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Abstract

Background: Secondary contact between closely related lineages can result in a variety of outcomes, including
hybridization, depending upon the strength of reproductive barriers. By examining the extent to which different
parts of the genome introgress, it is possible to infer the strength of selection and gain insight into the
evolutionary trajectory of lineages. Following secondary contact approximately 8000 years ago in the Pacific
Northwest, mule deer (Odocoileus hemionus hemionus) and black-tailed deer (O. h. columbianus) formed a hybrid
swarm along the Cascade mountain range despite substantial differences in body size (up to two times) and
habitat preference. In this study, we examined genetic population structure, extent of introgression, and selection
pressures in freely interbreeding populations of mule deer and black-tailed deer using mitochondrial
DNA sequences, 9 microsatellite loci, and 95 SNPs from protein-coding genes.

Results: We observed bi-directional hybridization and classified approximately one third of the 172 individuals as
hybrids, almost all of which were beyond the F1 generation. High genetic differentiation between black-tailed deer
and mule deer at protein-coding genes suggests that there is positive divergent selection, though selection on these
loci is relatively weak. Contrary to predictions, there was not greater selection on protein-coding genes thought
to be associated with immune function and mate choice. Geographic cline analyses were consistent across
genetic markers, suggesting long-term stability (over hundreds of generations), and indicated that the center
of the hybrid swarm is 20-30 km to the east of the Cascades ridgeline, where there is a steep ecological
transition from wet, forested habitat to dry, scrub habitat.

Conclusions: Our data are consistent with a genetic boundary between mule deer and black-tailed deer that is
porous but maintained by many loci under weak selection having a substantial cumulative effect. The absence of clear
reproductive barriers and the consistent centering of geographic clines at a sharp ecotone suggests that ecology is a
driver of hybrid swarm dynamics. Adaptive introgression in this study (and others) promotes gene flow and provides
valuable insight into selection strength on specific genes and the evolutionary trajectory of hybridizing taxa.
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Background

Hybrid zones, once thought to be “exceptional or absent in

animals” [1], have been increasingly reported in wide array

of fauna, with an average of 10% of animal species esti-

mated to hybridize [2]. Hybrid zones often arise between

recently diverged lineages [2–4] as a result of natural sec-

ondary contact caused by post-glacial range expansion or

environmental disturbance [5, 6]. Hybrid zones can take

many forms, largely depending upon the strength of

reproductive barriers and their effect on hybrid fitness. If

hybrids are less fit than parental lineages, reproductive bar-

riers, particularly those associated with pre-mating isola-

tion, will often be reinforced in order to minimize wasted

mating efforts [4, 7–9]. Tension zones are an exception,

where selection pressures against hybridization are offset by

migration into the hybrid zone [10].

Hybrid speciation can occur when hybrids are more fit

than parental lineages and hybrids preferentially mate with

each other [11], though examples are rare (but see [12–

14]). When hybrids display similar fitness to one or both

parents, hybrids may freely interbreed with other hybrids

and parental populations, causing a hybrid swarm to form
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[15]. We define a hybrid swarm as a population consisting

of a mixture of parental types, F1 hybrids, and backcrosses

(as defined by Grant [16], Arnold [17] and others). While

hybrid swarms can lead to lineage collapse [18, 19], they

can also remain stable [20–23]. These different outcomes

of hybridization are not necessarily mutually exclusive but

may represent different evolutionary stages [15].

The dynamics of hybrid zones are generally fluid,

changing in response to selection pressures. Selection

can act evenly across traits or differ for particular pheno-

types, resulting in variable rates of gene introgression.

Alleles that reduce viability or fertility in hybrids or con-

tribute to assortative mating are expected to be under

stronger selective pressures and therefore show limited

introgression. Conversely, alleles that confer higher fit-

ness in hybrids should spread quickly [24–27]. The rate

of introgression of neutral alleles is complex; however, it

should generally exceed that of alleles associated with re-

productive barriers [10, 24, 28]. In stable hybrid zones,

strong (negative) selection against introgression on parts

of the genome are enough to prevent complete panmixia

but too weak to prevent the formation of complete re-

productive isolation (e.g. [29–33]).

Identifying which regions of the genome are under se-

lection can help explain overall patterns of introgression

and provide insight into the structure of hybrid zone. By

quantifying selection strength on individual regions or

genes, we can assess to what extent they contribute to

reproductive isolation. Strong selection on even a small

portion of the genome can have a large impact on hybrid

zone dynamics [24, 34, 35]. For example, hybrid inviabil-

ity is known to be caused by as few as two linked loci in

monkeyflower [36] and a single locus in Drosophila [37].

Genes under selection and those physically linked to

them show reduced levels of gene flow. When these

genes are overrepresented in a particular part of the gen-

ome, they are known as genomic islands of divergence

[28, 38]. When genomic islands expand via accumulation

of hitchhiker loci, gene flow can become further re-

stricted and parental populations continue to diverge

[39–41]. High rates of gene flow can reverse the diver-

gence process by weakening population structure. This

is more common in early stages of divergence when se-

lection is weak and limited to relatively few loci [42].

Not only can selection pressures differ across the gen-

ome, they can also vary over the landscape. In hybrid

zones, positive selection on ecological adaptations in

only part of the landscape can cause the hybrid zone to

move in the direction of overall greater selection until

selection is counter-balanced by selection for the oppos-

ite trait or a barrier to gene flow is reached [10, 43]. For

example, in a study on Australian grasshoppers, genetic

clines were shown to shift across a deforested landscape

towards an area of regenerated forest, a known barrier

to gene flow [44]. Once opposing selection pressures are

at equilibrium, genetic clines can become co-localized,

stabilizing the hybrid zone. By examining the position of

genetic clines for multiple marker types with different

mutation rates, it is possible to evaluate hybrid zone

stability.

In this paper, we investigate the dynamics of a seem-

ingly stable hybrid swarm between black-tailed deer

Odocoileus hemionus columbianus (BTD) and mule deer

O. h. hemionus (MD; [45]). These subspecies experi-

enced long periods of allopatry during Pleistocene glaci-

ations, with black-tailed deer retreating to coastal refugia

along the northwest coast of the United States and mule

deer shifting their distribution south [46]. Following the

last glacial maximum (LGM) 18,000 years ago, both line-

ages expanded their ranges and came into secondary

contact approximately 8000 years ago along the Cascade

Mountains, located in the northwestern United States.

These subspecies not only differ greatly in size (MD

males can be more than two times larger than BTD

males) and preferred habitat [47–49] but also display 6–

7.7% genetic divergence at mitochondrial loci [46, 50,

51], which is greater than the levels of divergence com-

monly observed between sister species in mammals [52,

53]. A preference for intra-lineage mating has been pre-

dicted to maintain this deep genetic divergence between

subspecies [54].

Although both BTD and MD bucks are highly mobile,

with the ability to travel over 25 km to seek out conspecific

mates [55, 56], hybridization continues to occur. Previous

work using mitochondrial DNA (mtDNA) and neutral

microsatellite loci has shown widespread, bi-directional

introgression between BTD and MD, indicative of hybrid

swarm formation [45]. However, patterns of gene flow in

other loci, such as protein-coding genes, remain unex-

plored. Investigating introgression in protein-coding genes

that are potentially under selection would provide critical

insight into the mechanisms preventing lineage fusion and

the future trajectory of the hybrid swarm.

This study explores the dynamics of the BTD-MD hy-

brid zone and the role of selection in maintaining its sta-

bility. First, we compared patterns of population genetic

structure and introgression inferred from different mo-

lecular data types reflecting a range of evolutionary history

– single nucleotide polymorphisms (SNPs) from protein-

coding regions, microsatellite loci, and mtDNA sequences

– to identify signatures of hybrid zone stability and predict

the future trajectory of the hybrid swarm. Second, we

quantified the strength of selection on protein-coding di-

vergence. We predicted that genes involved with disease

resistance and mate discrimination in ungulates (e.g. olfac-

tion) would be important for maintaining species bound-

aries ([57] and references therein) and therefore be under

stronger selection than genes involved in general cell
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processes. Correspondingly, we predicted weak or no se-

lection on genes associated with general cell processes,

and expected SNPs within these genes to flow relatively

freely across the hybrid zone. To test this hypothesis, we

tested for selection on SNPs within protein-coding genes

that exhibited high differentiation between BTD and MD.

We compared ontogeny of SNPs potentially under selec-

tion to explore the role of potential candidate genes in

maintaining species boundaries.

Results

Genetic structure

Both Bayesian and Maximum Likelihood analyses of the

mitochondrial control region produced concordant top-

ologies, dividing individuals into two well-supported

clades, corresponding to BTD and MD (Additional file 1:

Figure S1). Black-tailed deer were primarily found west of

the Cascades and MD were east of the Cascades (Add-

itional file 2: Figure S2). However, eight individuals west

of the Cascades had MD mtDNA and 13 individuals east

of Cascades had BTD mtDNA. The average mitochondrial

genetic divergence between lineages was 6.4%, comparable

to values observed in previous studies [46, 50, 51]. The

BTD and MD mtDNA clades were comprised primarily of

individuals sampled west and east of the Cascades, re-

spectively. Within clades, there was weak substructure of

haplotypes. The two white-tailed deer O. virginianus se-

quences collected from individuals outside the hybrid

zone in eastern North America were embedded within

MD. This was expected based on several previous studies

that have showed low mitochondrial divergence between

MD and white-tailed deer [58] and, in some instances,

shared haplotypes [50, 59, 60].

Hybrids and admixture

Admixture analysis of the microsatellite and SNP data also

showed strong support for two clusters corresponding to

BTD and MD, with individuals consistently more clearly

delineated using SNPs (Fig. 2). There was no substructure

within clusters. Cut-offs for pure BTD and pure MD were

calculated using simulated data and varied slightly be-

tween microsatellites and SNPs. For the STRUCTURE

(microsatellites) and fastSTRUCTURE (SNPs) analyses,

individuals with Q > 0.941 (microsatellites) or Q > 0.865

(SNPs) for the BTD cluster were classified as pure BTD

and individuals with Q > 0.928 (microsatellites) or Q >

0.899 (SNPs) for the MD cluster were classified as pure

MD; all other individuals were considered hybrids (Fig. 1,

Additional file 2: Figure S2). Assignments were consistent

among runs (standard errors in the range of 10− 4). Indi-

viduals assigned to a parental lineage typically belong to

that mtDNA lineage while hybrids had both BTD and MD

mtDNA. We did observe some evidence of mitochondrial

capture. Three individuals assigned as pure BTD using

both microsatellites and SNPs had MD mtDNA and two

pure MD had BTD mtDNA. Assignments based on

microsatellite and SNP datasets were the same for 100 of

172 individuals (36 BTD, 39 MD, and 25 hybrids). All mis-

matches occurred when an individual was classified as a

BTD or MD for either microsatellites or SNPs and a hy-

brid in the other genetic dataset. Though there was some

disparity between datasets, a paired t-test showed that the

Q values for the microsatellite and SNP analyses were not

significantly different (p = 0.09).

NewHybrids analyses were generally concordant with

the STRUCTURE and fastSTRUCTURE analysis when

the Uniform prior was applied (Fig. 2). There was little

evidence of F1 individuals but high support for the pres-

ence of F2 individuals and some backcrossing. Hybrids

from all categories (F1, F2, backcrosses) were scattered

on both sides of the Cascades but were more concen-

trated closer to the ridgeline. SNP results were relatively

unaffected by the choice of prior. In contrast, when we

used a Jeffrey’s-like prior for the microsatellite loci, no

individuals were assigned as pure MD (Q > 0.939 for

MD) and 34 individuals were assigned as pure BTD

(Q > 0.837) whereas the results using the uniform prior

indicated that 30 individuals were pure MD (Q > 0.957)

and only 15 individuals were pure BTD (Q > 0.876).

Genetic diversity

Estimates of FST and Dest did not differ significantly be-

tween any pair of transects, permitting transects to be

combined in subsequent analyses. There were more pri-

vate alleles for pure BTD than pure MD or hybrids

(non-overlapping 95% CIs) in the microsatellite dataset

but the total number of alleles was comparable across

Fig. 1 Collection localities for all Odocoileus individuals. Individuals
are classified as black-tailed deer (blue circles), hybrids (purple
squares), or mule deer (red triangles) based on fastStructure analysis
of SNP data. The Cascades ridgeline is indicated by the bold black
line. Map source: Esri
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groups (Table 1). Observed heterozygosity (HO) and ex-

pected heterozygosity (HE) for microsatellites were simi-

lar for pure BTD, pure MD and hybrids. For SNPs, HE

was significantly higher than HO for MD based on 95%

CIs. Microsatellite analysis showed a significant defi-

ciency of heterozygotes in all groups (FIS (BTD) = 0.126,

95% CIs 0.037–0.202; FIS (MD) = 0.084, 95% CIs 0.018–

0.173; FIS (hybrids) = 0.109, 95% CIs 0.069–0.155; p <

0.01 for all groups). For SNPs, only FIS for hybrids had

a confidence interval that did not include 0 (FIS = 0.219,

95% CIs 0.177–0.263, p < 0.01). Heterozygote deficien-

cies are likely due to nonrandom mating; we found

no evidence for null alleles in this study or in other stud-

ies using these markers [45, 61], and it should not reflect

ascertainment bias as roughly the same number of MD

and BTD individuals were analyzed. Though positive FIS
values can reflect cryptic substructure, there was little

support for substructure in the mtDNA data.

Pure parental populations exhibited high genetic differen-

tiation. Estimates of FST were significantly lower for micro-

satellites (0.070, 95% CI 0.040–0.107) than SNPs (0.182,

95% CI 0.142–0.228, Fig. 3). FST estimates for highly vari-

able microsatellites are expected to be lower than estimates

for SNPs, because their high heterozygosity keeps them far

from fixation [62, 63]. Dest, which is independent of within-

population diversity [62, 64], was not significantly different

between microsatellites (0.284, 95% CI 0.118–0.492) and

SNPs (0.178, 95% CI 0.134–0.227). This indicates that pop-

ulations share roughly the same proportion of allelic

diversity and suggests that the level of divergence between

parental lineages has remained relatively constant despite

ongoing hybridization.

Signatures of SNP selection

Contrary to our predictions, both methods of outlier de-

tection (BayeScan and pcadapt) only identified a single

SNP likely to be under selection. This SNP represents a

non-synonymous mutation and was found within the

Fig. 2 Individual assignments to black-tailed deer and mule deer lineages for mitochondrial DNA, microsatellite loci, and SNP loci. Samples are
oriented west to east and the dashed black line indicates the location of the Cascade ridgeline. Individuals are represented by a single vertical
line with the percentage of each color representing the individual proportion of membership (Q) for each lineage: black-tailed deer (blue) and
mule deer (red). The NewHybrids plots have three additional categories: F1 hybrid (white), F2 hybrid (black), F1 x black-tailed deer (white and
blue stripes), F1 x mule deer (white and red stripes)

Table 1 Molecular genetic diversity of three Oregon deer
lineages for 583 bp of the mitochondrial control region, nine
microsatellites and 95 SNPs

Black-tailed deer Mule deer Hybrids

mtDNA N 79 93 -

π 0.012 ± 0.00004 0.027 ± 0.00006 -

H 0.96 ± 0.002 0.97 ± 0.001 -

Microsatellites N 56 65 51

AR 8.49 ± 1.46 6.76 ± 1.15 7.50 ± 1.37

APR 1.71 ± 0.53 0.33 ± 0.23 0.53 ± 0.25

HE 0.70 ± 0.04 0.68 ± 0.05 0.69 ± 0.05

HO 0.60 ± 0.05 0.64 ± 0.05 0.62 ± 0.05

SNPs N 61 57 54

HE 0.32 ± 0.02 0.26 ± 0.02 0.37 ± 0.01

HO 0.32 ± 0.02 0.25 ± 0.02 0.29 ± 0.01

N Number of samples, π Nucleotide diversity, H Haplotype diversity, AR Allelic

richness, APR Private allelic richness, HE Expected heterozygosity and HO

Observed heterozygosity for non-hybridized individuals. All values are ± SE
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gene EIF4G3, a likely component of the protein complex

EIF4F which is involved in the recognition of the mRNA

cap, ATP-dependent unwinding of the 5′ terminal sec-

ondary structure and recruitment of mRNA to the ribo-

some [65, 66]. This gene has elevated expression in testis

in humans [67], rats [68], and mice [69], and EIF4G3

mutations can cause male infertility in mice [70]. Indi-

viduals identified as having pure BTD ancestry by the

fastSTRUCTURE analysis were almost exclusively

homozygous for the major allele and pure MD were pre-

dominantly homozygous for the minor allele. Hybrids

displayed all combinations of alleles.

We also tested for selection by calculating pairwise

FST and Dest between pure parental lineages for each

locus (Fig. 3). The strength of selection was presumed to

be positively correlated with the magnitude of genetic

differentiation. The outlier locus EIF4G3 identified

above had by far the highest differentiation for both

metrics (FST = 0.930, Dest = 0.962). Regardless of whether

SNPs were ranked by FST or Dest, the top 10 % of SNPs

included the same set of nine loci (Table 2). We classi-

fied each outlier SNP as a synonymous or non-synonym-

ous mutation using ENSEMBL gene predictions in the

BLAT tool [71] in the University of California Santa

Cruz Genome Browser (https://genome.ucsc.edu/cgi-

bin/hgGateway). Assuming linkage groups in Odocoileus

are similar to those of Bos taurus, these outlier loci were

scattered across five of the 29 chromosomes sampled. It

is unlikely that any of these nine SNPs are linked be-

cause they are located at least 10 megabases apart (>

0.001 likelihood of linkage; [72]), and, in some instances,

loci with no evidence of selection are found between

them. Additionally, we found no evidence that selection

was stronger on genes putatively involved with immune

function and mate choice than those involved in general

cell processes.

Geographic cline analyses

We fit geographic cline models to the mtDNA, microsat-

ellite and SNP datasets in order to characterize cline

shape. Based on AICc, models with fixed maximum and

minimum values of 1 and 0 were selected for all datasets

and cline tails were estimated for the SNP dataset only.

Models predicted that the cline center for all datasets

was significantly to the east of the Cascade ridgeline,

with average cline center varying between + 20 and + 30

km (Fig. 4a). All individuals classified as pure BTD or

pure MD across all three markers were found on the ex-

pected side of the cline center. The SNP dataset had the

narrowest cline width (77 km) and was significantly nar-

rower than the microsatellite cline (274 km) but not the

mtDNA cline (174 km).

Within the SNP dataset, we could not reject the null

model (i.e. no change in allele frequency across the land-

scape) for 21 SNPs. For the remaining 74 SNPs, the

change in allele frequency from west to east occurred

over a relatively narrow range, with an average slope of

0.10 ΔP/km (Fig. 4b). We observed the steepest slope for

the SNP in the amino acid biosynthesis gene PSAT1

(2.7 ΔP/km; [73]), which was over three times steeper

than the slope for any other SNP. Steep slopes represent

a rapid change in allele frequency and suggest relatively

strong selection. Cline slopes were not correlated with

genetic differentiation between parental lineages (FST:

r2 = 0.0148; Dest: r
2 = 0.0005).

Genomic cline analyses

Bayesian genomic cline analyses identified candidate

genes that may influence the strength of reproductive

barriers and/or increase local adaptation. Analyses on in-

dividual SNPs suggest excess ancestry from one parental

population (α) for only a few SNPs and only a single

locus with significant rates of change in allele frequency

(β) across the hybrid zone. Using 95% confidence inter-

vals, 14 loci generally had weak evidence of excess BTD

ancestry, with mean values for α between − 5 and 0

(Fig. 5a). However, when loci with a small difference (<

0.5) between parental allele frequencies were excluded

following Trier et al. [74], the number of loci with excess

BTD ancestry decreased to six loci. Four of these loci

were also identified as candidate loci based on FST
(Table 2) and all six had FST > 0.29 and Dest > 0.35. No

loci had excess MD ancestry.

As with the candidate loci identified using genetic differ-

entiation only, the loci identified using genomic cline ana-

lysis were in genes associated with immune function as

well as general biological processes [72]. While we ex-

pected loci with excess ancestry to also exhibit steeper

Fig. 3 Distribution of estimates of genetic differentiation between
‘pure’ BTD and MD for 95 SNP loci. The number of SNPs was plotted
against FST (light gray) and Dest (dark gray). Average genetic
differentiation was 0.183 (FST) and 0.180 (Dest)

Haines et al. BMC Evolutionary Biology          (2019) 19:199 Page 5 of 17

https://genome.ucsc.edu/cgi-bin/hgGateway
https://genome.ucsc.edu/cgi-bin/hgGateway


transitions from one parental population to the other,

none of these loci had significantly steeper clines nor did

any of the other 86 loci (Fig. 5b). Four loci did exhibit rela-

tively shallower clines, indicative of balancing selection.

Discussion

In this study, we genotyped SNPs in protein-coding

genes to examine hybridization dynamics and selec-

tion pressures on a deer hybrid swarm. Genetic ana-

lyses on SNPs as well as mtDNA and microsatellites

revealed the presence of two main population clus-

ters, corresponding to BTD and MD. Mitochondrial

divergence was high between the two lineages, far -

exceeding levels typically observed between sister

species [52, 75]. Despite high mtDNA divergence, ad-

mixture analyses showed the presence of hybrid

swarm with extensive bi-directional hybridization and

hybrids extending beyond the F1 generation. Although

we predicted that SNPs in genes associated with mate

choice would be under greater selection and pur-

posely included a high proportion of candidate genes,

we only found evidence of selection at a handful of

loci. This suggests that species boundaries, though

porous, are maintained by many loci each having a

small effect. The swarm showed signatures of long-

term stability, as evidenced by coincidence of clines

across marker types [5], and is predicted to persist

into the future.

Genetic structure

Despite extensive hybridization, we found strong evi-

dence to support the distinction of BTD and MD as evo-

lutionarily independent lineages. All genetic marker

types supported classifying individuals into two groups

(BTD and MD), one on either side of a boundary located

just east of the Cascades mountain range. The Cascade

mountain region also serves as a genetic boundary for

other species [76, 77]. As with previous studies on Odo-

coileus [46, 50, 51], the mitochondrial divergence be-

tween lineages we observed was comparable to or larger

than that typically reported between mammalian sister

species [52, 75].

We also observed a high degree of genetic differenti-

ation between BTD and MD lineages for microsatellites

and SNPs. Overall, both datasets yielded consistent as-

signments, with differences exclusively between pure

and hybrid categories and not between parental categor-

ies. Disparate assignments of individuals for the two

datasets could arise if hybridization frequency varied

over time, for example if hybridization occurred thou-

sands of years ago but not recently of vice versa. The

concordant assignments we observed, using rapidly

evolving microsatellites and more slowly-evolving SNPs,

suggest stability of genetic structure over time. In this

study, SNPs were chosen from conserved exons, a conse-

quence of using the genome of a distantly related species

(Bos taurus) to develop baits for exon capture. Using

highly conserved genes between such closely related lin-

eages can lead to an underestimation of genetic diver-

gence. However, within these exons, we chose SNPs that

showed high variability between lineages [78], with a

focus on SNPs predicted to be under selection. This was

done to increase our ability to discriminate between

BTD and MD and may have caused us to overestimate

divergence. Though the magnitude of differentiation cal-

culated for SNPs was likely affected by our methodology,

Table 2 Description and primary function of SNPs with highest estimates of FST (> 0.44) and Dest (> 0.52) and/or excess ancestry
based on bgc analyses

Gene FST/
Dest

bgc Chromosomea Description Putative functionb Synonymous
mutation?

ANG2 x 10 Angiogenin 2 Nuclease activity No

AP3B1 x x 10 Adapter-related protein complex 3 beta 1 Cellular biogenesis; immune
system

No

EIF4G3 x x 2 Eukaryotic translation initiation factor 4 gamma 3 Transport No

F9 x X Coagulation factor IX Immune system No

FUT8 x x 10 Fucosyltransferase 8 Immune system No

NLN x 20 Neurolysin Cell signalling No

PLIN2 x 8 Perilipin-2 Metabolism No

ROPN1L x 20 Rhophilin associated tail protein 1 like Reproduction Yes

SCRG1 x 8 Scrapie-responsive protein 1 Immune system No

TGFB3 x x 10 Transforming growth factor beta 3 Cell development No

TRPM3 x 8 Transient receptor potential cation channel
subfamily M

Ion channel activity Yes

aChromosome based on the Bos taurus reference genome
bGene function was based on NCBI gene report (http://www.ncbi.nlm.nih.gov)
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the overall pattern of divergence is consistent with mor-

phological differences and current taxonomy (and

microsatellite differences).

We expected to see a higher proportion of hybrids

resulting from matings between bucks from the lineage

with larger body size (MD) and does from the lineage

with smaller body size (BTD). Mating success has been

correlated with larger male body size in cervids [79–81],

including in other populations of Odocoileus [82–84].

However, we found both crosses to be equally common

based on microsatellites, while SNP analyses suggested

that MD doe (larger lineage) and BTD buck (smaller

lineage) crosses were slightly more frequent. One ex-

planation for our findings is that while MD does may

have a weaker preference for BTD bucks than BTD does

for MD bucks, the former cross may have higher repro-

ductive success than the latter. Asymmetric reproductive

success has been observed in other hybrid systems [30,

85–87]. Since hybrids are presumably intermediate in

size, small BTD does carrying hybrid offspring could ex-

perience extra physiological stress, causing increased

mortality prior to parturition [88, 89].

Alternatively, observed hybridization rates may be

driven by population demography. Previous work on

hybridization in cervids has attributed higher realized

rates of hybridization between does of the larger species

and bucks of the smaller species to differences in migra-

tion rates and population densities [58, 90–92]. If long

Fig. 4 Geographic clines showing the transition from black-tailed deer (top left) to mule deer (bottom right) across the Cascade ranges for a
mtDNA (solid black line), microsatellites (dashed pink line), and SNPs (dotted green line) and b the 74 SNPs showing a change in allele
frequency between parental lineages. Microsatellite and SNP composition were inferred from Q values for the black-tailed deer cluster in STRUCT
URE and fastSTRUCTURE, respectively
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distance migration does bias hybridization rates in our

system, it seems unlikely to have a strong effect. We ob-

served few migrants (based on STRUCTURE and fas-

tSTRUCTURE analyses) overall and there were a similar

number of migrants per lineage. Detailed demographic

data for hybridizing populations of BTD and MD, in

conjunction with data on mating attempts and offspring

viability, would provide the data necessary to distinguish

among these hypotheses for realized symmetrical gene

flow in this system.

Signatures of SNP selection

Though signatures of selection can be difficult to disen-

tangle from the effects of demographic processes, the

consistently high effective population sizes of BTD and

MD [46] make this system powerful for detecting genes

under strong selection. We predicted that selection

would be strongest for SNPs in genes coding for pro-

teins related to olfaction and immune function, which

are important for mate choice in BTD and MD [47, 49].

A disproportionate number of immune and sensory re-

lated genes have been observed to be under selection in

other mammals, including sheep [93, 94], cattle [95],

and wolves [96]. Because of this pattern coupled with

our SNP sampling bias towards putative candidate genes,

we also expected to find a higher proportion of outlier

loci compared to studies analyzing genome-wide SNPs

(5–10%; reviewed in [97]). However, outlier detection

methods only identified one SNP likely under selection.

This SNP is located in EIF4G3, a gene part of a protein

Fig. 5 Potential candidate loci based on bgc genomic cline analyses. a Estimates of genomic cline center (α) with 95% credibility intervals (CI).
Values below zero indicate greater black-tailed deer ancestry and values above zero indicate greater mule deer ancestry. Black dots indicate
six loci with significant excess ancestry (95% CI does not include zero) and the difference in allele frequency between putative parental black-
tailed deer and mule deer is > 0.5 (with gene names listed), grey dots indicate loci with significant excess ancestry and the difference in allele
frequency between putative parental black-tailed deer and mule deer is < 0.5, and white dots indicate loci with no evidence of excess ancestry. b
Estimates of genomic cline slope (β) with 95% credibility intervals. Values below zero indicate shallower slopes than expected and values above
zero indicate steeper slopes. Black dots indicate loci with significantly shallower clines (95% CI does not include zero) and the difference in allele
frequency between putative parental black-tailed deer and mule deer is > 0.5, grey dots indicate loci with significantly shallower clines and the
difference in allele frequency between putative parental lineages is < 0.5, and white dots indicate loci with no evidence of slopes that deviate
from expectations
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complex primarily involved with recruiting ribosomes to

mRNA [65, 66]. Mutations in EIF4G3 have been linked

to male-limited fertility in mice [70]. If EIF4G3 does play

a role in mammalian reproductive isolation, it could ex-

plain why it was detected as an outlier in our study as

well as in an European rabbit hybrid zone [32]. Fertility

data for bucks, particularly F1 hybrids, will be key for

testing whether there is an association between sterility

and EIF4G3 genotypes in Odocoileus.

Our candidate gene approach did not cover all parts of

the genome and it is possible that strong selection

(major gene effects) exists at coding or non-coding loci

we did not sample [98]. However, selection does not ne-

cessarily need to be strong in order to have a significant

impact on gene flow. Multiple loci under weak selection

can each have a small effect on restricting gene flow,

creating a large effect overall [34, 99]. This polygenic

scenario is supported in our study, where cline analysis

of individual SNPs indicated that selection on the major-

ity of SNPs was weak despite high overall genetic diver-

gence between lineages. Of the ten loci with the highest

genetic differentiation between lineages or that were

identified as potential candidate loci in the bgc analysis,

eight exhibited non-synonymous mutations and four

were in putative mate choice genes. Since mutations in

ROPN1L affect sperm motility and can cause male infer-

tility in mammals [100], it is possible that selection on

this gene in Odocoileus could represent a post-mating

reproductive barrier. Genome-wide association studies

would help reveal how mutations in these genes affect

deer survival. The gene SCRG1 is associated with prion

infection response (e.g. chronic wasting disease [101]);

however, the SNP examined in this study is a synonym-

ous mutation and therefore is unlikely to have an effect

on immune function.

Contrary to our predictions, signatures of selection

were also observed for genes associated with general cell

processes. One explanation for selection on general cell

process genes is environmental adaptation. For example,

the pattern of divergence at the metabolism gene PLIN2

mimics the sharp ecological transition along the contact

zone and could reflect the significant differences in diet

that exist between BTD and MD [47, 102]. Genotyping

SNPs in genes adjacent to the candidate loci identified

in this study would help determine whether the patterns

of weak selection we observed for general cell process

genes could be explained by linkage to un-examined

genes that are under selection [28, 38, 41]. It is also im-

portant to note that all of our hypotheses were made

under the assumption that the exons analyzed in our

study were analogous to those in the Bos taurus refer-

ence genome [103]. It is possible that these genes have

additional or alternate functions in Odocoileus that

would be expected to be under selection. A complete

cervid genome and a higher density of SNPs distributed

across the genome, including non-coding regions, would

allow us to better understand the processes driving se-

lection and test whether genes involved in mate choice

or environmental adaptation are overrepresented among

loci under selection.

Hybrid zone dynamics

While the presence of distinct lineages on either side of

the hybrid zone indicates that partial barriers to gene flow

do exist, it is unclear what specific barriers are driving hy-

brid zone dynamics. We predicted that reproductive bar-

riers would be important for restricting introgression

across the hybrid zone but did not find strong evidence to

support this hypothesis. Selection on individual putative

mate discrimination genes was weak or non-existent.

Moreover, if selection on reproductive barriers were

strong, then we would expect these highly mobile bucks

to disperse to mate with a doe from the same lineage. In-

stead, we found evidence of extensive bi-directional intro-

gression, suggesting that reproductive barriers have been

eroded or never existed between these lineages.

Physical geography also does not appear to have a

strong effect on gene flow. If the Cascades range func-

tioned as a significant barrier, then genetic cline centers

would have aligned with ridgeline. Instead, the observed

cline centers correspond with the interface between two

distinct habitats [104], suggesting that ecology may be

shaping the structure of the hybrid swarm. BTD habitat

in western Oregon primarily consists of wet, montane

forest while MD habitat in eastern Oregon is dry, con-

iferous woodland [47, 102]. The transition from BTD to

MD habitat is dramatic with minimum annual precipita-

tion dropping from 1140mm to 250 mm between ecore-

gions west and east of cline center [104]. Additional

precipitation and temperature variables show concord-

ant patterns across ecotones, with BTD habitats being

consistently wetter with less fluctuation in temperature

compared to MD habitats [105].

The Cascade Mountain region is a hybrid zone hot spot

[106], and phylogenetic breaks have been identified in the

same region in black-capped chickadees [77], hairy wood-

peckers [76], and tree squirrels [107]. In the latter species,

ecology is also thought to influence selection on pheno-

type [107, 108]. In situ ecological studies on habitat use

would provide insight in the differences in habitat use be-

tween MD and BTD lineages. To determine the extent to

which different aspects of ecology influence the structure

of the BTD-MD hybrid zone, future work could compare

selection pressures in areas with relatively steeper eco-

logical gradients (i.e. central Washington) with those with

shallower transitions (i.e. northern California).

The co-localization of genetic clines among markers

suggests long-term stability of the BTD-MD hybrid
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swarm. Mitochondrial DNA, microsatellites, and exonic

SNPs have different mutation rates and therefore pro-

vide insight into the genetic structure of the swarm at

different time periods. If the position of the swarm had

changed over time, we would have expected to see a shift

in cline center between types of genetic markers. We did

observe some variation in cline center among individual

SNPs but the majority of SNPs showed a distinct change

in allele frequency that coincides with the average cline

center across SNPs. The sharp ecological transition

across the hybrid zone may prove to be such a strong

barrier that the swarm is trapped in a habitat suitability

trough [109]. Habitat within and surrounding the hybrid

zone is likely to have been stable since BTD and MD

came into secondary contact c. 8000 BP [46]. No major

uplifts have occurred in the Cascades range for 5 million

years [110] and climatic conditions have not radically

changed since the last glacial maximum [111]. Assuming

environmental conditions remain stable, we predict that

the center of the hybrid swarm will remain constant.

There is conflicting evidence in regards to whether the

width of the hybrid swarm has changed over time. The

significantly wider cline width for microsatellite markers

compared to SNPs suggests that the swarm is expanding.

Microsatellites reflect recent population structure;

whereas SNPs in protein-coding genes tend to be more

conserved and provide insight into more distant evolu-

tionary history. Alternatively, swarm width may be stable

and wider microsatellite clines might reflect poorer reso-

lution or mutation model differences compared to SNPs

[112, 113]. Being neutral markers, microsatellites are

also predicted to spread more easily across the landscape

than protein coding genes, which could give the illusion

of hybrid swarm expansion. One method of reconciling

these competing hypotheses would be to compare SNPs

with different mutation rates to SNPs from non-coding

genome regions. By removing the marker type as a con-

founding factor, direct comparisons across multiple time

scales could be made to test for historic and contempor-

ary fluctuations in swarm size and position.

Conclusions

Stable hybrid swarms provide an excellent opportunity

to investigate long term gene flow between genetically,

and often morphologically, distinct lineages. In the case

of the BTD-MD hybrid swarm, the boundary between

these highly divergent lineages is porous, and is more

closely aligned with the sharp ecological transition than

the physical ridgeline of the Cascade range. Ecology can

be a strong driver of hybrid swarm dynamics, and in this

system ecologically-based selection is presumably acting

on many genes, each with a small effect. Multivariate

tests for polygenic selection on a set of high-density,

genome-wide SNPs (Genome wide association study

(GWAS) approach) could facilitate further testing of our

polygenic selection hypothesis (e.g. [114]). A GWAS ap-

proach could also be used to gain additional insight into

the phenotypic traits associated with differentiation be-

tween BTD and MD lineages. This work illustrates how

genomic approaches can improve insights into mecha-

nisms that maintain species boundaries in the face of

widespread admixture.

Methods
Sampling and DNA extraction

Tissue samples were obtained from hunter-harvested

Odocoileus hemionus spp. (lymph, n = 165; gum, n = 4;

ear, n = 2; muscle, n = 1) along three latitudinal transects,

spanning the state of Oregon in the United States (Fig. 1;

Additional file 2: Figure S2; Additional file 3: Table S1).

All animals were harvested as part of state regulated

hunting seasons in 2000, 2003, and 2009–2011 and sam-

pled by Oregon Department of Fish and Wildlife staff

when heads were submitted to the state for disease test-

ing. As all of our samples were obtained from hunter-

harvested individuals, there was a bias toward bucks

(84%). No animals were specifically killed for this study

and all sampling followed the guidelines for the use of

wild mammals in research from the American Society of

Mammalogists [115]. Prior to analysis, samples were

stored at − 80 °C in vials containing silica desiccating

beads. Locality details were obtained from hunter re-

ported GPS coordinates or location descriptions. Gen-

omic DNA was extracted from tissue samples using a

Qiagen DNeasy Blood and Tissue Extraction Kit (Qia-

gen, Hilden, Germany).

Mitochondrial DNA sequencing and analysis

All samples were sequenced for a 583 bp portion of the

mitochondrial control region. Following the protocol de-

tailed in Latch et al. [46], we used the forward primer

Odh-dloopF (5′ GAGCAACCAATCTCCCTGAG 3′)

and either the reverse primer Odh-dloopR (5′ GTGTGA

GCATGGGCTGATTA 3′) or Odh-dloopR2 (5′ GTGT

GAGCATGGGCTGATTA 3′). When the latter reverse

primer was used, we lowered the annealing temperature

to 56 °C. PCR products were sequenced at the University

of Wisconsin Biotechnology Center and Macrogen Corp.

(Rockville, Maryland, USA) on an ABI3730xl DNA

Analyzer. We aligned and manually edited sequences

using GENEIOUS version 7.1.9 (Biomatters, Auckland,

New Zealand, available at: http://www.geneious.com).

Haplotypes matched those in GenBank previously ob-

served in the Pacific Northwest (FJ189203-FJ189249,

FJ189298-FJ189323) [46]. We re-amplified and re-se-

quenced 10% percent of samples (n = 17) to quantify se-

quencing error rates. We observed no differences in base

calls between replicated sequences.
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We analyzed mitochondrial DNA sequences using

Bayesian and Maximum Likelihood methods of phylo-

genetic reconstruction in MrBayes version 3.2.5 and

RAxML version 8.2.9 [116], respectively. Using MrMo-

deltest version 2.3 [117], we assessed partitioning

schemes and models of best-fit based on Akaike Infor-

mation Criterion (AIC). Based on these results, we se-

lected a GTR + I + Γ model for the Bayesian analysis and

GTR+ Γ for the Maximum Likelihood analysis, per the

suggestion of Stamatakis et al. [116]. For both methods

of analysis, we included published sequences of O. h.

hemionus (FJ188901 and FJ18911) and O. virginianus

(JQ037851 and JQ037857) from outside the hybrid zone

to more accurately designate mitochondrial clades as O.

h. hemionus and O. h. columbianus and potentially iden-

tify individuals admixed with O. virginianus. Three pub-

lished sequences of O. h. columbianus were already part

of the original dataset. The following outgroups were se-

lected from within Cervidae: Alces alces (JN632595);

Cervus elaphus (NC007704); Dama dama (NC020700).

The Bayesian analysis was run for 6 million genera-

tions with a 20% burn-in. We performed two independ-

ent runs, each with four Markov chain Monte Carlo

(MCMC) chains that were sampled every 500 genera-

tions. Average standard deviation of split frequencies (<

0.01) was used to confirm chain convergence. The Max-

imum Likelihood analysis was conducted with 100 boot-

straps using RAxML-HPC2 on XSEDE [116] on the

CIPRES Science Gateway [118]. We calculated uncor-

rected mean pairwise genetic distances between major

lineages in MEGA 7.0.21 [119]. Within clades, we calcu-

lated nucleotide diversity (π) and haplotype diversity (H)

using DnaSP version 5 [120].

Microsatellite genotyping

We amplified nine microsatellite loci previously used by

Latch et al. [45] to characterize hybridization in O. hemi-

onus (Odh C, Odh E, Odh G, Odh K, and Odh O: [121],

BM848: [122], C273 and T40: [123], RT24: [124]). We

followed the PCR protocol described by Latch et al. [45]

and amplified products were visualized at the University

of Wisconsin Biotechnology Center on an ABI3700

DNA Analyzer. Genotyping was performed in GENE-

MARKER (SoftGenetics, LLC). We re-genotyped 10% of

samples (n = 17) to quantify our genotyping error rate.

We recorded a single instance of allelic dropout in 153

repeated genotypes, for a microsatellite genotyping error

rate of 0.65%.

Exon capture and SNP assay development

An initial exon capture was performed on three BTD

and four MD showing no admixture based on microsat-

ellite analysis [78]. Due to the lack of a complete cervid

genome, the Bos taurus genome [72] was used to de-

velop baits. These baits targeted exons across the cattle

genome, a subset of which were candidate genes associ-

ated with immune function and reproduction. The exon

capture was performed using a modified Agilent in-so-

lution protocol to enrich for template DNA ortholo-

gous to the baits, which were then sequenced on a

HiSeq sequencer (for details see [78]). Sequencing data

were used to identify SNPs within exons and build con-

sensus sequences for the regions flanking each SNP.

These consensus sequences were used to develop end-

point qPCR assays for SNP genotyping (for detailed

methods for consensus sequence generation see [93]).

For each SNP identified, expected heterozygosity was

calculated across all samples and Weir and Cocker-

ham’s FST [125] was calculated between MD and BTD

using VCFtools [126]. Allele frequencies were also cal-

culated at each locus for each species separately. Loci

were removed if the mean phred scaled genotype likeli-

hood or the mean genotype quality was less than 50.

We used multiple methods to select SNPs from the

subset of seven individuals for downstream analysis.

First, to enrich for loci that were informative for spe-

cies delineation, we chose SNPs that were fixed in

one (n = 60) or both subspecies (n = 2) and SNPs that

had FST > 0.25 between lineages (n = 36). We conser-

vatively chose FST > 0.25 in order to reliably identify

hybrids [127]. SNPs were only retained if genotypes

were called in all seven individuals, if the minor allele

was observed more than three times across all indi-

viduals, if there were fewer than five Ns on the con-

sensus sequence, and if no Ns were observed within

50 nucleotides of the SNP. Second, we selected SNPs

that were likely to cause alterations to protein struc-

ture and function by selecting all transversions where

FST > 0.25 (n = 5). We also chose transversions if all

seven individuals were genotyped, if fewer than 10 Ns

were observed on the consensus sequence, and if no

Ns were observed within 50 nucleotides of the re-

spective SNP (n = 35). Lastly, SNPs with expected het-

erozygosity between 0.2 and 0.6 that were deemed

potentially informative for population assignment,

population structure analysis, and estimation of re-

latedness were chosen for which all seven individuals

were genotyped, if the minor allele was observed

more than twice, if there were fewer than 5 Ns on

the consensus sequence, and if no Ns were observed

within 50 nucleotides of the SNP (n = 121).

A total of 154 SNPs and their corresponding consen-

sus sequences passed at least one of set of filtering cri-

teria. Of those loci, we submitted 130 for KASP-by-

design Fluidigm assay design (LGC Genomics LLC,

Beverly, Massachusetts), prioritizing loci showing evi-

dence of being informative for species diagnostics and
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transversions. We tested an initial set of 95 assays by

genotyping 47 samples from across the hybrid zone in

duplicate. DNA concentration and quality was standard-

ized in order to eliminate any effects associated with low

sample quality or variable DNA concentration. Concen-

tration and quality were assessed using a Nanodrop

2000 spectrophotometer (Thermo Fisher Scientific, Wal-

tham, Massachusetts). For each sample, if the DNA con-

centration was less than 40 ng/μl or the 260/280 ratio

was less than 1.8, then the DNA was precipitated using

isopropanol, rinsed three times with 500 μl of 80% etha-

nol, then re-suspended in 15% of the original elution

volume.

Samples were standardized to a concentration of 60

ng/μl prior to genotyping with Fluidigm 96.96 Dy-

namic Arrays and the Fluidigm EP1 Genotyping Sys-

tem (Fluidigm Corporation, San Francisco, California)

using recommended reaction conditions for KASP

KBD-Fluidigm Assays. Fluorescence intensity plots

were examined for each assay using Fluidigm SNP

Genotyping Analysis software. Genotypes were called

using the no template control (NTC) normalization

method to normalize the data against background

noise and a 60% confidence threshold in the genotype

assignment. Assays were retained if duplicate geno-

types were concordant, genotype clusters were easily

distinguishable, and assays yielded polymorphic geno-

types. The remaining set of 35 assays was tested by

genotyping 95 samples from across the hybrid zone in

duplicate. If assays from the initial set of 95 were

monomorphic or lacked homozygotes for the minor

allele, they were re-tested using the same set of 95

samples used to test the second set of assays.

Of the 130 assays tested, 111 were variable and

yielded high confidence genotypes with a high degree

of concordance between duplicate PCRs. From the 111

assays that were successful, we included 95 SNPs for

our final SNP genotyping panel that had well defined

clusters (easy to score genotypes) and at least one oc-

currence of each possible genotype. We preferentially

included assays targeting transversions, potential spe-

cies diagnostic SNPs, and SNPs in genes of known

function. This final set of assays was used to genotype

all samples from across the hybrid zone using the same

reaction conditions used for testing. To verify that as-

says were consistently yielding correct genotypes, we

checked for concordance between exon capture and

assay derived genotypes for four individuals that were

genotyped using both technologies.

Admixture analysis

We investigated the presence of hybridization by ana-

lyzing both the microsatellite and SNP datasets in the

software programs STRUCTURE version 2.3.4

(microsatellites [128, 129]), fastSTRUCTURE version

1.0 (SNPs [130]) and NewHybrids version 1.1 (micro-

satellites and SNPs [131]). In both STRUCTURE and

fastSTRUCTURE, a Bayesian algorithm was used to

assign individuals to one or more clusters (K). The

likelihood that a given individual belongs to a particu-

lar cluster is given by a Q value. Higher Q values in-

dicate a greater posterior probability that an

individual belongs to that cluster. All other individ-

uals were considered hybrids [127]. In each program,

we executed runs with a burn-in of 104 iterations

followed by 106 iterations and performed ten replicate

runs for K = 1 through K = 8. For the STRUCTURE

analyses, we set the parameters to allow for admix-

ture between clusters and selected the correlated al-

lele frequency model. We assessed stationarity by

ensuring that MCMC runs yielded a Gelman-Rubin

statistic of less than 1.1 (calculated in R; [132]).

Using STRUCTURE HARVESTER [133], we com-

bined runs for each value of K and estimated the

most likely number of clusters based on the highest

value of Δ K and where Ln(K) plateaued [128, 129].

In contrast, fastSTRUCTURE determines the most

likely K in two ways. First, by calculating the value of

K that maximizes marginal likelihood and then by

calculating the minimum K needed to account for al-

most all of the samples’ ancestry. When the values of

K selected by the two approaches are not equivalent,

the user chooses the most biologically sound value of

K. For each dataset, runs were combined for using

CLUMPP [134] and visualised in Microsoft Excel. We

iteratively re-ran the individuals assigned to each clus-

ter in separate runs using the methods above to de-

termine the presence of sub-structure.

We established thresholds for ‘pure’ parentals using

simulated data. Since microsatellite and SNP data was

not available for BTD and MD outside of the hybrid

zone, we used individuals that met a stringent thresh-

old of Q ≥ 0.95 for either the black-tailed deer or

mule deer cluster as proxies for allopatric popula-

tions. These individuals were used to simulate 500 ge-

notypes of ‘pure’ parentals in HYBRIDLAB [135]. The

simulated genotypes were analysed in STRUCTURE

(microsatellites) and fastSTRUCTURE (SNPs) for K =

2 using the same parameters as described above. We

calculated the 95% confidence intervals of the distri-

bution of Q values for parentals from the STRUCT

URE and fastSTRUCTURE analyses and applied these

intervals to the empirical data to classify individuals

as pure BTD, pure MD, or hybrid.

For each of the three groups (BTD, MD, hybrid), we

performed AMOVAs between pairs of transects using

GENODIVE. The microsatellite and SNP data was ana-

lysed separately. We analyzed each locus separately and
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assessed significance at α = 0.05, following false discovery

rate correction [136].

As with STRUCTURE and fastSTRUCTURE, New-

Hybrids uses a clustering algorithm to calculate the

probability of an individual belonging to either paren-

tal group. Additionally, NewHybrids calculates the

probability that an individual belongs to one of four

hybrid classes (F1, F2, and backcrosses). Models for

allele frequencies and mixing proportions were imple-

mented with a Jeffrey’s-like prior and run ten times

with 106 sweeps and a burn-in of 104 sweeps. This

process was repeated using Uniform priors. All results

were summarized in CLUMPP and visualized in

Microsoft Excel. We ran the simulated individuals

used in the STRUCTURE and fastSTRUCTURE ana-

lyses in NewHybrids using the same parameters. We

then calculated the 95% confidence intervals of the

distribution of probabilities that simulated ‘pure’ indi-

viduals belonged to one of the parental groups. These

confidence intervals were used to establish cut-offs

for parental group assignment for the empirical data.

Remaining individuals were considered hybrids.

Allelic diversity

For both the microsatellite and SNP datasets, we quan-

tified allelic diversity for putative parental subspecies

and hybrids based on the corresponding STRUCTURE

and fastSTRUCTURE results (see below). This included

the number of alleles and private alleles, expected and

observed heterozygosity, and deviation from random

mating (FIS). We calculated FST and Jost’s D [62] using

corrected average HS and HT across loci as recom-

mended by Meirmans and Hedrick [137]. Measures of

allelic diversity and genetic differentiation were calcu-

lated in GenAlEx [138], with the exception of FIS which

was calculated in Genodive [139]. In Arlequin, we

tested for linkage disequilibrium between microsatellite

loci only and applied a false discovery rate correction to

determine statistical significance [140].

Outlier detection and cline analyses

We identified outlier loci using pcadapt [141] imple-

mented in R (R Development Core [142]) and BayeS-

can 2.1 [143]. We only analyzed ‘pure’ BTD and

‘pure’ MD and screened for loci with minor allele fre-

quencies < 0.05. Only one locus had a minor allele

frequency < 0.05 (MAF = 0.008) and due to its near fix-

ation in both parental groups, we chose to exclude

this locus. The R package pcadapt uses a principal

component analysis (PCA) to identify loci strongly as-

sociated with population structure and presumably

under selection. We performed a PCA and chose the

number of axes to retain in further analyses based on

a scree plot, which shows the total variance in the

data represented by each PC. We then calculated the

Mahalanobis distance test statistic for each locus

[144]. The p values associated with each test statistic

were converted to q values to account for false dis-

covery rates using the R package qvalue version 2.4.2

[145] and the threshold for statistical significance was

set to α = 0.05. BayeScan estimates the posterior prob-

ability that a locus is presumably under selection and

test for departures from neutral expectations by com-

paring allele frequencies within populations to the en-

tire dataset. We ran BayeScan using the default

parameters and applied a cut-off of Q < 0.05 to deter-

mine statistical significance.

We performed geographic cline analyses to investi-

gate where the transition from genetically BTD to

genetically MD occurred in relationship to the Cas-

cades ridgeline, the assumed BTD-MD boundary. We

fit geographic clines to each of the three genetic data-

sets as well as individual SNPs using a Metropolis-

Hastings Markov chain Monte Carlo algorithm exe-

cuted in the R package HZAR version 0.2–5 [146].

All individuals (parentals and hybrids) were included

in the analyses. To generate clines, we first converted

the two dimensional geographic locations of each

sample to a one dimensional transect perpendicular

to the Cascades ridgeline. We calculated the distance

from each sample to the nearest point along the

ridgeline using the ‘Near’ function in ArcGIS version

10.3.1. Mitochondrial haplotype data was coded as 1

or 0, with 1 indicating the haplotype was found

within the BTD mitochondrial clade. For the mito-

chondrial dataset, we chose a model with maximum

and minimum values fixed to 1 and 0, respectively,

and did not estimate cline tails. Clines were fitted to

the hybrid index (Q value) calculated in STRUCTURE

or fastSTRUCTURE for the microsatellite and SNP

data, respectively.

Cline analysis was also performed separately for

each SNP using the observed genotypes. We selected

models that allowed for the minimum and maximum

values of the cline to be fixed based on the observed

data (fixed) or allowed to vary (free) and tails were

either not estimated (none) or both estimated inde-

pendently (both). The three models tested (model 1:

fixed/none; model 2: fixed/both; model 3: free/both)

were compared to the null model using corrected

Akaike information criterion (AICc). The model with

the lowest AICc was considered the best model and

used for further analysis. When the AICc for the null

model was 2 or more units lower than the AICc for

the best model, the null model was rejected. Using

the selected models, we calculated cline center and

width for all markers and determined coincidence
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using confidence intervals of two log-likelihood

scores. Slope was calculated by dividing the change in

actual or estimated allele frequency by cline width.

Sharper slopes are associated with stronger selection

whereas shallower slopes are indicative of weaker

selection.

To complement the geographic cline analysis, we

also performed genomic cline analyses specifically test

for outlier loci. We used the software bgc [147, 148]

to generate clines using genotypes for hybrid individ-

uals because it does not require fixed alleles in paren-

tal populations. The cline parameter α reflects excess

ancestry from one of the two parental populations. A

shift in the cline center (α > 0 or α < 0) indicates that

individuals have greater ancestry from one of the par-

ental populations than expected. The β parameter in-

dicates the rate of transition across the hybrid zone

from low to high probability of belonging to one of

the parental populations, corresponding to cline

steepness. Loci under strong positive selection are ex-

pected to have high values of β and high absolute

values of α, resulting in steep clines that are offset

from average cline center. Loci not under selection

are expected to have values of α and β that do not

deviate from neutral expectations.

For the genomic cline analysis, the parental populations

comprised individuals identified as putative parentals in

the SNP fastSTRUCTURE analysis (BTD: Q > 0.865; MD:

Q > 0.899). All other individuals were considered hybrids.

Following the protocol of Trier et al. [74], we ran five in-

dependent runs with 100,000 MCMC and a burn-in of 25,

000, retaining values from every fifth iteration. The max-

imum deviate from the uniform for proposed hybrid index

(u) was changed to 0.001 and all other parameters were

set to the default values. We calculated the Gelman-Rubin

convergence diagnostic to assess stationarity in R [132].

Since all runs were quantitatively similar (all scale reduc-

tion factors < 1.04), we present the results from the run

with highest log-likelihood and therefore the best fit for

our data. SNPs were classified outliers if the 95% credibil-

ity interval of α and/or β excluded zero and there was >

0.5 difference in allele frequency between parental popula-

tions. Thus, SNPs with excess BTD or MD ancestry and/

or that show a sharp change in allele frequency between

parental populations were not considered outliers when

the difference in allele frequencies between parental popu-

lations was small (< 0.5).
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Additional file 1: Figure S1. Maximum likelihood tree based on
mitochondrial DNA control region haplotypes. Bootstrap values > 0.70
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