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Abstract
Despite evidence of multiorgan tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
in patients with coronavirus disease 2019 (COVID-19), direct viral kidney invasion has been difficult to
demonstrate. The question of whether SARS-CoV2 can directly infect the kidney is relevant to the
understanding of pathogenesis of AKI and collapsing glomerulopathy in patients with COVID-19.
Methodologies to document SARS-CoV-2 infection that have been used include immunohistochemistry,
immunofluorescence,RT-PCR, in situhybridization, and electronmicroscopy. In our reviewof studies todate,
we found that SARS-CoV-2 in the kidneys of patients with COVID-19 was detected in 18 of 94 (19%) by
immunohistochemistry, 71 of 144 (49%) by RT-PCR, and 11 of 84 (13%) by in situ hybridization. In a smaller
number of patients with COVID-19 examined by immunofluorescence, SARS-CoV-2 was detected in 10 of 13
(77%). In total, inkidneys from102of 235patients (43%), thepresenceofSARS-CoV-2was suggestedbyat least
one of the methods used. Despite these positive findings, caution is needed becausemany other studies have
been negative for SARS-CoV-2 and it should be noted that when detected, it was only in kidneys obtained at
autopsy.There is a clearneed for studies fromkidneybiopsies, including thoseperformedat early stagesof the
COVID-19–associated kidney disease. Development of tests to detect kidney viral infection in urine samples
would be more practical as a noninvasive way to evaluate SARS-CoV-2 infection during the evolution of
COVID-19–associated kidney disease.
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Introduction
Although acute lung injury is the most prominent clin-
ical manifestation in patients with severe coronavirus
disease 2019 (COVID-19), AKI is also frequently
observed. The reported incidence of AKI in COVID-19
ranges between 22%and 57% in patientswho are hospi-
talized, and it is associated with high mortality (1–13).
Angiotensin-converting enzyme 2 (ACE2), a protein
that acts as the chief receptor for severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) cell entry
(14–17), is highly expressed in the kidney (18–20). How-
ever, it has been difficult to establish if the virus directly
infects the kidney parenchyma, as recently pointed out
by Khan et al. (21). The evidence in favor of, or against,
direct kidney invasion by SARS-CoV-2 will be juxta-
posed on Koch’s postulates, later revised for viral infec-
tions by Thomas Rivers in 1937, and more recently by
Fredericks and Relman (22). We highlight the more rel-
evant findings in support or against kidney infectivity
in lieu of a detailed point-by-point account of Koch’s
postulates to establish whether SARS-CoV-2 can
directly infect the kidney. This answerwill be important
in defining the pathophysiology of kidney injury seen
in patients with severe COVID-19.

Although AKI is commonly identified in patients
with COVID-19, more unique kidney manifestations,
such as collapsing glomerulopathy, have also been
described (23–38). AKI in patients with COVID-19

may be caused by factors common to a majority of
patients with AKI in patients who are critically ill in
the intensive care unit, including hypotension, sepsis,
and exposure to nephrotoxins (39–42). There are, how-
ever, additional features that suggest a more complex
pathophysiology (1,43). AKI in patients with COVID-
19 could be mediated by overactivation of the innate
immune system, cytokine release, complement activa-
tion, angiotensin II (Ang II) overactivity, the develop-
ment of a hypercoagulable state, hypovolemia second-
ary to over diuresis, and/or increased central venous
pressure secondary to high positive end-expiratory
pressure (1,3,43–45). Analysis of 2600 patients admit-
ted to the hospital with COVID-19 showed that after
adjustment for demographics, comorbidities, vital
signs, medications, and laboratory results, COVID-19
remained highly associated with AKI (46). Viral inva-
sion of the kidney, if it occurs, could be an additional
contributing factor to AKI and collapsing glomerulop-
athy. The prognosis may be worse than regular AKI,
but further data are needed to understand the evolu-
tion of AKI and possible transition to CKD in some
patients with COVID-19. This review examines the
evidence in favor of and against SARS-CoV-2 kidney
infection in patients with COVID-19 reported to date.
Although most autopsy studies show no convincing
evidence for SARS-CoV-2 in the kidney, the evidence
in other studies is strong, perhaps because a more
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comprehensive analysis involving immunofluorescence
(IF), RT-PCR, and in situ hybridization was performed.

Biology of Severe Acute Respiratory Syndrome Coronavirus
2 and Localization and Function of Full-Length Angiotensin-
Converting Enzyme 2, its Main Receptor
SARS-CoV-2 belongs to the family ofCoronaviridae,which

are classified ina-,b-,g, and d virus (47). The positive-strand
RNA genome of coronavirus is surrounded by a helical cap-
sid, the nucleocapsid protein, which is surrounded by a
lipid bilayer envelope (47). This envelope consists of mem-
brane protein, envelope protein, and spike (S) protein (47).
The S protein of SARS-CoV-2, a b coronavirus, has two com-
ponents: S1, which contains the receptor-binding domain,
and S2, which contains the fusion peptide (14,48). The S pro-
tein mediates cell entry and therefore is critical for the virus
host range, but is also involved in inducing the host immune
response (47). ACE2 in its full-length form is themain recep-
tor that SARS-CoV-2 uses to enter host cells (2,14–17). In
addition, ACE2 acts as monocarboxypeptidase cleaving
phenylalanine from the C-terminus of its substrates, for
example, causing the formation of Ang- (1–7) from Ang II
(49–51). Other substrates of ACE2 include apelin-13, ape-
lin-36, and the proinflammatory peptide des-arg9 bradyki-
nin (52–54).
It is widely believed that surface membrane ACE2

decreases in COVID-19 as a result of ACE2 virus–protein
complex internalization, and the deficit of ACE2 renders
the infected organs more vulnerable to Ang II and des-
arg9 bradykinin (2,55–57). Accumulation of these peptides
can foster organ injury and adverse outcomes (2), especially
in organs that express ACE2. In a study of ACE2 mRNA
expression in 72 human tissues using real-time PCR,
high levels were found in the kidney, testis, and cardio-
vascular tissues (58). In human lungs, mRNA expression
of ACE2 can be detected on type II pneumocytes (59),
and at the protein level by immunohistochemistry (IHC)
on type I and type II pneumocytes (60). The latter cell
type is considered the chief site of pathogenic infection
by SARS-CoV-2. In the kidneys, ACE2 is abundantly
expressed in the proximal tubule apical membrane (18–20)

(Figure 1A).Asdemonstrated by IF and immunogold labeled
electron microscopy (EM), mouse glomerular parietal and
visceral epithelial cells (podocytes) also express full-length
ACE2, but in much smaller amounts than the proximal
tubule (Figure 1B) (18,19,61). In agreement, ACE2 has been
detected in human proximal convoluted tubules and pari-
etal epithelial cells of the Bowman’s capsule by IF (62).

SARS-CoV-2 infection is also governed by specific pro-
teases found in each cell type (14), chiefly TMPRSS2.
Single-cell transcriptome analysis revealed that TMPRSS2
is highly expressed in the distal nephron, not in the proxi-
mal tubule (1). In kidney organoids of embryonic origin,
ACE2 and TMPRSS2 colocalization can be seen by IF in
proximal tubule–like structures (63). The areas of colocali-
zation in these organoids are in the presumed apical border
area, where ACE2 is abundantly expressed in the adult.
Clearly, studies in human kidneys are needed to clarify
the issue of ACE2 and TMPRSS2 localizationwithin the kid-
ney. It is possible that other proteases, similar to TMPRSS2,
prime SARS-CoV-2 for internalization with ACE2 in the
proximal tubule. Other proteases, such as furin and
cathepsin L, which are necessary for SARS-CoV-2 process-
ing (64), are more ubiquitously expressed, and are found
in the proximal tubule (65,66).

How Could Severe Acute Respiratory Syndrome
Coronavirus 2 Reach the Kidney?

Access of the virus to the kidney is obviously not as direct
as it is in the lungs, where the route SARS-CoV-2 uses to
reach these organs is inhalation. Themechanisms proposed
here are theoretical considerations because our under-
standing of kidney infection by SARS-CoV-2 is still evolv-
ing. Viremia would be the expected route for SARS-CoV-
2 to reach the kidney. Viremia, even transient, could lead
to SARS-CoV-2 entry by binding to ACE2 in podocytes,
providing an initial nidus for subsequent viral invasion of
the kidney parenchyma. Most patients with COVID-19,
however, do not have documented viremia detected by
RNA levels (67,68). There is evidence that higher viral
RNA loads in plasma are associated with increased disease
severity and mortality in patients with COVID-19 (67,68).

ACE2

A B

ACE2

GBM

Figure 1. | Immunofluorescence and immunogold analysis of angiotensin-converting enzyme 2 (ACE2) in the kidney. (A) Immunofluores-
cence staining of ACE2 (red) in proximal tubules. (B) ACE2 immunogold labeling in glomeruli. ACE2 labeled with 15 nm of gold particles
is distributed in podocyte foot processes and slit diaphragm (A, arrows). The glomerular basement membrane (GBM) does not have ACE2
immunogold particles (modified from ref. 19 with permission).
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The possibility of viral exposure to podocytes needs to be
considered. SARS-CoV-2 RNA and S protein have been
documented in the glomerulus in autopsies of patients
with COVID-19 (69,70). This could reflect viral RNA stuck
in the glomerular filtration barrier, rather than viral infec-
tion. Evidence for SARS-CoV-2 RNA or protein in the glo-
merular cells nevertheless has been documented using
both in situ hybridization and IF (69,70).
One next needs to consider how SARS-CoV-2 could reach

the lumen of the proximal tubule to bind to the abundant
ACE2 receptors in the apical membrane (1,21), instead of
the basolateral membrane, which is in potential contact
with the virus present in the blood stream. One possible cir-
cumferential route to the apical membrane of the proximal
tubule is via the tubular fluid. After SARS-CoV-2 infects
podocytes, access to the tubular fluid and subsequent bind-
ing to ACE2 in the apical membrane of the proximal tubule
is a potential route. Alternatively, the virus could reach the
apical membrane of the proximal tubule during cellular
injury of the proximal tubule in patients with AKI. In this
scenario, the virus could traverse the cell to interact with
apical ACE2 protein. In primary human airway epithelia,
ACE2 is expressed apically, and SARS-CoV-2 infection pre-
dominantly occurs on the apical surface, but infection can
occur on the basolateral surface at low efficiency (71). This
perhaps involves low level transcytosis of ACE2 to the baso-
lateral membrane of the cell. Another possibility that lacks
experimental support but is worthy of consideration is
that when kidney damage occurs, there may be aberrant
expression of ACE2 in the basolateral membrane. This is a
possibility given the report of altered CD147 expression,
another putative receptor for SARS-CoV-2, in patients
with COVID-19. CD-147 is expressed basolateral on proxi-
mal and distal tubular epithelial cells (72) and, thus, could
mediate SARS-CoV-2 cell entry.

HowCan Severe Acute Respiratory Syndrome Coronavirus 2
Be Detected in the Kidney?
Different methods can be applied to detect the presence of

SARS-CoV-2 in the kidney (Table 1). Strong evidence for the
presence of viral RNA can be derived from in situ hybridi-
zation (73), RT-PCR (74), or viral growth in plaque assays
(75,76). However, overinterpretation of these results is pos-
sible, especially with RT-PCR–based strategies on whole
kidney samples because theywill not distinguish parenchy-
mal infection from the presence of virus within blood or
urine. The nucleocapsid or S protein of SARS-CoV-2, more-
over, can be detected by either IHC or IF. We found 14
reports using nine different antibodies to detect either spike

protein or nucleocapsid protein of SARS-CoV-1 or -2 (Table
2). One important limitation of IHC is the potential of cross-
reactivity. Detection of SARS-CoV-2 proteins by IHC was
less sensitive and specific than detection of SARS-CoV-2
RNA by RT-PCR or in situ hybridization in one report
(77). Others found no difference between detection of
SARS-CoV-2 by IHC and in situ hybridization (73). Other
factors that can influence detection of proteins include tissue
fixation, unmasking procedures, antibody dilution, and
detection systems (78). Advanced techniques, such as pro-
tein mass spectrometry, which are more sensitive to detect-
ing the presence of SARS-CoV-2 protein in nasopharynx epi-
thelial swabs (79), could be used in studies to detect SARS-
CoV-2 in kidney or the urine. EM is another common
method of detection of viral-like particles, however, does
not providedefinitive evidence for SARS-CoV-2 virions (80).

Evidence For and Against SARS-CoV-2 in the Kidney from
Patients with COVID-19
In contrast to the lungs, it has been difficult to demonstrate

the presence of SARS-CoV-2 in kidneys (Tables 2 and 3 and
summarized in Figure 2). Particles that resemble the appear-
ance of coronaviruses are clearly not sufficient to unequivo-
cally document direct viral invasion (80). The family of Coro-
naviridae, moreover, is very large and common, and other
members of the family, such as the common cold virus, could
be mistaken for SARS-CoV-2. Nevertheless, it is worthwhile
to mention studies that reported such particles in the early
descriptions of patients with COVID-19. In total, seven of
21 studies that we found reported potential viral-like par-
ticles by EM. Of the 128 patients examined by EM, poten-
tial viral-like particles were found in the kidney of 16
patients (13%). In total, 11 samples were from autopsied
kidneys (9,13,81) and only five from kidney biopsies per-
formed in living patients; the latter were all in patients
who were subsequently diagnosed with collapsing glo-
merulopathy (35–38).
Four of 12 IHC-based studies reported detection of viral

protein in the kidney. Of the 94 patients with COVID-19
examined by IHC, 18 showed evidence for the presence of
viral proteins in the kidney (19%) (Figure 2). Only postmor-
tem samples stained positive for SARS-CoV-2 protein by
IHC (13,70,81,82). Viral protein was accessed in four studies
by immunofluorescentmicroscopy, all of themautopsy stud-
ies; viral protein was found in the kidney in 10 of 13 patients
examined (77%) (9,13,69,and Ichimura et al., unpublished
observations) (Figure 2). As detected by in situhybridization,
SARS-CoV-2 RNA was only found in four of 14 studies and
11 of 84 patients (13%) (Figure 2). One of these studies also
used a probe specific for the antisense strand of the SARS-
CoV-2 S gene and detected its presence in kidney tubules,
strongly suggesting there is viral replication in the kidney
(13). RT-PCR was used in 13 reports, and 71 of 144 patients
(49%) showed presence of SARS-CoV-2 RNA in the kidney
(Figure 2). Detection of SARS-CoV-2 RNA by RT-PCR was
only observed in postmortem specimens (69,70,81,83–85).
One of these studies also tested the kidney of one patient
positive for subgenomic viral RNA transcripts by RT-PCR
(84). Subgenomic viral RNA is only transcribed by infected
cells and not packaged into virions (86). This can be taken as
evidence of active replication of the virus in the kidney (84).

Table 1. Methods of viral detection to demonstrate presence
of severe acute respiratory syndrome coronavirus 2

Method What Is Being Detected?

Electron microscopy Virus-like particles
Immunohistochemistry Viral protein
Immunofluorescence

with confocal microscopy
Viral protein

In situ hybridization Viral RNA
RT-PCR Viral RNA
Plaque assay Live virus
Protein mass spectrometry Viral protein

CJASN 16: ���–���, November, 2021 Can the Kidney Be Infected in Patients with COVID-19? Hassler et al. 3
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However, it cannot be determined which cell type in the
kidney was infected.
In total, in kidneys from 102 of 235 patients (43%), the

presence of SARS-CoV-2 was suggested by at least one of
the methods used (Table 2). Each patient was counted
once, even if several methods were applied to the same
patient. It must be noted that two studies gave the numbers
of samples, but not the exact number of patients examined
(73,87). These were excluded in the final calculation. The
two methods that were more consistent with the presence
of SARS-CoV-2 were IF and RT-PCR. IF was positive in 10
of 13 (77%) and RT-PCR in 71 of 144 (49%) samples exam-
ined (Figure 2). It is likely these methods are more sensitive
and overestimate the virus presence, particularly because in
situ hybridization yielded a much lower positivity rate for
SARS-CoV-2 (only 11 of 84 samples; 13%). Unfortunately,
many studies that performed RT-PCR did not concomi-
tantly assay for in situ hybridization. Clearly, studies that
use more than one method, preferably IF and RT-PCR for
sensitivity and in situ hybridization to ensure specificity,
are more likely to detect SARS-CoV-2 when present in the
kidney.
UrineViral Studies. In some viral nephropathies, viruria

can be easily demonstrated. For instance, high titers of BK
virus in the urine are a frequent finding of patients with
BK nephropathy (88–90). In a study of six kidney transplant
recipients with BK nephropathy, Howell et al. found poly-
omavirus in the urine of all six patients by EM, in concor-
dancewith the presence of virus in biopsies (90). In contrast,
the presence of SARS-CoV-2 in the urine has been difficult
to document. A meta-analysis of 30 studies comparing
SARS-CoV-2 RNA in urine, blood, and stool (91) found

the incidence of detecting SARS-CoV-2 RNA in the urine
was 8%, a much lower rate compared with presence in
blood (21%) and stool (40%) (91). The presence of SARS-
CoV-2 RNA in urine was associated with more severe dis-
ease in this meta-analysis (91). A more recent report that
used an antigen-capture assay detected SARS-CoV-2 S1
protein in the urine of 25% of patients with COVID-19 (92).

SARS-CoV-2 in the urine has been reported to be infec-
tious. Urine from two patients with COVID-19 was suffi-
cient to transfer SARS-CoV-2 infection to ferrets (93,94),
fulfilling one of the the main Kochs postulates. In these
studies, SARS-CoV-2 RNA levels in nasal washes of the
infected ferrets peaked 4 days after infection (94). In a
case report, urine from a patient with COVID-19 was used
to infect Vero E6 cells in vitro (95). A cytopathic effect was
observed 3 days after infection, which was interpreted as
presence of infectious/viable SARS-CoV-2 in the urine of
this patient (95). Moreover, timing for successful detection
of SARS-CoV-2 in urine might be critical. A study that col-
lected urine of 67 patients with COVID-19 tested 13 of 231
(6%) urine samples positive for SARS-CoV-2 RNA (Tan et
al., unpublished observations).

The overall relatively few cases with viruria in patients
withCOVID-19 are consistentwith the lownumber of cases
with virus present in kidney samples (see below). This may
be because viruria of SARS-CoV-2 is rare, but could be in
part due to the lack of an effective and sensitive detection
method. Ultracentrifugation to concentrate viral particles
and protein mass spectrometry have been proposed to
detect the presence of SARS-CoV-2 in the urine (79,96).
Ribonucleases in urine can also potentially degrade viral
mRNA leading to false-negative results (91,96).

Table 3. Findings suggestive of severe acute respiratory syndrome coronavirus 2 in patients with coronavirus disease 2019 (extracted
from Table 2)

Finding
Viral Protein by

Immunohistochemistry
Viral Protein by

Immunofluorescence
Viral RNA by In situ

Hybridization
Viral RNA
by RT-PCR

Frequency of findings
from patients examined

18/94
(19%)

10/13 patients
(77%)

11/84 patients
(13%)

71/144
(49%)

References showing
detection

(13,70,81,82) (9,13,69 and Ichimura et al.,
unpublished observations)

(13,69,70,97) (69,70,81,83–85)

References showing
no detection

(25,73,77,97–101) – (24,25,28,32,33,73,
77,87,100,101)

(27,34,36,77,99,101,102)

Immunohistochemistry

Total = 94

18 (19%)

76 (81%)

Total = 13

10 (77%)

3 (23%)

Immunofluorescence

Total = 144

71 (49%)73 (51%)

RT–PCR

Total = 84

11

(13%)

73 (87%)

Detection

No detection

In situ hybridization

Figure 2. | Summary of data against and in favor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in kidneys from
patients with coronavirus disease 2019 (COVID-19).Number and percentage of patients in whom SARS-CoV-2 spike or nucleocapsid protein
or RNA was detected (red) or not (blue). Each circle depicts immunohistochemistry, immunofluorescence, in situ hybridization, or RT-PCR.
Data extracted from Tables 2 and 3.
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Discussion and Conclusions
It has been difficult to demonstrate the presence of SARS-

CoV-2 in the kidneys of patients with COVID-19. Despite
multiple negative studies, there are data that demonstrate
kidney tropism of SARS-CoV-2 (Figure 2). Even then, there
is no evidence that viral presence is directly the cause of
AKI frequently seen in patients with COVID-19. When try-
ing to detect viral presence in organs of autopsied patients
who had COVID-19, one might not find viral RNA because
the search for the virus was done too late after death when
kidney autopsy tissue was available. It must be pointed
out, therefore, that autopsy studies from patients who
died from severe COVID-19 are far from ideal, yet repre-
sent the majority of patients with severe and lethal
COVID-19 reported. To date, the presence of SARS-CoV-2
in the kidney has been described mainly post mortem. In
kidney biopsies usually performed relatively late after
the appearance of symptoms, it may be difficult to detect
the virus in the kidney sample. Indeed, we could not find
studies where kidney biopsies were done very early in
the course of COVID-19–associated kidney disease.
Fulminant viremia and viruria are not typical features

of COVID-19. Examining the urine early in the course of
the disease with advanced techniques such as protein
mass spectrometry or more practically with sensitive
ELISA assays may provide additional evidence for
SARS-CoV-2 kidney infectivity. The timing of the search
for the virus may also be crucial. Availability of more
information on viruria detected by sensitive methods as
noted above could be used sequentially to attempt to
assess possible early-stage viral invasion of the kidney
in patients with COVID-19. The method of viral detection
is an important consideration and the site of detection
within the kidney. The danger tomistake internal vesicles
or other physiologic parts of the cell for viral particles
renders EM alone insufficient to search for SARS-CoV-2
presence in the kidneys. Detection of SARS-CoV-2 pro-
tein was more successful by IF (77%) than by IHC (19%).
It must be noted, however, that the total number of patients
tested by IF is very low (Figure 2). The numbers of patients
in which SARS-CoV-2 RNA was detected are higher by
RT-PCR than by in situ hybridization. However, in most
studies, the two methods were not usually performed con-
currently in the same patient. There are also important tech-
nical aspects. Spatial detection of SARS-CoV-2 by in situ
hybridization, IHC, and IF requires a certain degree of tis-
sue preservation, which can be limited due to autolysis.
The overall sensitivity of these methods, therefore, can be
lower than for RT-PCR. Limited autopsy material and the
sampling bias can also lead to false-negative results. Good
evidence for kidney tropism of SARS-CoV-2 in patients
with COVID-19 should be provided by plaque assay using
biopsy material. To our knowledge, there is only one study
that successfully isolated SARS-CoV-2 from an autopsied
kidney via plaque assay (83).
In summary, although many studies provide support

against viral infectivity, there is also reasonable evidence
from some comprehensive studies showing that kidney
infectivity by SARS-CoV-2 may occur. These positive
studies, so far, have been limited to kidney autopsy mate-
rial. The timing of detection and the method used seem of
critical importance for kidney detection. Correlating

transcriptional analysis and viral presence in relatively
large cohorts would be needed to gain further insight on
SARS-CoV-2 infection in the kidney. In particular, studies
involving early kidney biopsy tissue or autopsies done
very soon after death would clearly improve our under-
standing of SARS-CoV-2 kidney infectivity. Assays in
urine samples using ELISA would be the easiest way to
monitor for SARS-CoV-2 in the kidney, and hopefully
they will soon become available.
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