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Rare mutations in the gene encoding for tau (MAPT, microtubule-associated protein tau) cause frontotem-
poral dementia-spectrum (FTD-s) disorders, including FTD, progressive supranuclear palsy (PSP) and corti-
cobasal syndrome, and a common extended haplotype spanning across the MAPT locus is associated with
increased risk of PSP and Parkinson’s disease. We identified a rare tau variant (p.A152T) in a patient with a
clinical diagnosis of PSP and assessed its frequency in multiple independent series of patients with neuro-
degenerative conditions and controls, in a total of 15 369 subjects.

Tau p.A152T significantly increases the risk for both FTD-s (n 5 2139, OR 5 3.0, CI: 1.6–5.6, P 5 0.0005) and
Alzheimer’s disease (AD) (n 5 3345, OR 5 2.3, CI: 1.3–4.2, P 5 0.004) compared with 9047 controls.
Functionally, p.A152T (i) decreases the binding of tau to microtubules and therefore promotes microtubule
assembly less efficiently; and (ii) reduces the tendency to form abnormal fibers. However, there is a pro-
nounced increase in the formation of tau oligomers. Importantly, these findings suggest that other regions
of the tau protein may be crucial in regulating normal function, as the p.A152 residue is distal to the domains
considered responsible for microtubule interactions or aggregation. These data provide both the first genetic
evidence and functional studies supporting the role of MAPT p.A152T as a rare risk factor for both FTD-s and
AD and the concept that rare variants can increase the risk for relatively common, complex neurodegenera-
tive diseases, but since no clear significance threshold for rare genetic variation has been established, some
caution is warranted until the findings are further replicated.

INTRODUCTION

The term frontotemporal lobar degeneration (FTLD) describes a
group of dementias distinct from Alzheimer’s disease (AD) that
are prevalent among presenile cases (1). The clinical syndromes
associated with FTLD, collectively named frontotemporal
dementias (FTD), comprise 5–10% of neurodegenerative
dementias in epidemiologic samples and between 9 and 16%

in autopsy series (2). More than a decade of careful clinical
and neuropathological characterization has shown that FTLD,
corticobasal degeneration (CBD; CBS for corticobasal syn-
drome), progressive supranuclear palsy (PSP; PSP-S for pro-
gressive supranuclear palsy syndrome) and motor-neuron
disease share significant clinical and pathological features in
many cases and also appear to share many of the same genetic
risk factors or causal mutations; hence, they are part of a
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spectrum (FTD-spectrum, FTD-s) of related conditions (3).
Pathologically, familial and non-familial FTLD are indistin-
guishable (4), suggesting a final common pathophysiology.

The majority of genetic risks for FTD remain unknown. So
far, three common (MAPT—microtubule-associated protein
tau, GRN and C9ORF72) and four rare Mendelian (dominant,
in the CHMP2B, VCP, TARDBP and FUS genes) genetic
forms of FTD have been identified (5). Dominantly inherited
mutations in the gene encoding microtubule-associated
protein tau (MAPT) were the first causal mutations identified
in familial cases of FTLD and are associated with tau path-
ology. Most are clustered in the microtubule-binding domain
(Fig. 1) and are thought to cause either loss of microtubule sta-
bility or enhanced aggregation of tau (6). For this reason, only
the last exons of the MAPT gene are sometimes sequenced in
mutational screens (7). Additionally, a common tau haplotype
has been recognized as a major risk factor for PSP, CBD, some
variants of FTD and Parkinson’s disease (PD), suggesting that
common MAPT alleles increase the risk for multiple neurode-
generative disorders (reviewed in 8). Together, known muta-
tions account for about half of familial cases and �10–15%
of sporadic cases, leaving the genetic contribution to FTD
unknown in most cases. Recently, two common variants in-
creasing risk for FTLD have been identified: (i) the rs5848
polymorphism within the 3′ untranslated region of GRN,
which has been shown to regulate its expression levels, and
possibly the risk for dementia (9); and (ii) variants within
the TMEM106B gene identified in a recent genome-wide asso-
ciation study (GWAS) as associated with increased risk for
FTD (10). In summary, mutations in a few Mendelian genes
and three risk factors only explain a fraction of the genetic
risk associated with FTD, suggesting that other, undetected
risk factors are yet to be identified.

We report the identification of the rare tau p.A152T substi-
tution, located outside the microtubule-binding domain, as a
novel risk for both FTD-s and AD. The significance of this
variant was previously unknown, as it had also been found

in normal subjects. We assessed the frequency of MAPT
p.A152T in multiple large series of patients with neurodegen-
erative diseases and controls, and performed functional
experiments, indicating that p.A152T causes a pronounced
decrease in microtubule stability, a moderate decrease in
paired helical filaments’ (PHFs) stability and an increase in
the fraction of tau oligomers. Although the statistical evalu-
ation of risk associated with very rare variants can be challen-
ging, this genetic screen and functional data provide
reasonable support for the notion that tau p.A152T is a rare
variant associated with increased risk for FTD-s and for
AD, possibly representing the first MAPT variant associated
with AD. This finding has broader implications related to
the role of rare variants in altering the risk for neurodegenera-
tive disease.

RESULTS

Variant discovery via MAPT re-sequencing

During routine sequencing of coding exons in MAPT in 73
FTD-s cases, we identified the sequence variant p.A152T,
within exon 7 of MAPT, in a patient with PSP-S. We ascer-
tained that this variant had been detected in previous cases
[(11), (12)], but had also been found in controls (M.B. and
R.R., unpublished data), and therefore was considered a
variant of unknown significance. Occurrence of p.A152T
was checked in the Exome Variant Server [NHLBI Exome Se-
quencing Project (ESP), Seattle, WA, USA, http://evs.gs.wa
shington.edu/EVS/, last accessed 16 March 2012], where it
is reported with a minor allele frequency (MAF) of 0.27%
in Caucasians (n ¼ 7020 alleles) and 0.08% in African Amer-
icans (n ¼ 3738 alleles), and an overall allelic frequency of
0.20% (n ¼ 10 758 alleles), corresponding to a heterozygote
frequency of �0.41% (n ¼ 5379 subjects).

To further assess the potential role in increasing risk for
disease, we checked the occurrence of MAPT p.A152T in
the entire GIFT cohort and in a large series of 5059 normal
controls obtained from NIMH (Table 1; Materials and
Methods). In total, we identified 5 carriers in 447 FTD-s
cases (1.1%), 0 carriers in 549 AD cases and 15 carriers in
5782 controls (0.26%)—an odds ratio (OR) of 4.3 (CI: 1.2–
12.7, Fisher’s P-value ¼ 0.012) for FTD-s versus controls.

In the second step, we screened three additional independ-
ent series (MAYO, PENN, KCL, see Materials and
Methods). Basic demographic information of the cohorts
studied is reported in Table 1. Analyses on the individual
series indicated an OR for a variety of related neurodegenera-
tive conditions ranging between 1.9 (in the MAYO PD series)
and 3.4 (in the MAYO FTD-s series). A combined analysis
performed on 15 369 subjects placed the estimated OR at 3.0
(CI: 1.6–5.6, P ¼ 0.0005) for FTD-s and 2.3 (CI: 1.3–4.2,
P ¼ 0.004) for AD versus controls. To ensure that this was
not caused by population stratification, we limited the analysis
to only individuals of self-reported Caucasian ancestry and
found similar results [OR for FTD-s versus controls: 3
(CI: 1.5–6.1, P ¼ 0.001), n ¼ 7779; AD versus controls: 2.5
(CI: 1.3–4.8, P ¼ 0.004), n ¼ 9008; Supplementary Material,
Table S1]. We also performed principal component and IBD

Figure 1. Domain structure of tau. The diagram shows the domain structure of
htau40wt and mutation at tau40A152T [largest isoform in the human central
nervous system (CNS), 441 residues] and htau23 (smallest isoform in
human CNS, 352 residues). Tau domains are broadly divided into the N- ter-
minal ‘projection domain’ (amino acids M1-Y197) and the C-terminal ‘assem-
bly domain’ (amino acids Y198-L441). The C-terminal assembly domain
includes three or four pseudo-repeats (�31 residues each, R1–R4), which to-
gether with their proline-rich flanking regions (P1 and P2) constitute the
microtubule-binding region. Repeat R2 and the two near-N-terminal inserts
(I1 and I2) may be absent due to alternative splicing. The repeat domain
also forms the core of PHFs. The fetal isoform of htau23 has a similar
domain structure but lacks the inserts I1, I2 and R2 in the repeat region.
The p.A152T substitution is unusual in that it lies far outside the repeat
domain, in contrast to most FTDP-17 (frontotemporal dementia and parkinson-
ism linked to chromosome-17) tau mutations.
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sharing analyses in a subset of samples for which SNP data
were available and found no particular clustering within
groups of samples of Caucasian descent, nor cryptic related-
ness among p.A152T carriers (Supplementary Material).

The additional 53 p.A152T carriers identified in the con-
firmation series had diagnoses of FTD-s (n ¼ 14), AD/MCI
(n ¼ 23), PD (n ¼ 4), or were asymptomatic normal controls
(n ¼ 12, Supplementary Material, Table S1). Overall,
p.A152T carriers did not have a significantly different age at
onset, compared with non-carriers. Of note, when we consid-
ered the FTD series where neuropathological data were avail-
able (MAYO), the variant was not enriched in 162 FTD-s
cases with TDP-43 pathology, which had a carrier frequency
of 0.62% (1/162, versus 0.25% in 1587 controls, P ¼ 0.38).
This is a potentially important finding, as TDP-43 cases do
not have tau pathology, further indicating that the increased
risk may be specific for tau-related pathology; however, due

to the small sample size, this finding requires follow-up in
future studies.

Assessment of the functional consequences of the p.A152T
substitution

One difficulty with rare variants of an intermediate effect size
such as p.A152T identified here is that it can be difficult to
assess functional effects. However, demonstration of poten-
tially pathogenic alterations in tau protein function would
provide another line of evidence beyond association with
disease, supporting its pathogenic role.

The tau p.A152T variant was introduced by site-directed mu-
tagenesis into the normal coding region of human tau cDNA
(htau40 isoform, ‘2N4R’, containing 441 residues, Fig. 1).
Wild-type and mutant tau were subjected to two in vitro
assays diagnostic of the cellular functions of tau: (i) formation

Table 1. Demographic characteristics and MAPT p.A152T frequencies in four series including patients with FTD-s, AD, PD/LBD and controls (total ¼ 15 369
samples)

GIFT MAYO PENN KCL Total

FTD-s 447a 1276 416 2139
Carriers (%) 5 (1.12) 11 (0.86) 3 (0.72) 19 (0.89)
OR (CI) 4.3 (1.2–12.7) 3.4 (1–14.9) 1.6 (0.2–8.3) 3.0 (1.6–5.6)
P-value (Fisher’s test)b 0.012 0.03 0.45 0.0005
FTD (carriers) 426 (2) 552 (6) 0
PSP (carriers) 4 (1) 594 (4) 340 (3)
CBD (carriers) 17 (2) 130 (1) 76 (0)
Age at onset 58+8 65+9 64+10
%Female 46 49 45
%Caucasian 87 98 96
%Neuropath NA 65 100

AD 549 889 1367 540 3345
Carriers (%) 0 5 (0.56) 14 (1.02) 4 (0.74) 23 (0.69)
OR (CI) NA 2.2 (0.5–11) 2.3 (0.8–8.2) 1.4 (0.2–9.5) 2.3 (1.3–4.2)
P-value (Fisher’s test)b NA 0.30 0.11 0.72 0.004
Age at onset 66+10 NA 71+8 75+7
%Female 57 57 62 51
%Caucasian 32 95 97 99
%Neuropath NA 100 54 NA

PD/LBD 838 838
Carriers (%) 4 (0.48) 4 (0.48)
OR (CI) 1.9 (0.3–10) 1.6 (0.4–4.6)
P-value (Fisher’s test)b 0.46 0.33
Age at onset 65+12
%Female 40
%Caucasian 100
%Neuropath 21

Controls 5782c 1587 1118d 560 9047
Carriers (%) 15 (0.26) 4 (0.25) 5 (0.45) 3 (0.54) 27 (0.30)
Age at examination 50+16 70+12 75+13 75+6
%Female 48 52 57 55
%Caucasian 71 100 97 99
%Neuropath NA 46 18 NA

FTD-s, FTD-spectrum, including FTD, PSP-S, CBS; AD, Alzheimer’s disease; PD, Parkinson’s disease; LBD, Lewy body disease; GIFT, Genetic Investigation in
FrontoTemporal dementia study.
Age at onset/draw available in 5046/6778 (GIFT/NIMH series), 3241/4590 (MAYO), 2649/2901 (UPENN), 518/1100 (KCL). Gender available in 6147/6778
(GIFT/NIMH), 4589/4590 (MAYO), 2858/2901 (UPENN), 1086/1100 (KCL). Ethnicity available in 5546/6778 (GIFT/NIMH), 4577/4590 (MAYO), 2640/2901
(UPENN), 1081/1100 (KCL).
aIncluding 206 patients sampled by the French clinical and genetic Network on FTLD/FTLD-ALS.
bCompared with the controls available in each series (e.g. GIFT FTD-s versus GIFT controls, MAYO FTD-s versus MAYO controls, etc.).
cIncluding 184 NCRAD and 5059 NIMH controls.
dIncluding 613 LOAD controls and 122 NIMH controls.
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of aggregates (one of the pathological effects of tau), (ii) promo-
tion of microtubule assembly (the physiological role of tau in
neurons) and the corresponding microtubule affinity.
Figure 2A illustrates the aggregation assay based on the fluores-
cence of the dye thioflavin S (ThS), which increases when
amyloid-like structures assemble by interaction of b-sheets. In
this assay, the p.A152T mutant appears to aggregate with some-
what lower efficiency than the wild-type protein. A clearer
picture emerges when large aggregates and soluble species are
separated by centrifugation and quantified by SDS–PAGE

(Fig. 2B–E). In these examples, 78% of wild-type tau is aggre-
gated, and only 22% remains soluble. In contrast, 41% of mutant
tau remains soluble. This fraction contains not only monomeric
tau, but also oligomers (up to roughly 70 monomers in these ex-
perimental conditions) which are not pelleted, but also contrib-
ute to the ThS signal (13). Electron microscopy (Fig. 2F and G)
reveals extended filaments for aggregated wild-type tau,
whereas the filaments of mutant tau show frequent breaks and
a background of smaller oligomers. Since tau oligomers are con-
sidered to be more toxic than filaments (14), this finding points

Figure 2. Aggregation of tau and the p.A152T mutant. (A) Aggregation of htau40wt and p.A152T mutant monitored by the ThS fluorescence assay in the pres-
ence of the cofactor heparin. The aggregation of tauA152T is somewhat slower and reaches a somewhat lower final level of aggregation, but overall the assembly
characteristics are comparable. (B and C) SDS gels showing soluble and aggregated tau (S, supernatant; P, pellet), along with molecular weight markers. Both tau
and tauA152T show a major band around 60 kDa and some fragments at lower molecular weights. (D and E) Quantification of the proteins of (B) and (C). Note
that mutant tau (E) aggregates less extensively than the wild-type protein (D) by this assay. (F and G) Electron micrographs of filaments formed from htau40wt
and the mutant p.A152T. Note that the filament preparations from mutant tau are more fragile and contain more oligomers.
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to a possible gain of toxic function of the mutant, even though
the overall tendency for aggregation appears somewhat lower.
We also tested the three-repeat isoform, htau23wt (smallest
isoform, 352 residues), and its mutant, htau23A152T. As in
the case of htau40, the rate of PHF aggregation is similar (some-
what slower for the mutant, Fig. 5A).

An analogous, but more pronounced difference emerges
from the microtubule interaction studies. Wild-type tau
induces the efficient assembly of microtubules in the light
scattering assay, whereas mutant tau reaches only much
lower levels of assembly (�30%) and shows a longer lag

time (Fig. 3A). In co-sedimentation assays, 83% of wild-type
tau is attached to microtubules, compared with only 33% for
mutant tau (Fig. 3B–E). Furthermore, if microtubules are sta-
bilized by taxol independently of tau and then probed for tau
binding, 74% of wild-type tau is bound to microtubules and
26% remains detached, compared with 43% of mutant tau
(Fig. 4A–D). Thus, there is a close correspondence between
the ability of the two tau species to bind to microtubules
and to promote their assembly. The effect of htau23wt and
htau23A152T on microtubule assembly was also tested. As
in the case of htau40, the efficiency of microtubule assembly

Figure 3. Microtubule assembly induced by htau40wt and the p.A152T mutant. (A) Microtubule assembly induced by wild-type tau (black curve, top) and
mutant tau (red curve, middle) monitored by light scattering at 350 nm. Note that mutant tau is much less efficient in stabilizing microtubules than wild-type
tau. As a control, tubulin alone without tau does not assemble in these conditions (blue curve, bottom). (B and C) Binding of tau to polymerized microtubules in
(A). The proteins were incubated for several time periods (10–30 min), separated by pelleting and analyzed by SDS–PAGE. S, supernatant; P, pellet. Tau is
visible as a sharp band above the broad band of tubulin. (D and E) Quantification of (B) and (C). Note that wild-type tau is mostly bound to microtubules
(�75%) and therefore appears in the pellet (red bars in D). In contrast, mutant tau binds much more weakly (only �20–30%) and remains mostly in the super-
natant (black bars in E).
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is clearly lower for the mutant (Fig. 5B). The data illustrate
that mutant tau is strongly impaired in its physiological func-
tion of stabilizing microtubules, a mechanism that has also
been implicated in dominant forms of tauopathy (15).

DISCUSSION

Whether the genetic contribution to common complex diseases
comes from common or rare variants (or a combination of
both) is a major issue in complex disease genetics. Identifica-
tion of genetic variants predisposing to common disease has
focused on the identification of rare, highly-penetrant Mendel-
ian genetic variants in small numbers of families, or common
variants in large populations. These approaches have been suc-
cessful, identifying many risk variants, but also revealing a
large territory of missing heritability (16). A recent provoca-
tive report suggested that at least some of the signals detected
in large GWAS could be due to rare variants (17), but the rela-
tive weight of this phenomenon is still unclear (18), and
large-scale resequencing studies are expected to clarify this
issue (19). Re-sequencing at the gene level provides an effi-
cient method for identifying rare variants in disease, many
of which may be of an intermediate effect size, rather than
causal Mendelian loci, as has been the typical assumption
for rare variants (20).

Our data suggest that rare variants can increase the risk for
complex diseases with heterogeneous phenotypes, likely in
synergy with other (common or rare) polymorphisms. The
variant reported here occurs in a gene (MAPT) where rare
Mendelian, disease-causing mutation can also occur, suggest-
ing that both Mendelian pathogenic and susceptibility variants
can occur in the same gene (21,22). In the future, it will be
challenging to prioritize rare variants occurring in genes that
have not been yet linked to neurodegeneration, in order to
perform large screens and demonstrate that they increase the
risk for disease. Large-scale resequencing projects will facili-
tate this by providing frequencies of rare variants that can be
used for in silico screens. It should be noted that the statistical
evaluation of the role of very rare sequence variants poses a
challenge (23), as no thresholds for rare variant significance
have been established (24); several studies of rare variant de-
tection have provided either no statistical support for individ-
ual gene variants (25) or a threshold of P , 0.05, which has
been used for aggregate rare variant signals (26). We expect
that novel statistical methods will be developed, possibly
more powerful than the traditional methods applied here,
and a more solid rubric for rare variant significance will be
established. Our large cohort provides the first evidence for
a specific rare tau variant, increasing risk for AD, and FTD-s dis-
orders including PSP. As sample sizes grow, it will be important
to continue to re-evaluate its effect size and contribution to
disease. In addition, population stratification is a potential

Figure 4. Binding of tau to preformed taxol-stabilized microtubules. Stable microtubules were first assembled in the presence of 30 mM taxol and then incubated
with wild-type or mutant tau at different concentrations of tau (250 nM to 1 mM) (with tubulin fixed at 30 mM). The microtubules with bound tau were separated
from soluble tau by pelleting and analyzed by SDS–PAGE. (A and B) SDS gels showing soluble and assembled fractions of tau and tubulin. (C and D) Quan-
titation of (A) and (B). Note that wild-type tau is mostly bound to microtubules (red bars), whereas a large fraction of mutant tau does not bind and remains
soluble.
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confounder in association studies, and, although we did not find
evidence for population bias in a subset of our samples, the very
small numbers of p.A152T carriers do not allow us to exclude
this possibility conclusively.

Tau is a key component of AD pathology, and tau levels,
isoform ratios or function may influence AD risk (27). A
genetic contribution from sub-haplotypes at the 17q21.31
MAPT locus has been reported (28), although this association
has not been consistently observed (29,30). Our combined
analysis indicates that p.A152T is the first genetic risk factor
for AD reported in MAPT. The estimated OR for this variant
in AD is less than APOE, but greater than other common var-
iants, such as in SORL1 (31) and CLU (32). The same is true
for FTD and PSP; the OR for FTD is nearly as large as that for
the ApoE4 allele in AD, so this is the first susceptibility factor
with a moderate effect size in an FTD-s condition. It should
also be noted that a significant number of controls in this
study (i.e. the NIMH samples within the GIFT series) were
overall younger, possibly leading to an underestimation of
the risk effect, since younger p.A152T carriers might still
develop disease.

The identification of this MAPT rare variant, among the first
with an intermediate effect size, suggests that a broad

sequencing approach targeted at such forms of rare genetic
variation in neurodegenerative dementia may be useful, as
very rare variants are not likely to generate a GWAS associ-
ation signal. The frequency of the tau p.A152T variant was
also higher in PD patients than in controls, but this association
did not reach statistical significance in our mega-analysis. PD
has no tau inclusions, but tau-positive FTD is associated with
parkinsonism in a significant number of patients with FTLD
(33), and PD-related genes, such as DJ-1, colocalize with
tau inclusions (34). Finally, recent, large GWAS in PD
(e.g. 20) detected an association signal over the MAPT
region, suggesting that MAPT and genes involved in tau me-
tabolism and function may be worthwhile candidates for
study in PD. Thus, larger PD association studies with rare
MAPT variants may be worthwhile.

The functional data on tau–microtubule and tau–tau
binding reveal that p.A152T tau has decreased potential for
normal functional interactions. In the case of the physiological
interaction with microtubules, this amounts to an impaired sta-
bility of microtubules, equivalent to a loss of function of
mutant tau. In the case of tau aggregation, the seemingly
similar level reached by the two species in the ThS fluores-
cence assay would suggest a somewhat lower tendency of ag-
gregation for mutant tau. However, this view must be weighed
against the fact that mutant tau is more prone to form oligo-
mers, which are thought to be more toxic than either filaments
or monomers (14). This is equivalent to a toxic gain of func-
tion. The parallel changes in the two assays, microtubule as-
sembly versus PHF assembly, are reminiscent of changes
observed with several other dominantly acting tau mutants,
where an impaired microtubule binding is accompanied by a
higher tendency to form pathological aggregates (15,35), sug-
gesting that the change in protein conformation caused by the
p.A152T substitution decreases the interaction with microtu-
bules and at the same time exposes the domains of tau that
are prone to aggregate. The isoform htau40wt (441 residues,
with 4 repeats) can bind strongly to microtubules, whereas
isoform htau23wt (352 residues, with 3 repeats) has only
three repeats and binds less strongly, which results in a
lower stabilization of microtubules (36).

In the case of most MAPT mutations, the majority of sites
lie in or near the repeat domain; since this domain determines
both microtubule binding and PHF assembly, the dual conse-
quences of a given mutation are plausible. In contrast, the
enigma of the p.A152T mutation lies in the fact that it is far
away from regions implicated in tau’s established cellular
functions. Three ideas come to mind regarding possible func-
tions. (i) Residue p.152 is just upstream of the motif Thr-Pro
(residues p.153–154), one of the numerous SP or TP motifs
in tau that are targets of proline-directed kinases and whose
elevated phosphorylation is a diagnostic marker of AD and
other tauopathies. Indeed, p.T153 is phosphorylated during
the cell cycle in neuronal cell lines (37), in parallel to other
SP/TP motifs, but functional consequences are not known.
It is possible that the mutation p.A152T interferes with
phosphorylation in a cellular context. (ii) Even though the
N-terminal half of tau is traditionally considered a
‘projection domain’ which does not bind to microtubules,
this picture is oversimplified since a number of residues
reveal microtubule interactions by nuclear magnetic resonance

Figure 5. Aggregation propensity and microtubule assembly of htau23wt and
htau23A152T. (A) Aggregation of htau23wt and p.A152T mutant monitored
by the ThS fluorescence assay in the presence of the cofactor heparin. The ag-
gregation of tau23A152T is somewhat slower and reaches a somewhat lower
final level of aggregation, but overall the assembly characteristics are compar-
able. (B) Microtubule assembly induced by wild-type tau (black curve, top)
and mutant tau (red curve, middle) monitored by light scattering at 350 nm.
Note that mutant tau is much less efficient in stabilizing microtubules than
wild-type tau. As a control, tubulin alone without tau does not assemble in
these conditions (blue curve, bottom).
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(NMR) spectroscopy analysis (38). This includes p.I151, just
upstream of the mutation site, which might therefore explain
the weakening of the microtubule interaction. (iii) The
region around residues p.160–180 shows an extended charac-
ter in tau [beta strand, followed by poly-Pro helix (38)], whose
direction and, thus, conformation might be altered by the mu-
tation at residue p.152 or phosphorylation at p.T153. These
ideas are currently under experimental investigation.

In conclusion, genetic evidence from multiple large series
and functional studies indicate the tau p.A152T as a risk
factor for FTD-s and possibly AD. The effect size for FTD
is remarkable relative to known common variants, and
similar to that for ApoE4 heterozygotes in AD, although the
effect of the A152T for AD appears about half. The functional
studies show that the p.A152T tau (i) binds less tightly to
microtubules, and (ii) forms aggregates which are less
stable, but favor fragments of filaments and smaller units.
Both properties would enhance the level of tau oligomers,
for which accumulating experimental evidence supports as a
more toxic species (39,40). Additional genetic (including
co-segregation studies within large families) and functional
studies will be needed to clarify the role of this variant in
the pathogenesis of neurodegenerative disease. As is becoming
clear in other complex diseases, additional genetic variants are
likely be at play in promoting neurodegeneration in tau
p.A152T carriers. Exome sequencing in mutation carriers
compared with controls may yield a source of potential inter-
acting loci that can be followed up by studies in cellular and
animal models.

MATERIALS AND METHODS

Ethics statement

All subjects and/or their proxies signed informed consents for
genetic studies.

Subjects

We screened four series for a total of 15 369 subjects
(Table 1). In the first screen, patients were enrolled as part
of a large genetic study in neurodegenerative dementia
[Genetic Investigation in Frontotemporal Dementia, GIFT
(41)] at the Alzheimer’s Disease Research Centers (ADRCs)
of UC San Francisco, Davis, Irvine, Los Angeles, University
of South California, Emory University, and including 206
samples collected by a French research network on FTLD/
FTLD-ALS. A control set of 5059 normal subjects was
obtained from NIMH. Additional confirmation series included
samples with FTD-s, AD, PD and controls recruited at (i) Uni-
versity of Pennsylvania (PENN series), (ii) Mayo Clinic Jack-
sonville and Mayo Clinic Rochester (MAYO series) and (iii)
King’s College London (KCL series). Part of the PENN and
MAYO series have been included in previous reports (42,43).

Genetic studies

Genotyping of the sequence variant in MAPT exon 7
NM_005910.5:c.454G.A (p.A152T), and APOE (rs429358
and rs7412) and MAPT H1/H2 (rs1560310) defining variants,

was conducted using a TaqMan Allelic Discrimination Assay
on an ABI 7900HT Fast Real-Time PCR system (Applied Bio-
systems, Foster City, CA, USA) according to the manufac-
turer’s instructions. Sanger Sequencing was used to confirm
identified variant carriers. All primer and probe sequences
are available on request. Frequencies were compared using a
two-sided Fisher’s exact test, as implemented in the fisher.test
function in the statistical environment R (www.r-project.org)
with default parameters.

Tau-dependent microtubule assembly and aggregation

Thioflavine S and heparin were obtained from Sigma (Stein-
heim, Germany). The human full-length tau isoform
htau40wt (441 residues) and mutant htau40A152T, and the
shortest full-length isoform of three-repeat tau (htau23wt,
352 residues) and its mutant htau23A152T were expressed
in BL21 (DE3) Escherichia coli as described (44,45). For ter-
minology of Tau isoforms, see Goedert et al. (46). Tau muta-
tions were created by site-directed mutagenesis using the
Quik-change site-directed mutagenesis kit (Stratagene, Am-
sterdam, the Netherlands) and the plasmid pNG2. The assem-
bly was induced by incubating soluble tau in the range of
50 mM in volumes of 20 ml at 378C in 20 mM BES (N,N,-bis
[2-hydroxyethyl]-2-aminoethanosulfonic acid), pH 7.4, plus
25 mM NaCl buffer with the anionic cofactor heparin 5000
(molar ratio of tau to heparin ¼ 4:1). The formation of aggre-
gates was monitored by ThS fluorescence and confirmed by
electron microscopy. After the ThS aggregation assay, solu-
tions of aggregated tau were centrifuged at 100 000g for
30 min to separate aggregated tau pellet and non-aggregated
tau supernatant [in these conditions, oligomers up to �70
tau monomers would remain in solution, estimated from the
equation S ¼ K/T, where K ≈ 70 is the clearing factor of the
centrifuge rotor, and T ¼ 0.5 is the centrifugation time; this
yields a cutoff of S ≈ 140, equivalent to 70 times the Svedberg
value of hTau40 monomers of �2 (47)], and analyzed by
SDS–PAGE (10% polyacrylamide gels). Gels were stained
with Coomassie Blue R-250 and quantified (AIDA IMAGE
software). All experiments were performed at least five
times, and four batches of proteins were purified.

Tau-induced microtubule polymerization and binding

Microtubule assembly was monitored by UV light scattering
in the presence and absence of tau. For the binding of tau to
preassembled microtubules, tubulin assembly was performed
in microtubule assembly buffer. Tubulin (30 mM) was incu-
bated with 30 mM taxol at 378C for 20–30 min to induce
microtubule formation. The suspension of the samples was
fractionated by ultracentrifugation at 28 000g for 20 min.
The stabilized microtubule solutions were then diluted to the
desired concentration and titrated with different concentrations
of tau to measure the interaction by co-sedimentation assay.
The samples were fractionated by ultracentrifugation, ana-
lyzed by SDS–PAGE and the percentages of tau protein in
supernatants and pellets were quantified by densitometry of
the Coomassie Blue R-250-stained gels.
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Electron microscopy

Protein solutions (tau filaments or microtubules) were diluted
to 1–10 mm, placed on 600-mesh carbon-coated copper grids
for 1 min, washed with two drops of H2O, negatively stained
with 2% uranyl acetate for 45 s and examined in a Philips
CM12 electron microscope at 100 kV.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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