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New rock magnetic results (thermal fluctuation tomography, high-

resolution first-order reversal curves and low temperature meas-

urements) for samples from the Paleocene–Eocene thermal maxi-

mum and carbon isotope excursion in cored sections at Ancora and

Wilson Lake on the Atlantic Coastal Plain of New Jersey indi-

cate the presence of predominantly isolated, near-equidimensional

single-domain magnetic particles rather than the chain patterns ob-

served in a cultured magnetotactic bacteria sample or magnetofos-

sils in extracts. The various published results can be reconciled with

the recognition that chain magnetosomes tend to be preferentially

extracted in the magnetic separation process but, as we show, may

represent only a small fraction of the overall magnetic assemblage

that accounts for the greatly enhanced magnetization of the carbon

isotope excursion sediment but whose origin is thus unclear.

impact plume condensate | maghemite | magnetite |
Ocean Drilling Program Leg 174AX

The Paleocene–Eocene boundary (∼55.8 Ma) is marked by an
abrupt negative carbon isotope excursion (CIE) (1, 2) that

coincides with an oxygen isotope decrease interpreted as the
Paleocene–Eocene thermal maximum (PETM) (3). In a cored
section at Ancora (AN) (Ocean Drilling Program Leg 174AX)
on the Atlantic Coastal Plain of New Jersey (Fig. 1), a zone of
anomalously high magnetic susceptibility was discovered co-
incident with the CIE at the base of the Manasquan Formation
(now known as the Marlboro Clay) (4). Bulk sediment magnetic
hysteresis measurements indicated that the high magnetization
corresponds to an increased abundance of very fine-grained
magnetite with single domain (SD)-like magnetic properties. A
similar association of high concentration of SD magnetite in
a kaolinite-rich interval with minimum carbon isotope values was
subsequently found in two other drill cores (Clayton and Bass
River), which with the Ancora site, formed a transect across the
New Jersey Atlantic Coastal Plain (5). The average distance
between the magnetic particles is estimated to be 20 times larger
than their lengths, given a concentration of 100 parts per million
(ppm) estimated from the bulk saturation magnetization. Attempts
to image the magnetic grains by transmission electron micros-
copy (TEM) in a bulk sample from the CIE interval in the
Clayton site resulted in finding only a handful of isolated grains,
which nevertheless had the requisite nanoscale dimensions
(∼50–70 nm) expected from the bulk hysteresis properties (5).
Iron-rich nanophase material had been previously detected (with
Mössbauer techniques) at several Cretaceous–Paleogene bound-
ary sites and was ascribed to condensates from an impact ejecta
plume (6, 7). Accordingly, the nanoparticle-rich interval associ-
ated with the CIE on the New Jersey Atlantic Coastal Plain was
suggested to have a similar origin, providing circumstantial evi-
dence for a major extraterrestrial (in this case cometary) impact at
the onset of the CIE (5, 8).
Anomalously high concentrations of SD-like material have

been confirmed by subsequent studies of the CIE from the At-
lantic Coastal Plain, making these CIE sections perhaps the
thickest dominated by SD magnetite recognized thus far in the
stratigraphic record (9–13). In these studies, TEM observations

on magnetic extracts were used to support the rock magnetic
results and revealed the presence of chains of magnetic crystals
that strongly resembled magnetofossils, with the implicit sup-
position that the separated fractions were representative of the
entire magnetic assemblage. Unfortunately, most bulk magnetic
properties such as hysteresis and first-order reversal curve (FORC)
analyses are not able to establish if a SD-like grain assemblage is
aligned in chains, the most distinctive crystallographic property
for a biogenic origin (14). Some examples of naturally occurring
SD-like assemblages in nature that are nonbiogenic include some
pyroclastic tuffs (15), submarine basaltic glass (16), meteoritic
smoke in polar ice cores (17), and even the magnetite nano-
particles of enigmatic origin in Martian meteorite ALH84001
(ref. 14; but see ref. 18).
In this paper, we present rock magnetic results from a rela-

tively new technique, thermal fluctuation tomography (TFT)
(19), as well as low temperature magnetic properties and high-
resolution (HiRes) FORCs (20), in an effort to distinguish be-
tween isolated particles and chain structures. We selected for study
the well-characterized Ancora (AN) core, making a comparison
between sample AN560.1 from the CIE clay and sample AN567.7
from just before the CIE (Fig. 1); we also obtained supporting data
from a CIE sediment sample from a shallower-water section cored
at Wilson Lake (WL). Importantly, we compare magnetic results
from a magnetic extract obtained from CIE bulk sample AN560.1
with those from a freeze-dried sample from an untreated culture of
magnetotactic bacteria (MTB) MV-1 (21). These comparisons
provide critical insights into the interpretation of the magnetic
grain size and shape distribution in the CIE on which the origin of
the magnetic particles is largely based and suggest a reevaluation
of results from the more widely applied ferromagnetic resonance
(FMR) technique (9, 12, 13).

Results

The magnetic particle size and shape distribution from TFT for
Ancora CIE bulk sample AN560.1 (Fig. 2A) has a mode at length
(L) = 56 nm and width-to-length aspect ratio (W/L) = 0.84. These
TFT size and shape values are consistent with isolated near-
equidimensional SD grains and TEM results on a bulk sample
from the CIE (5). The TFT calculations for a sample from an
untreated culture of MTB MV-1 (21) (Fig. 2B) show that the
distribution of effective ferromagnetic particle sizes and shapes
has multiple peaks that we interpret as corresponding to mag-
netosome chains (40 nm < L < 50 nm, 0.35 < W/L < 0.55) and
individual particles (mode at L = 57 nm, W/L = 0.67), with
a slightly larger major peak. These values are consistent with
TEM images (12, 23, 24) but very different from the TFT results
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from the CIE bulk sample shown in Fig. 2A. This firstly reported
TFT result for MV-1 shows the potential for detecting MTB
magnetosome chains by the TFT technique.

The size and shape distribution for AN560.1 CIE magnetic
extract residue (Fig. 2C) has a mode at L = 109 nm, W/L = 0.88,
showing a much smaller tail toward the low W/L direction than
the CIE bulk sample (Fig. 2A), indicating less elongated magnetic
particles or fewer magnetosome chains. The TFT result for the
AN560.1 CIE extract in its in situ state, derived by subtracting
extract residue from bulk sediment data, shows two major peaks
(Fig. 2D). One is around L = 100 nm, W/L = 0.9, very similar to
the values for the extract residue (Fig. 2C); the other is around
40 < L < 50, 0.6 <W/L < 0.7, indicating more elongated particles
or magnetosome chains.
The TFT size and shape distribution inferred for the CIE bulk

sample more clearly impinges on the superparamagnetic (SP)–SD
boundary than the MV-1 distribution, which is more tightly con-
strained within the SD field (Fig. 2 A and B). This might reflect a
somewhat wider grain size distribution for the CIE clay than for
theMV-1 magnetotactic bacteria sample, although the highMr/Ms

ratios preclude a large SP population in either case. The SP
population can be imaged with low temperature TFT but requires
cross-calibration to a different instrument than used for the high
temperature TFT. A low temperature experiment was performed
on a split of bulk sample AN560.1 but unfortunately the 300 K
data in common did not match well (Fig. S1 A and B), indicating
specimen differences or instrument offsets. However, 300 K data
in common matched well (Fig. S1 C and D) for paired specimens
of a bulk sample (WLb357.3) from an expanded section of the
CIE from the B core at Wilson Lake, essentially the same as the
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Fig. 1. (A) Location map for Ancora, Clayton, Wilson Lake, and Bass River drill

sites on the Atlantic Coastal Plain of New Jersey. (B) Stratigraphic plots of sand

percentage, bulk carbonate δ
13C, saturation magnetization (Ms), and ratio of

saturation remanence to saturation magnetization (Mr/Ms) for the interval in

the Ancora cored section with the CIE (interval from ∼171.5 m to ∼165.5 m)

with low δ
13C values (5). Positions are indicated of the CIE sample AN560.1 and

the pre-CIE (Late Paleocene) sample AN567.7 from the Ancora core.
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cored section investigated by others (9, 11, 25). The high tem-
perature TFT results for WLb357.3 (Fig. S2A) are virtually
identical to those of AN560.1 (Fig. 2A) with the TFT size and
shape distribution patterns for CIE bulk sample WLb357.3
mainly showing a small shift in the SP direction along the trend
of the SP–SD boundary line between the 300 K to 640 K range
(mode at L = 65 nm, W/L = 0.84) and the 120 K to 640 K range
(mode at L = 45 nm, W/L = 0.74) (Fig. S2 A and B).
Based on the field cooled and zero-field cooled (FC–ZFC)

remanence warming curves (26) as well as low temperature de-
magnetization (LTD) cooling and warming curves of room
temperature saturation isothermal remanence (SIRMRT) from
5 K to 300 K), Verwey transitions (27) are observed at about 100–
110 K for the CIE extract and at about 90–100 K for MV-1, with
FC yielding higher remanence than ZFC, a typical signature for
biogenic magnetosomes of SD magnetite (26) (Fig. 3 A and B).
Although magnetic interactions may change the shape of FC–
ZFC curves (28), a Verwey transition signal should still be
present (29). The Verwey temperatures indicate that the mag-
netite particles in the CIE extract as well as the magnetosomes in
the MV-1 culture are only partially oxidized. In contrast, the
Verwey transition is not apparent for the CIE bulk samples (Fig.
3 C and D) and CIE magnetic extract residue (Fig. 3E), which
we attribute to the dominant ferromagnetic mineral being SD
maghemite (30) that formed either by crystallization in an oxi-
dizing environment or by later oxidization of magnetite (31, 32).
The presence of biogenic SD magnetite in the CIE extracts based
on TEM observations (9–11) and our Verwey transition data for
the CIE magnetic extract (Fig. 3A) suggest that the coexisting
dominant SD maghemite particles and subordinate SD magne-
tite particles could be original independent components of the
CIE sediments. A weak Verwey transition signal previously

reported from a sample at the onset of the CIE from Wilson
Lake (109.118 m depth) (11) may indicate a slightly higher bio-
genic SD magnetite portion. For the Ancora CIE bulk sample
(Fig. 3 C and D), we also observe an inflection at around 37 K,
which corresponds to the Neel temperature of siderite (33, 34).
We estimate the mass concentration of siderite of about 1–2 ‰.
In contrast, no clear trace of Verwey transition or siderite signal
can be identified for the late Paleocene sample (AN567.7) just
before the CIE (Fig. 3F).
A FORC diagram of AN560.1 CIE bulk (Fig. 4A) shows a nar-

row central ridge and faint reversible contributions appearing as
a 45° asymmetric ridge, typical signatures for an assemblage of SD
magnetic particles (20, 35). HiResFORC diagrams bring some
characteristics into sharper focus and enable us to differentiate
between theCIE bulk (Fig. 4B), CIE extract residue (Fig. 4C), CIE
extract (Fig. 4D), and the extract in its in situ state derived by
subtraction (Fig. 4E). From their coercivity profiles, it appears that
there is a greater abundance of higher coercivity particles in the
extract in its in situ state (Hc peaking at around 30–40 mT) than in
the residue (Hc peaking at around 20–30 mT), indicating higher
coercivity magnetosome chains are preferably extracted. A direct
HiResFORC experiment on the AN560.1 CIE extract (Fig. 4D)
shows a larger magnetic interaction signal, indicating that the
extracted magnetic particles were probably crowded together
around the magnet finger during extraction. A HiResFORC dia-
gram for MTB MV-1 (Fig. 4F) also shows a narrow central ridge
and clear reversible contribution. However, its coercivity profile is
much more concentrated around 40 mT compared with the much
broader coercivity profiles for the CIE bulk sample (Fig. 4B).
In light of the TFT data, we reanalyzed the reported FMR

results for the laboratory cultured MTBs (12) and the CIE
bulk samples (9) in a ΔBFWHM-A plot (13) (Fig. 5). We find
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that the CIE bulk samples plot very close to sodium dodecyl
sulfate (SDS)-treated and ultrasonicated Magnetospirillum

magneticum strain AMB-1 mutant mnm18, which contains
freed isolated approximately equidimensional magnetosome
crystals. The reported FMR results of the CIE data compared
with untreated and treated MTB data suggest a redefinition of
the zones for lithogenic large grains, independent SD grains,
and biogenic magnetosome chains in ΔBFWHM-A parameter
space (shaded ellipses in Fig. 5). In this perspective, the FMR
data cannot exclude the interpretation that the ferromagnetic
particles in the CIE clay are predominantly isolated near-
equidimensional SD grains.

Discussion

We find that a broad array of rock magnetic results (TFT, FC–
ZFC, LTD SIRMRT, HiResFORC, and FMR) for CIE bulk
samples from Ancora (and Wilson Lake) is consistent with the
predominant presence of near-equidimensional noninteracting
SD particles. These results allow alternative possibilities for the
nature and origin of the dominantly SD magnetic particles that
occur in greatly increased abundance in the CIE sediments.
Populations of many different species of MTB, with differing
magnetosome/chain geometries and admixed in suitable pro-
portions, might conceivably produce similar TFT and FORC
distributions. Such a hypothetical assemblage would indeed
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provide a natural explanation for the sharp confinement of the
size/shape distribution to the stable SD field, and for the rel-
atively pure magnetite/maghemite composition, both resulting
from biological control of magnetic particle formation. In con-
trast, the particle size distribution and mineralogical composition
of impact plume condensates depend on many factors, and
model calculations (36, 37) generally predict neither a narrow
particle size distribution nor a preponderance of submicron sizes
nor end member iron spinel compositions, and so these char-
acteristics of the CIE sediments are rather fortuitous under the
impact-plume scenario.
However, the TFT results show little indication of alignment in

chains, a key signature of biogenic origin that also produces
a distinct size and shape distribution in TFT results from cultured
magnetotactic bacteria sample MV-1. The apparent discrepancy
can be reconciled with the recognition that chain magnetosomes
are preferentially extracted in the magnetic separation process
(and subsequently imaged in TEM studies) but may be an un-
representative small fraction of the overall magnetic assemblage in
the CIE sediment. Fossil magnetosomes may very well become
more prevalent during the CIE but the evidence is unclear
whether they are solely or even mainly responsible for the greatly
enhanced and geographically widespread SD-like magnetic prop-
erties of CIE bulk sediments. We would also point to the close
resemblance of FMR parameters (Fig. 5) of CIE sediment and
those reported for magnetic nanoparticles in Martian meteorite
ALH84001, where it was concluded that no more than 10% of the
magnetic particles were likely to be arranged in chains and thus
difficult to prove to be of magnetosome origin (14). We believe
our results are starting to build a similar case for the unusual SD-
like characteristics of CIE sediment on the Atlantic Coastal Plain.

Materials and Methods

We performed a magnetic finger extraction procedure (9, 38) with a peri-

staltic pump circulation system at the Institute for Rock Magnetism (IRM) on

CIE bulk sample AN560.1. The procedure was done using a very slow flow

rate for over 24 h. Despite the deliberate care, we were able to extract only

a small fraction of the total ferromagnetic particles as estimated by satu-

ration remanent magnetization determined from hysteresis loops on the

extract (5% of initial bulk value) and on the residue (94% of initial value),

together indicating minimal (∼1%) overall loss of the ferromagnetic min-

erals during the extraction procedure. TEM images on magnetic separates

from Ancora CIE sediment reveal features like chain alignments that re-

semble bacterial magnetite (9), but at issue is how representative these

observations are of the bulk of the CIE magnetic assemblage, which could

just as well be largely composed of isolated equidimensional grains (5).

We conducted high temperature TFT (19) using a PrincetonMeasurements

Corporation (PMC) vibrating sample magnetometer (VSM) equipped with

a high temperature furnace (HT-VSM) at the IRM at the University of Min-

nesota on bulk samples from the CIE in the Ancora core to characterize the

dominant W/L aspect ratio of the SD magnetic grains, which should ap-

proach 1 for isolated equidimensional grains and be much less than 1,

depending on the effective elongations, for particles in chains. For bulk

sample AN560.1 (170.72 m in the Ancora core, within the CIE; Fig. 1) and its

magnetic extract residue, we measured back-field demagnetization (BFD)

curves at logarithmic increments from 2 mT to 450 mT for 39 points from 300

K to 640 K (before any trace of severe chemical alteration sets in) at 10-K

intervals. To avoid the undesirable effects of magnetostatic interactions

introduced by the extraction process, we derived an unbiased estimate of

the in situ BFD for the AN560.1 magnetic extract by subtracting each of the

BFD curves of the extract residue from the BFD curves of the bulk sediment.

We also conducted a TFT experiment on a sample from an untreated culture

of MTB MV-1 (21), which was freeze dried and kept frozen for over 10 y (and

thus likely to be partially oxidized), using backfield demagnetization curves

from 300 K to 470 K at every 10 K for comparison (Fig. 2B).

We also conducted low temperature TFT (19) using another PMC VSM

equipped with a low temperature cryostat (LT-VSM) at the IRM. We mea-

sured BFD curves at logarithmic increments from 2 mT to 1,500 mT for 45

points from 120 K (above the Verwey transition temperature) to 300 K at

10-K intervals. The BFD curves at 300 K on both instruments were almost

identical after linear normalization for the specimens from the CIE bulk

sample from Wilson Lake (WLb357.3; Fig. S1 C and D), allowing us to cal-

culate the size–shape distribution using only high temperature data (Fig.

S2A) and as well as by combining the high and low temperature data (Fig.

S2B). Unfortunately, the 300-K BFD curves did not match the specimens from

the CIE bulk sample from Ancora (AN560.1; Fig. S1 A and B), indicating

specimen differences or instrumental offsets.

In the TFT calculations these temperature-dependent switching-field

distributions are inverted to obtain the distribution of particle volumes and

microcoercivities, f(V, Hk). For strongly magnetic cubic minerals such as

magnetite and maghemite (we used Ms = 480 kA/m, which is appropriate
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for magnetite although a somewhat lower value may apply for maghemite

depending on exact composition), shape anisotropy dominates the magnetic

behavior, and Hk is directly related to aspect ratio (22). The cells of the

original rectangular (V, Hk) grid can thus be mapped into corresponding

points in the (L, W/L) parameter space to represent the distribution of fer-

romagnetic particle lengths and aspect ratios, f(L, W/L) (Fig. 2A). The TFT

inversion assumes that particles are noninteracting and that their moments

reverse by coherent rotation. In intact chains of magnetosomes these

assumptions are not satisfied, but we can anticipate the effects of this on the

results. The critical field for incoherent reversal of magnetic moments in

a chain of particles is somewhat larger than that for individual magneto-

somes because interparticle interactions add to the anisotropy energy due to

particle shape. Similarly the effective thermally activated volume is slightly

larger than that of an individual magnetosome, due to the stabilizing effect

of interactions along the chain. Thus, the expected behavior of intact chains

in the TFT experiment is effectively that of isolated particles that are more

elongate and slightly larger than individual magnetosomes, but much less

elongate and smaller than the complete chains.

Low temperaturemagnetic properties weremeasured every 5 K for the CIE

bulk samples (AN560.1 andWLb357.3), a late Paleocene (pre-CIE) bulk sample

(AN567.7, 173.03 m in the Ancora core, Fig. 1), the CIE magnetic extract

(AN560.1), the CIE extract residue, and the MV-1 culture, using the Quantum

Designs magnetic properties measuring system (MPMS) at IRM (Fig. 3).

We performed regular FORC [field increment (δH) = 2 mT, smoothing

factor (SF) = 3] and HiResFORC (δH = 0.6 mT, SF = 6) measurements (20) on

the CIE bulk sample (AN560.1), the CIE extract, the CIE extraction residue,

and MV-1, using a PMC alternating gradient force magnetometer (AGFM)

at Rutgers University and analyzed the FORC data using FORCinel (39). For

the CIE bulk sample and CIE extraction residue, we stacked nine HiR-

esFORC measurements each by normalizing and averaging individual

FORC measurements to improve the signal-to-noise ratio. We also per-

formed subtraction of FORC results from CIE bulk and extraction residue

to derive an unbiased FORC representation of the CIE extract in its in

situ state.
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Fig. S1. Comparison of back-field demagnetization (BFD) curves at 300 K on high temperature (HT)-VSM (red) and low temperature (LT)-VSM (blue) for CIE

bulk sediment samples AN560.1 (A and B) and WLb357.3 (C and D). BFD curve extrapolations (black dashed lines; A and C) were performed by the inverse of the

1.5-T saturation remanences. Comparisons of BFD remanences at 300 K measured with HT-VSM vs. LT-VSM for the same demagnetization steps are shown in B

for AN560.1, which has poor agreement, and in D for WLb357.3, which has good agreement.
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Fig. S2. Thermal fluctuation tomography (TFT) size and shape distributions for carbon isotope excursion (CIE) bulk sediment WLb357.3 calculated by back-

field demagnetization (BFD) curves from (A) 300 K to 640 K and (B) 120 K to 640 K. Star, superparamagnetic (SP), single domain (SD), and multidomain (MD) as

in Fig. 2.
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