: the

combination Vmh defines the overall shape of the CDM transfer

function (and for negligible baryon density is sometimes denoted

by the shape parameter G), while the ratio vb/vm determines the

amplitude of baryonic oscillatory features in the transfer function

(Eisenstein & Hu 1998; Meiksin, Peacock & White 1999).

Fig. 1 shows various two-dimensional projections of the

‘pseudo-marginalized’ 2dFGRS likelihood function. When using

a large number of parameters (as in the CMB and CMBþ2dFGRS

analyses described in the next two subsections), it is impractical to

compute marginalized likelihood contours by numerically

integrating over the likelihood distribution. Instead, a ‘pseudo-

marginalized’ likelihood function in p out of M parameters is

computed by setting the remaining M 2 p parameters at the values

which maximize the likelihood. For a multivariate Gaussian

distribution, this is equivalent to integrating over the M 2 p

parameters assuming uniform prior distributions (see Tegmark,

Zaldarriaga & Hamilton 2001). However, the actual likelihood

distributions are not exactly Gaussian (as is evident from the

asymmetrical contours in Figs 1 and 3, later) and so confidence

limits assigned to pseudo-marginalized distributions are approxi-

mate. The contours in the ðvb/vm, Vmh) plane can be compared

with fig. 5 of P01 where the spectral index was assumed to be scale

invariant. Relaxing the constraint on the spectral index clearly

widens the allowed range of vb/vm, but the data still place a tight

constraint on the ‘shape’ parameter Vmh. As we will see below, the

constraints on Vmh and ns prove particularly important in breaking

degeneracies among parameters inherent in the analysis of CMB

data.

2.2 Analysis of the CMB anisotropies

The likelihood analysis presented here uses the compilation of

band power estimates DT2
B and their covariance matrix CBB0

(including a model for calibration and beam errors) computed by

Wang et al. (2002) from 105 CMB anisotropy measurements. Each

band power estimate is related to the power spectrum C‘ of the

CMB anisotropies by

DT2
B ¼

T2
0

2p
‘

X
‘ð‘þ 1ÞC‘WBð‘Þ ð1Þ

where WB is the window function for each band power computed

by Wang et al. These band-power estimates are plotted in Fig. 2.

The likelihood analysis of the CMB data uses nine parameters.

These are: vb and vc; VL and Vk; the scalar and tensor spectral

indices ns and nt; the optical depth to Thomson scattering topt,

assuming that the inter-galactic medium was abruptly re-ionized

some time after recombination; the amplitude Q 2 of the scalar

component and the ratio of r̄ of the tensor to scalar amplitudes.

Note that definitions of the scalar and tensor amplitudes differ from

paper to paper. Here we scale the scalar and tensor spectra so that

1

4p

X1000

‘¼2

ð2‘þ 1ÞĈ
S

‘ ¼ ð4 £ 1025Þ2; ð2aÞ

1

4p

X50

‘¼2

ð2‘þ 1ÞĈ
T

‘ ¼ ð2 £ 1025Þ2; ð2bÞ

and fit to the data by scaling with the parameters Q and

r̄, C‘ ¼ C S
‘ þ C T

‘ ¼ Q 2ðĈ
S

‘ þ �rĈ
T

‘ Þ. The numbers in equation (2)

were chosen so that models with Q of approximately unity match

the data points plotted in Fig. 2 and models with �r < 1 have scalar

and tensor modes of comparable amplitude. We normalize the

spectra in this way to reduce the sensitivity of the normalization

parameters to other parameters that affect the low order multipole

moments (e.g. VL and Vk) and to decouple Q from the optical

depth parameter topt. This method of normalizing helps to stabilize

searches for global maxima of the likelihood functions. For our

best-fitting models of Table 1 we list values of the more commonly

used parameter r10 ; CT
10/CS

10 in addition to r̄. In simple models of

Figure 1. Contours (1, 2 and 3s ) of the pseudo-marginalized likelihood

functions (see text for details) for various pairs of parameters computed by

fitting to the galaxy power spectrum of the 2dFGRS. These contours

correspond to changes in the likelihood of 2Dln(L) of 2.3, 6.0 and 9.2. The

crosses show the position of maximum likelihood.

Figure 2. The points show band-averaged observational estimates of the

CMB power spectrum from Wang et al. (2001) together with ^1s errors.

The lines shows the CMB power spectra for the adiabatic fiducial

inflationary models that provide the best fit to the CMB and 2dFGRS power

spectra. The parameters of these model are listed in Table 1. The solid line

shows the best fit without a tensor component (fit B). The dashed line shows

the best fit (fit C) including a tensor component (shown by the dotted line).

CMB and the 2dF Galaxy Redshift Survey L31
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inflation, the parameters r10 (or r̄), ns and nt are related to each

other (see e.g. Hoffman & Turner 2001 for a recent discussion).

The relations are model-dependent, however, and can be violated

in multi-field inflation models and in superstring inspired models

such as the pre-big bang (Buonanno, Damour & Veneziano 1999)

and ekpyrotic scenarios (Khoury et al. 2002). We therefore assume

no relations between r10, ns and nt in this paper.

Results from the likelihood analysis of the CMB data are

illustrated in Fig. 3. Almost all of the variance of the parameters

used in this analysis, with the exception of Q, comes from two

major degeneracies (see Efstathiou 2002 for a detailed discussion).

These two degeneracies are illustrated by the likelihood contours

plotted in Fig. 3(a). The top two panels illustrate the ‘geometrical’

degeneracy. This degeneracy arises because models with identical

matter content, primordial power spectra and angular diameter

distance to the last scattering surface produce almost identical

CMB power spectra. This leads to a strong degeneracy between VL

and Vk, which is broken only for extreme values of VL by the

integrated Sachs–Wolfe effect which modifies the shape of the

CMB power spectrum at low multipoles (see Efstathiou & Bond

1999). Because the Hubble constant is fixed by the constraint

equation,

h ¼
ðvb þ vcÞ

1=2

ð1 2 Vk 2 VLÞ
1=2

; ð3Þ

it is almost unconstrained by the CMB data.

The lower two panels in Fig. 3(a) show the constraints on the

parameter combinations wc –vb and ns –vb. These panels illustrate

the tensor degeneracy: including a tensor component significantly

broadens the allowed ranges of parameters. For example, values of

vb that are more than twice the value favoured from primordial

nucleosynthesis are allowed by the CMB data (Efstathiou 2002).

The tensor degeneracy can be broken by the detecting or setting

constraints on the B-mode polarization of the CMB anisotropies.

However, in the absence of polarization information the degener-

acy can be broken by either measuring the CMB anisotropies with

Planck-like precision (Efstathiou & Bond 1999) or by invoking

other data sets such as the 2dFGRS.

Fig. 3(b) shows likelihood contours using the CMB data alone,

but computed using the natural variables of the galaxy power

spectrum analysis as in Fig. 1. The parameter combination Vmh

that essentially fixes the shape of the matter power spectrum is

extremely unnatural for an analysis of the CMB anisotropies.

Because Vmh ; ðvb þ vcÞ/h, the indeterminacy in h arising from

the geometrical degeneracy smears the likelihoods along the

direction of Vmh. The wide range of allowed values of vb/vm and

the tight correlation with ns is a consequence of the tensor

degeneracy.

2.3 Combining the CMB and 2dFGRS likelihoods

Fig. 3(b) is interesting because it shows that the CMB likelihoods

in three of these plots are complementary to those of the 2dFGRS

analysis ðvb/vm –Vmh, ns –Vmh and vb/vm –nsÞ. The addition of

the 2dFGRS constraints breaks both the geometrical and tensor

degeneracies, resulting in strong constraints on vb, vc, VL and h.

The way that this works is evident from Figs 1 and 3(b): the

constraints on ns from the 2dFGRS help to break the tensor

degeneracy by excluding high values of vb and low values of vc.

The resulting values of vb and vc fix the Hubble radius at the time

at which matter and radiation have equal density, which in turn

largely fixes the shape of the CDM transfer function in physical

Mpc. Comparing with the power spectrum of the 2dFGRS in

h 21 Mpc constrains the Hubble constant, thus breaking the

geometrical degeneracy.

The lower panels in Fig. 3 show the results of combining the

CMB and 2dFGRS likelihoods. The results are striking, showing a

significant tightening of the constraints in each plot. Table 1 lists

parameters corresponding to maximum likelihood fits to the data

and the approximate ^2s ranges of each parameter. The second

column lists the maximum likelihood fit to the CMB alone (fit A).

The parameters of this fit are identical whether or not a tensor

component is included. The third and fourth columns (fits B and C)

list the maximum likelihood fits to the CMB and 2dFGRS data

excluding and including a tensor mode. The fifth column (fit D)

adds the constraint from big-bang nucleosynthesis (BBN) of a

Gaussian distribution for vb centred at vb ¼ 0:020 with a disper-

sion of Dvb ¼ 0:001 (Burles et al. 2001). The contours shown in

Figs 3(c) and 3(d) would broaden somewhat had we adopted a

more conservative maximum wavenumber in the analysis of the

2dFGRS power spectrum (e.g. reducing the upper wavenumber to

kmax ¼ 0:1h Mpc21Þ. However, the analysis is insensitive to small

changes in kmax because the tensor degeneracy is broken primarily

from the constraint on ns which depends on the full extent of the

wavenumber range.

The parameters of fit B, which provides a perfectly acceptable fit

to the data, are very close to those of the standard ‘concordance’

Table 1. Parameter values and errors.

Approximate ^2s parameter ranges
Fit A Fit B Fit C Fit D Fit A Fit C Fit D

CMB alone CMB þ 2dFGRS CMB þ 2dFGRS CMB þ 2dFGRS CMB alone CMB þ 2dFGRS CMB þ 2dFGRS
þ tensor no tensor þ tensor þ BBN þ tensor þ tensor þ tensor þ BBN þ tensor

vb 0.020 0.021 0.027 0.020 0.016–0.045 0.018–0.034 0.018–0.022
vc 0.13 0.12 0.085 0.10 0.03–0.18 0.07–0.13 0.08–0.13
ns 0.96 1.00 1.20 1.04 0.89–1.49 0.95–1.31 0.95–1.16
Vk 20.04 0.001 20.030 20.013 20.68–0.06 20.05–0.04 20.05–0.04
VL 0.43 0.71 0.80 0.73 ,0.88 0.65–0.85 0.65–0.80
topt 0 0 0 0 ,0.5 ,0.5 ,0.5
nt – 20.10 0.13
r̄ 0 – 0.60 0.20 ,0.98 ,0.87 ,0.82
r10 0 – 1.24 0.26
vb/vm 0.14 0.15 0.24 0.17 0.10–0.40 0.13–0.28 0.13–0.22
Vmh 0.21 0.16 0.19 0.12–0.22 0.16–0.21
h 0.69 0.71 0.66 0.60–0.86 0.61–0.84
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cosmology (e.g. Bahcall et al. 1999). In particular, the baryon

density is compatible with the primordial nucleosynthesis value,

and the Hubble and cosmological constants are compatible with

more direct observational estimates. The CMB power spectrum for

this solution is plotted as the solid line in Fig. 2 and the linear

matter power spectrum is plotted together with the 2dFGRS data

points in Fig. 4. Both curves provide acceptable fits to the data. Fit

B has a low baryon fraction of vb/vm ¼ 0:15. As a consequence,

the amplitudes of the baryonic features in the matter power

spectrum are almost imperceptibly small (see Fig. 4).

Allowing a tensor component produces a slightly better fit to the

data, but the parameters are less concordant with other

observations (Fit C, Table 1). The CMB power spectrum for this

model is plotted as the dashed line in Fig. 2. According to this

solution, a significant part of the COBE anisotropies comes from a

tensor component. The baryon density of fit C is vb ¼ 0:027 and is

well outside the range of values inferred from primordial

nucleosynthesis. The matter power spectrum for this model is

plotted as the dashed line in Fig. 4. This shows clearly what is

happening with this solution. The apparent wiggles in the 2dFGRS

power spectrum pull the solution towards a high baryon fraction.

However, to produce a good fit to the CMB anisotropies with a high

Figure 3. Results of the nine-parameter likelihood analysis. Figs 3(a) and 3(b) show approximate 1, 2 and 3s likelihood contours for various parameter pair

combinations computed from an analysis of the CMB data alone. The panels in 3(a) use variables natural to the CMB analysis and illustrate the geometrical and

tensor degeneracies. The panels in 3(b) use the variables natural to the analysis of the galaxy power spectrum (as used in Fig. 1). Figs 3(c) and 3(d) show the

likelihood contours of CMB and 2dFGRS data combined. The crosses in each panel show the position of the maximum likelihood.

CMB and the 2dF Galaxy Redshift Survey L33
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baryon fraction, the tensor degeneracy of Fig. 3 requires high

values of ns and significant tensor anisotropies. The likelihood ratio

of fits B and C is LB/LC ¼ 0:34 and so fit C is only marginally

preferred over fit B. In two of the panels from Fig. 3(c) and (d), the

likelihood distributions have two peaks centred at the parameters

of fits B and C. Adding the BBN constraint on vb (fit D) selects one

of these peaks with parameters close to those of fit B.

Fits B and C predict a lower normalization for the present-day

matter power spectrum than implied by the local abundance of rich

clusters of galaxies. In a recent analysis of the number density

distribution of rich clusters as a function of X-ray temperature,

Pierpaoli, Scott & White (2001) deduce

s8 ¼ ð0:495þ0:034
20:037ÞV

20:60
m ; ð4Þ

where s8 is the rms fluctuation in the mass density distribution

averaged in spheres of radius 8 h 21 Mpc. Fit B gives s8 ¼ 0:72

and fit C gives s8 ¼ 0:61, whereas equation (4) implies that s8 ¼

1:04 and s8 ¼ 1:20, respectively. Most of the error in equation (4)

comes from uncertainties in the cluster mass–X-ray temperature

relation and it is not clear whether the quoted error reflects the true

uncertainties. A number of effects could boost the best fitting

values of s8, for example, a realistic value for topt [recent

observations of high-redshift quasars suggest that re-ionization

occurs just prior to z < 6 (Becker et al. 2001; Fan 2001),

suggesting that topt < 0:03–0:04� or possible calibration errors in

the CMB data might affect s8 at the about the 10 per cent level.

Such effects may reconcile fit B with the cluster data, but are

probably not large enough to explain the discrepancy with fit

C. Furthermore, as we have discussed above, the discrepancy with

the primordial nucleosynthesis value of vb provides another reason

to disfavour fit C.

3 D I S C U S S I O N

The results of this paper are based on the key assumption that

the galaxy power spectrum on large scales (wavenumbers

k , 0:15 h Mpc21) is proportional to the linear matter power

spectrum. Under this assumption, we have shown that the galaxy

power spectrum of the 2dFGRS can be used to partially break the

two major parameter degeneracies inherent in the analysis of CMB

anisotropies. The limits on the scalar spectral index from the

2dFGRS help to break the tensor degeneracy. The resulting

constraints on the matter density provide a measure of a standard

physical distance (the Hubble radius at the time at which matter

and radiation have equal density). This standard length constrains

the Hubble constant and so breaks the geometrical degeneracy.

The resulting constraints are in remarkable agreement with the

baryon density inferred from primordial nucleosynthesis (Burles &

Tytler 1998a,b), estimates of the Hubble constant from the HST

Hubble key project (Freedman et al. 2001) and evidence for a non-

zero cosmological constant from observations of distant Type Ia

supernovae (Riess et al. 1998; Perlmutter et al. 1999). The best-

fitting model excluding a tensor component has parameters that are

very close to those of the standard ‘concordance’ cosmology

(Bahcall et al. 1999). However, the combined CMBþ 2dFGRS

data provide weak upper limits on a tensor component (Table 1)

and other solutions are possible which have a higher baryon density

and baryon fraction. These solutions conflict with the limits on vb

from primordial nucleosynthesis and require a scalar spectral index

ns . 1. The model with high ns and high vb provides a somewhat

closer match to the apparent ‘wiggles’ in the galaxy power spec-

trum at wavenumbers k , 0:08 h Mpc21 and k , 0:12 h Mpc21

than is achieved by the scalar-only model (Fig. 4). Neither model

fully matches the data points, however, and it is plausible that the

apparent features are enhanced by the noise. New power spectrum

data from the 2dFGRS and the SDSS will soon allow us to test this

hypothesis. It is particularly encouraging that the combination of

the 2dFGRS and CMB data yields strong evidence for a

cosmological constant in the range 0:65 & VL & 0:85 based on

completely different arguments to those applied to distant Type Ia

supernovae. This significantly strengthens the case in favour of an

accelerating universe.
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