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Adenosine can be released from the heart and may stimulate four different cardiac 

adenosine receptors. A receptor subtype that couples to the generation of cyclic 

adenosine monophosphate (cAMP) is the A2A-adenosine receptor (A2A-AR). To better 

understand its role in cardiac function, we studied mechanical and electrophysiological 

effects in transgenic mice that overexpress the human A2A-AR in cardiomyocytes 

(A2A-TG). We used isolated preparations from the left atrium, the right atrium, isolated 

perfused hearts with surface electrocardiogram (ECG) recording, and surface body ECG 

recordings of living mice. The hypothesized arrhythmogenic effects of transgenicity 

per se and A2A-AR stimulation were studied. We noted an increase in the incidence of 

supraventricular and ventricular arrhythmias under these conditions in A2A-TG. Moreover, 

we noted that the A2A-AR agonist CGS 21680 exerted positive inotropic effect in isolated 

human electrically driven (1 Hz) right atrial trabeculae carneae. We conclude that A2A-

ARs are functional not only in A2A-TG but also in isolated human atrial preparations. A2A-

ARs in A2A-TG per se and their stimulation can lead to cardiac arrhythmias not only in 

isolated cardiac preparations from A2A-TG but also in living A2A-TG.

Keywords: A2A-adenosine receptor, contractility, ischemia, reperfusion, arrhythmias, human heart

INTRODUCTION

Adenosine is well known to elicit cardiac arrhythmias. In their famous paper that founded the 
field of adenosine pharmacology, Drury and Szent-Györgyi (1929) showed that adenosine can 
induce arrhythmias, namely, bradycardia. For instance, adenosine has a negative chronotropic 
effect on the sinus node and a negative dzromotropic effect on the AV-node (Shryock and 
Belardinelli, 1997). Adenosine can interact with A1-, A2A-, A2B-, and A3-adenosine receptors 
(AR). Typically, A1- and A3-AR inhibit and A2A- and A2B-AR stimulate adenylyl cyclase activities 
(for review, see Olsson and Pearson, 1990). From all P1-purinoceptors, the A2A-AR was cloned 
first (Libert et al., 1989).

Cardiomyocytes are able to synthesize and release adenosine. Moreover, cardiac adenosine 
release is markedly stimulated by β-adrenoceptor activation, ischemia, or necrosis of the heart. 
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Clinically, adenosine and adenosine triphosphate (ATP), the 
precursor of adenosine, are useful to treat supraventricular 
tachyarrhythmias. Hence, in the human heart, the actions 
of adenosine are of clinical relevance and merit further 
investigation. If A2A-ARs are in general functionally (increase in 
cAMP, contractility, and heart rate) expressed in the mammalian 
heart is controversially discussed. Species- or method-dependent 
di�erences may exist: in some publications, no cardiac e�ects of 
adenosine were reported (rat: Shryock et al., 1993, guinea-pig: 
Boknik et al., 1997, rabbit: Kilpatrick et al., 2002), whereas in 
others, a functional cardiac response to adenosine was noted 
(mouse: Morrison et al., 2006, rat: Monahan et al., 2000).

In human hearts, A2A-ARs have been detected on the protein 
level (Marala and Mustafa, 1998, Hove-Madsen et al., 2006). 
Moreover, by use of mice with constitutive deletion of A2A-ARs 
(A2A-AR-KO mouse), the functional expression of A2A-ARs in the 
wild-type (WT) mouse heart could be demonstrated (Ledent et al., 
1997). Ledent et al. compared isolated perfused hearts from WT 
and A2A-AR-KO mice and clearly established that CGS 21680, a 
selective A2A-AR agonist, increased contractility only in WT hearts 
but not in A2A-AR-KO hearts (Ledent et al., 1997). Furthermore, it 
has been shown that stimulation of A2A-AR can protect the heart 
from reperfusion damage (e.g. rabbit: Cargnoni et al., 1999).

More recently, A2A-ARs were shown to be expressed in 
human atrial preparations and this may lead to alterations 
in the frequency of spontaneous Ca2+ release (Hove-Madsen 
et al., 2006). Alternatively, the action of adenosine to induce 
bradycardia may subsequently lead to atrial �brillation (Isa-
Param et al., 2006). Ischemia induced increases in adenosine 
might trigger arrhythmias (Bertolet et al., 1997).

Interestingly, atrial �brillation in patients was accompanied 
by an increase of A2A-ARs on mRNA and protein level in 
atrial tissue and an increase in cardiac ryanodine receptor 
(RYR2) phosphorylation, and this was suggested to lead to an 
altered �ow of Ca2+ through the sarcolemmal sodium calcium 
exchanger (NCX) and thus arrhythmias (Llach et al., 2011a). 
�e A2A-AR agonist CGS 21680 enhanced currents through 
NCX in isolated atrial cardiomyocytes from patients with atrial 
�brillation but not in samples from patients in sinus rhythm 
(Llach et al., 2011a). Also, endogenous adenosine stimulated 
currents through NCX in isolated atrial cardiomyocytes from 
patients with atrial �brillation (Llach et al., 2011a). It has 
been suggested that A2A-AR stimulation may increase the Ca2+ 
content of the sarcoplasmic reticulum (SR) and NCX stimulation 
might increase Ca2+ in�ow into the cell. �is increase of Ca2+ 
content in the SR may lead to increased release of Ca2+ from 
the SR, leading to delayed a�erdepolarization and thus to atrial 
arrhythmias like atrial �brillation (Llach et al., 2011a).

In the present study, we tested the hypothesis that overexpression 
of A2A-ARs increases the susceptibility to arrhythmias in our recently 
described model of human A2A-AR overexpressing mice (Boknik 
et al., 2018) under basal or stimulated conditions. Furthermore, we 
studied the functional role of A2A-AR stimulation in isolated paced 
right atrial preparations from diseased human hearts in order to 
ascertain that A2A-ARs are functional in the human heart.

Our results provide evidence for a contractile e�ect of the 
stimulation of A2A-AR in human hearts and a proarrhythmic 

e�ect of A2A-ARs in normoxia (under basal and drug-stimulated 
conditions) and hypoxia in mammalian cardiac preparations. 
Progress reports of this work have appeared in abstract form 
(Neumann et al., 2017; Neumann et al., 2018).

MATERIALS AND METHODS

Isolation of A2A-AR CDNA and Generation 
of Transgenic Mice
The generation of transgenic mice has been recently described 
(Boknik et al., 2018). The investigation conforms to the Guide 
for the Care and Use of Laboratory Animals published by the 
National Research Council (2011). Animals were handled and 
maintained according to approved protocols of the animal 
welfare committee of the University of Münster, Germany.

�e polymerase chain reaction (PCR)-generated human 
A2A-A cDNA fragment containing a 3´ and 5´engineered NotI 
digestion site was inserted into a mouse cardiac α-myosin heavy 
chain promoter expression cassette. Genotypes were identi�ed 
by PCR analyses of tail-tip DNA using the following primers: 
5´-acaaagcaggcgatgaag-3´ and 5’-acccttaccccacatagacc-3´. Reverse 
transcription was performed with 4 µg RNA using random 
primers (Transcriptor High Fidelity cDNA Synthesis Kit, Roche 
Applied Science, Mannheim, Germany), and PCR ampli�cation 
was performed using the Ampliqon Taq DNA polymerase 
(Biomol, Hamburg, Germany) according to the manufacturer’s 
instructions. All experiments presented here were performed on 
12- to 30-week-old A2A-TG mice and WT littermates of both sexes.

Western Blot Analysis
Cardiac homogenates were prepared in 300 µl of 10 mM NaHCO3 
and 100 µl 20% SDS (sodium dodecyl sulfate). Mixtures were kept at 
25°C for 30 min before centrifugation to remove debris. �erea�er, 
supernatants (called homogenates) were kept at −20°C until further 
analysis. Western blot analysis was performed as reported (Gergs 
et al., 2004). Aliquots of 100 µg of protein were loaded per lane. 
�e antibodies against ERK (extracellular regulated kinase), AKT 
(protein kinase B), phospho-ERK, phospho-AKT, and A2A-ARs 
were obtained from Merck (Darmstadt, Germany). All secondary 
antibodies were conjugated with an alkaline phosphatase 
(Sigma-Aldrich, Tau�irchen, Germany). Bands were detected 
using enhanced chemi�uorescence (GE Healthcare, Freiburg, 
Germany), and �uorescent bands were visualized in a Typhoon 
9410 PhosphorImager and quanti�ed using the ImageQuaNT 
so�ware (GE Healthcare, Freiburg, Germany). Enhanced 
chemi�uorescence detection was carried out according to the 
manufacturer’s instructions (GE Healthcare, Freiburg, Germany).

Cardiomyocyte Isolation
Isolation of ventricular cardiomyocytes from A2A-TG and WT 
mice, measurement of Ca2+ transients, and measurement of cell 
shortening were performed as described previously (Kirchhefer 
et al., 2001). To avoid the interference from endogenous 
adenosine, adenosine deaminase (ADA) (5 units ml−1) was 
present under all experimental conditions. In order to get an 
insight into the signaling via A2A-AR, we used the following 
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highly selective antagonists for pre-incubation: DPCPX (A1-
AR antagonist) or ZM 241385 (A2A-AR antagonist). Isolated 
cardiomyocytes were stimulated either by 1 µM CGS 21680 
(A2A-AR agonist) or by 1 µM isoproterenol (β-adrenergic 
stimulation as positive control) each for 10 min at 37°C.

ECG Recordings in Awake A2A-TG Mice 
and WT Littermates
Adult (9 months old) mice were instrumented with a telemetric 
ECG transmitter (Data Science, Minneapolis, USA) as described 
previously (Kirchhof et al., 2003). A�er a postoperative recovery 
period, telemetric ECG recordings were obtained in freely 
moving mice continuously for 24 h. Besides the 24 h protocol, 
ECGs were recorded a�er i.p. injection of the A2A-AR agonist 
CGS 21680 (40 µg kg−1). Before injection, ECGs were recorded 
for 1 h to preserve basal conditions. ECGs were analyzed for 
heart rate and arrhythmias.

Echocardiography
Echocardiography in spontaneously breathing mice was performed 
under anesthesia with 1.5% iso�uorane as described previously 
(Fabritz et al., 2004; Gergs et al., 2010). We assessed the cardiac 
function and diameters under baseline and a�er i.p. injection of 
the beta-adrenoceptor agonist isoproterenol (2 mg kg−1).

Contractile Function
Contractile function was studied as reported (Boknik et al., 2018; 
Gergs et al., 2018). In brief, mice were anesthetized by i.p. injection 
of pentobarbital sodium (50 mg kg−1) and hearts were excised. 
Pentobarbital was used here in order to provide direct comparability 
with our previous work (e.g. Boknik et al., 2018) and followed the 
suggestions of our animal protection committee. Right and le� atria 
(about 3 mm of length) were dissected from isolated hearts and 
mounted in an organ bath. Le� atrial preparations were continuously 
electrically stimulated (�eld stimulation was used for comparability 
with all our previous work: e.g. Kirchhefer et al., 2001; Gergs et al., 
2013; Boknik et al., 2018) with each impulse consisting of 1 Hz, with 
a voltage of 10–15% above threshold and 5 ms duration. Right atrial 
preparations were allowed to contract spontaneously. �e bathing 
solution contained (in mM) NaCI 119.8, KCI 5.4, CaCl2 1.8, MgCl2 
1.05, NaH2PO4 0.42, NaHCO3 22.6, Na2EDTA 0.05, ascorbic acid 
0.28, and glucose 5.0, continuously gassed with 95% O2 and 5% CO2, 
and maintained at 35°C resulting in a pH of 7.4. Signals detected 
via an isometric force transducer were ampli�ed and continuously 
recorded. CGS 21680, ZM 241385, or isoproterenol (1 µM each) was 
cumulatively applied for 20 min for each compound. Contraction 
experiments were performed a�er addition of ADA (1 µg ml−1) and 
DPCPX (1 µM) to avoid interference from endogenous adenosine 
or A1-AR activation. For comparison, right atrial preparations were 
obtained from patients undergoing bypass surgery due to coronary 
heart disease and handled in the same way as le� atrial preparations 
from mice (see Human Atrial Preparations).

Langendorff-Perfused Hearts
Heart preparations were utilized as described previously (Boknik 
et al., 2018). Mice were anesthetized intraperitoneally with 

2.0 g kg−1 body weight urethane and treated with 1.5 units of 
heparin. �is was done to provide direct comparability with 
our previous work (e.g. Boknik et al., 2018) and followed the 
suggestions of our animal protection committee. �e hearts 
were removed from the opened chest, immediately attached 
by the aorta to a 20-gauge cannula, and perfused retrogradely 
with oxygenized Krebs-Henseleit bu�er (37.4 C) containing 118 
mM NaCl, 25 mM NaHCO3, 0.5 mM Na-EDTA, 4.7 mM KCl, 
1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2, and 11 mM 
glucose in an isolated heart system (Hugo Sachs Elektronik, 
Freiburg, Germany). Hearts were stimulated at 8 Hz. Heart rate, 
aortic pressure, and LV pressure were measured and monitored 
continuously. �e �rst derivative of LV  pressure (+dP/dt and −
dP/dt) was calculated (ADInstruments, Oxford, UK). In order 
to achieve global ischemia, the perfusion was stopped for 20 
min and therea�er the hearts were perfused for 60 min. In an 
additional set of experiments, electrophysiological studies 
(recording of monophasic action potentials) were performed in 
isolated, Langendor�-perfused hearts as described previously 
(Kirchhof et al., 2007).

Human Atrial Preparations
Right atrium (RA) samples were obtained from patients 
undergoing open-heart surgery with coronary artery bypass 
gra�s and electrically stimulated in organ baths as described 
previously (Gergs et al., 2008; Gergs et al., 2013; Gergs et 
al., 2018). Patients were treated with the following drugs: 
acetyl salicylic acid (ASS), clopidogrel, bisoprolol, thyroxine, 
atorvastatin, pantoprazole, olmersartan, amlodipine, frusemide, 
metformin, rivaroxaban, ipratropiumbromide, fenoterol, 
simvastatin, torasemide, esomeprazole, �ucatison, salmeterol, 
ramipril, and hydrochlorothiazide. Patients were in CCS 
(Canadian Cardiovascular Society, angina classi�cation) scale 
from III to IV and NYHA (New York Heart Association, heart 
failure classi�cation) class II–III. Le� ventricular ejection 
fraction ranged from 40 to 55%. �is study complied with 
the Declaration of Helsinki and was approved by the local 
ethics committee (hm-bü 04.08.2005). All patients gave 
informed consent.

Data Analysis
Data shown are means ± SEM. Statistical signi�cance was 
estimated by analysis of variance followed by Bonferroni´s 
t-test or using the χ2-test as appropriate. A p-value < 0.05 was 
considered as signi�cant.

Drugs and Materials
ADA (produced by Roche) was purchased from Sigma-
Aldrich (#10102121001), CGS 21680 (2-p-(2-carboxyethyl)
phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride 
hydrate) was purchased from Sigma-Aldrich (#C141), DPCPX 
(8-cyclopentyl-1,3-dipropylxanthine) was purchased from 
TOCRIS (#0439), and ZM 241385 (4-(2-[7-amino-2-(2-furyl)
[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) 
was purchased from TOCRIS (#1036). All other chemicals were 
of analytical grade. Deionized water was used throughout the 
experiments. Stock solutions were freshly prepared daily.
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RESULTS

For the interpretation of data on atrial samples, it was deemed 
important to show that overexpression in the atria occurs. To 
this end, we performed RT-PCR experiments. �e expression 
of A2A-ARs was similar in RA as in le� atrium (LA) of A2A-TG. 
However, expression in the ventricle of A2A-TG was about 
double to that of transgenic atria (Figure 1). �ere is evidence 
in the literature that mRNA is not always translated to protein; 
hence, it was of interest to study whether increase in mRNA 
for the A2A-AR is also re�ected by increased levels of A2A-AR 
protein. �erefore, we next tried to detect the A2A-AR in 
ventricular samples on protein level using an antibody. We 
noted several bands in extracts from A2A-TG hearts (Figure 2, 
second lane from the le�) that were absent in samples from 
WT but were blocked by a peptide (to which the antibody had 
been generated). We are not sure how to interpret the several 
bands in A2A-TG samples (see Discussion). For lack of su�cient 
amount of tissue, we could not perform Western blots in atrial 
preparations; however, we could present functional data on 
the presence of A2A-AR in atrial samples (Figure 3). As seen in 
the middle lane (of Fig: 3) CGS 21680, an agonist at A2A-ARs 
increased force of contraction in isolated le� atrial preparations 
from A2A-TG, but this positive inotropic e�ect (PIE) was lacking 
in le� atrial preparations from WT (in agreement with our 
previous work: Boknik et al., 2018). �is PIE was blocked by 
addition of the A2A-AR ZM 241385. A novel �nding is, however, 
that using the same experimental conditions, we detected a PIE 
to CGS 21680 in electrically driven preparations from human 
RA (bottom lane in Figure 3) and this amounted to 119 ± 12% 
(p < 0.05, nine trabeculae carneae from �ve patients undergoing 
bypass surgery due to coronary heart disease).

Another new mechanistic �nding is that the PIE of 
CGS 21680 in A2A-TG was accompanied by an increase in 

intracellular Ca2+ transients and increased cell shortening 
(i.e. contractility) in ventricular cardiomyocytes from A2A-TG 
but not WT (Figure  4). As a positive control, we noted that 
the β-adrenoceptor agonist isoproterenol increased both 
intracellular cytosolic Ca2+ content and cell shortening in 

FIGURE 1 | A2A-AR-mRNA is greatly enhanced in cardiac preparations from 

A2A-TG compared to WT. Assessment by means of quantitative RT-PCR of 

human A2A-ARs in left (LA) and right atria (RA) and ventricles from WT and 

A2A-TG. As internal control, the level of cyclophilin was also determined and 

the ratio is plotted here. ★p < 0.05 versus WT. Numbers in brackets indicate 

number of samples studied.

FIGURE 2 | A2A-AR is increased at protein level in the heart of A2A-TG. 

Whole hearts from WT and A2A-TG were homogenized and subjected to 

electrophoresis, transferred to nitrocellulose membranes, and incubated 

with an antibody against the A2A-AR. The putative specific signals in A2A-TG 

lanes were blocked when the antibodies were pre-incubated with a blocking 

peptide. At 67 kDa, unspecific bands were located, while the specific band 

for monomeric A2A-AR is indicated by an arrow.

FIGURE 3 | Stimulation of A2A-AR by CGS 21680 increased force contraction in 

the presence of adenosine deaminase (ADA) and an A1-AR antagonist (DPCPX) 

in atrial preparations from A2A-TG (B) and man (C) but not in WT (A). The 

effects of CGS 21680 in A2A-TG (B) were blocked by the A2A-AR antagonist ZM 

241385. Ordinates indicate force of contraction in mN (milli-Newton). Lengths of 

the horizontal bars indicate the time scale of the experiments.
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isolated ventricular cardiomyocytes from both WT and A2A-TG 
(Figure 4, right hand side). Echocardiographic measurements 
showed increased diastolic diameter of le� atria from A2A-TG 
(Table 1). Doppler measurements of blood �ow through the 
mitral valve (MV) showed higher pressure and velocities in 
hearts from A2A-TG compared to hearts from WT (Table 1). 
A�er injection of isoproterenol, both genotypes developed 
similar values (Table  1). Le� ventricular ejection fraction (a 
parameter of cardiac contractility) and le� ventricle diameters 

were not altered under basal conditions, but a�er injection 
of isoproterenol, contractility in hearts from A2A-TG was 
lower as compared to WT (Table 1). In 4 of 15 A2A-TG mice, 
spontaneous ventricular extrasystoles appeared, none in WT 
mice during echocardiography.

Moreover, one could argue that adenosine is known to be 
released from heart during hypoxia. In order to study the e�ect 
of this pathophysiological situation and extending our previous 
study on ischemia in isolated whole hearts (Boknik et al., 2018), 

FIGURE 4 | The A2A-AR agonist CGS 21680 increased cytosolic Ca2+ and cell shortening only in A2A-TG cardiomyocytes (B) but not in WT cardiomyocytes (A). 

Isolated ventricular cardiomyocytes were stained with a Ca2+ sensitive dye (Indo-1) and electrically paced (1 Hz). The length of longitudinal cell motion (A with scale 

bars) and Ca2+ sensitive fluorescence are presented (B with scale bars). On the left hand side, cardiomyocytes were incubated with 10 µM DPCPX and 1 µg ml−1 

ADA; in the middle, the effects of additionally applied CGS 21680 (1 µM) are shown. The effects of additionally applied 1 µM isoproterenol were comparable in WT 

cardiomyocytes and A2A-TG cardiomyocytes (right hand side A versus B).

TABLE 1 | Echocardiographic measurements under basal conditions (BASE) and after application of isoproterenol (ISO). 

Parameters BASE ISO

A2A-TG WT A2A-TG WT

Age (weeks) 15 ± 0.66 14 ± 0.74 15 ± 0.66 14 ± 0.74

N 15 15 15 15

HR (bpm) 467 ± 8 453 ± 9 635 ± 8 635 ± 8

LA (mm) 1.23 ± 0.03* 1.08 ± 0.01 1.21 ± 0.03* 1.07 ± 0.01

LVEDd (mm) 3.78 ± 0.08 3.58 ± 0.07 3.18 ± 0.12* 2.87 ± 0.06

EDV (µl) 61.79 ± 2.95 54.15 ± 2.50 41.50 ± 3.52* 31.80 ± 1.77

FS (%) 33.40 ± 1.59 36.45 ± 0.88 45.24 ± 2.05* 53.67 ± 1.01

LV/BW ratio 3.52 ± 0.16 3.20 ± 0.12 3.30 ± 0.31 3.05 ± 0.12

MV PG max (mmHg) 2.69 ± 0.35 1.81 ± 0.35 3.84 ± 0.42 3.23 ± 0.43

MV E (cm/s) 80.21 ± 4.66* 66.50 ± 2.72 96.08 ± 5.28 87.49 ± 5.46

MV A (cm/s) 52.72 ± 3.80* 41.07 ± 2.31 67.03 ± 5.87 65.18 ± 5.87

MV E/A 1.55 ± 0.05 1.66 ± 0.05 1.49 ± 0.07 1.40 ± 0.06

Data are mean values ± SEM. HR, heart rate; LA, left atrial diastolic diameter; LVEDd, left ventricular enddiastolic diameter; EDV, left ventricular enddiastolic volume; FS, fractional 

shortening; LV/BW ratio, calculated LV weight in relationship to mouse body weight; MV PG max, mitral valve maximal pressure gradient; MV E and MV A, first and second peak 

of mitral valve flow velocity. *p < 0.05 A2A-TG vs. WT (same treatment group).
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we induced hypoxia in atrial preparations in the organ bath by 
changing the perfusion gas mixture from 95% O2 and 5% CO2 to 
95% N2 and 5% CO2. Under these conditions, a rapid decline in 
force was visible (see Figure 5A), which was partially reversible 

a�er reoxygenation. Interestingly, atria from A2A-TG sustained 
contractility better than WT (Figure 5B).

Interestingly, we noted an elevated incidence of CGS 
21680-induced arrhythmias in isolated electrically driven 
le� atria (arrhythmias in 2 from 10 in WT and in 6 from 10 
in A2A-TG, p < 0.05) and in isolated right atrial preparations 
(arrhythmias in 2 from 16 in WT and in 5 from 17 in A2A-TG, 
p < 0.05). Moreover, even under basal conditions, an increased 
incidence of arrhythmias was noted in isolated spontaneously 
beating right atrial preparations from A2A-TG compared to 
WT, and also a�er β-adrenergic stimulation by addition of 
isoproterenol to these preparations from A2A-TG, the incidence 
of arrhythmias was higher than in WT (Figure 6).

In our previous study (Boknik et al., 2018), in isolated 
perfused hearts, we noted depressed contractile response to 
ischemia. However, the reduction on mechanical function 
was smaller in hearts from A2A-TG than in hearts from WT. 
Hence, in the present study, we wanted to assess a possible 
reason for this protective role of A2A-ARs biochemically, and 
therefore, we measured the enzymatic activity of aspartate 
transaminase (AST; a marker of myocardial damage) in the 
cardiac perfusate. Indeed, the activity of AST was higher in 
samples from WT than in samples from A2A-TG, and this 
difference vanished after application of the A2A-AR antagonist 
ZM 241385 (Figure 7). Moreover, the phosphorylation states 
of ERK and AKT were higher in samples from A2A-TG than in 
samples from WT (Figure 8).

In order to study a possible proarrhythmic e�ect of the A2A-AR, 
we performed monophasic action potential measurements (in 
isolated perfused hearts). Here, the duration of the monophasic 
action potential was shortened by CGS 21680 in WT (Table 2). Due 
to the high incidence of arrhythmias, e�ects of CGS 21680 in A2A-TG 
could not be evaluated under these experimental conditions: in 

FIGURE 5 | A2A-ARs protect atria against hypoxic injury. (A) Representative 

original tracing of a WT left atrium during first hypoxia and re-oxygenation 

are shown in order to visualize the experimental protocol. (B) Force of 

contraction at the end of the hypoxia re-oxygenation cycle is presented. #p < 

0.05 vs. Ctr, ★p < 0.05 vs. WT

FIGURE 6 | A2A-AR increased the incidence of arrhythmias in vitro. In isolated spontaneously beating right atrial preparations (RA), we noted a higher propensity to 

arrhythmias in A2A-TG than in WT under basal conditions (A). Also, in isolated perfused hearts, we noted more atrial arrhythmias in A2A-TG than in WT (B). ★p < 0.05 

vs. WT (χ2-test).
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three out of �ve A2A-TG hearts, arrhythmias were noted but not 
in WT (n = 8, p < 0.05). �ese arrhythmias manifested as non-
sustained atrial �brillation or atrial tachycardia (Figures 9A, B), 
sometimes leading to ventricular asystole (Figure 9C).

Using a more physiological set up, we studied the role of A2A-
ARs in the heart using telemetric ECG recordings of freely moving 
mice. Under these conditions, the spontaneous mean heart rate 
was at several time points higher in A2A-TG than in WT during 
a 24 h period (Figure 10A). Besides these baseline long-term 
ECGs, telemetric ECGs a�er i.p. drug injection were also obtained. 
In A2A-TG, CGS 21680 induced a fast and pronounced heart rate 
increase (Figure 10B), and CGS 21680 induced more ventricular 
extrasystoles in A2A-TG than in WT under these conditions 
(Figure 10C).

DISCUSSION

We noted several bands on Western blots of hearts from 
A2A-TG when probing the blots with an antibody raised against 
a peptide from the sequence of the A2A-AR. Lower molecular 
bands that occur only in samples from A2A-TG but not in 
WT and which vanished when preincubated with a blocking 
peptide are of smaller molecular weight and may represent 
proteolytic fragments of the receptor. When carefully looking 
at the blot, at least one specific higher molecular weight band 
is seen. We speculate here that this might be a dimeric form 
of the receptor. Dimeric forms of A2A-AR have been detected 
in cell cultures of transfected cells and have been claimed 
to represent the functional form of the receptor on the cell 
surface (HEK-293 cells: Burgueño et al., 2003).

It is relevant that we noted a positive inotropic e�ect of CGS 
21680 in human right atrial samples (which to the best of our 
knowledge has not been reported before), as this underscores 
the functionality of this receptor in the human heart and 
more speci�cally a similarity (and comparability) of our atrial 
preparations from transgenic mice with overexpression of the 
A2A-AR and at least the human atrium.

FIGURE 7 | A2A-AR protects against cardiac release of AST (aspartate 

transaminase). Effects of A2A-AR after ischemia and reperfusion on the 

activity of AST are presented. Isolated perfused hearts were prepared from 

WT and A2A-TG and subjected to global ischemia for 20 min, followed by 

reperfusion. Venous effluates (1 ml) were collected before ischemia (Ctr) 

and after 40 min of reperfusion. In these effluates, AST enzyme activity was 

assessed (as % of Ctr). The protective effects of the A2A-AR were abolished 

by the A2A-AR antagonist ZM 241385 (1 µM). ★p < 0.05 vs. WT, + p < 0.05 

vs. Ctr, #p < 0.05 vs. without ZM 241385.

FIGURE 8 | A2A-AR exhibited increased the phosphorylation state of proteins in the reperfusion injury salvage kinase (= RISK) pathway. After 20 min ischemia and 40 

min reperfusion, isolated perfused hearts (WT and A2A-TG) were freeze-clamped. Tissue was homogenized and subjected to electrophoresis and Western blotting. 

Insets indicate the expression of total ERK and total AKT as well as phosphorylated AKT (pAKT) and phosphorylated ERK (pERK), indicated by arrows and molecular 

weight in kDa. Ordinates represent the ratio of pAKT to AKT or pERK to ERK. Numbers in brackets indicate the number of hearts studied. ★p < 0.05 vs. WT.
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Previously, we had shown (Boknik et al., 2018) that CGS 
21680 increased the cAMP content and cAMP-dependent 
phosphorylation of the proteins phospholamban and the 

inhibitory subunit of troponin in A2A-TG but not in WT. 
Here, we extended the functional relevance of phospholamban 
phosphorylation (Figure 11) by showing that CGS 21680 also 
increased cytosolic Ca2+ and contractility in isolated electrically 
driven ventricular cardiomyocytes from A2A-TG but not in WT. 
�e increase in Ca2+ transients is also a plausible explanation 
why A2A-TG can show arrhythmias in atrium and ventricle, 
conceivably because A2A-ARs are stimulated by endogenously 
produced adenosine (Figure 11).

The fact of an increased incidence of CGS 21680-induced 
arrhythmias in isolated atrial preparations of A2A-TG is 
consistent with observations in humans. In detail, patients 
with clinically known atrial fibrillation and increased 
susceptibility for altered Ca2+ handling showed up-regulated 
A2A-AR mRNA expression. In isolated atrial cardiomyocytes 
from these patients, an increased incidence of spontaneous SR 
calcium releases was noted after addition of adenosine or CGS 
21680 (Llach et al., 2011a).

Contractile function in hypoxia was studied to assess 
possible involvement of endogenous adenosine formed e.g. 
from ATP during lack of oxygen in the atrial cardiomyocytes. 
Interestingly, force reappeared better in A2A-TG than WT (as 
reported before Boknik et al., 2018). Overexpression of the 
A2A-AR apparently protects against cardiac damage because 
the enzymatic activity of AST, a marker of the inability of the 
sarcolemma to contain ingredients within the cell, was only 
increased in WT but not in A2A-TG. This protection was in all 
probability mediated by A2A-ARs as this protective effect in 
cardiac preparations from A2A-TG was abolished by applying 
the A2A-AR antagonist ZM 241385. The protective effect 
might involve the mitochondria as the phosphorylation state 
of AKT (a phosphoprotein linked to mitochondrial function) 
was increased to a higher extent during reperfusion in hearts 
from A2A-TG than in WT. A role of active AKT and/or ERK1/2 
in cardiac protection but also generation of arrhythmias has 
been reported by others before (Cheng et al., 2016; Ezeani and 
Elom, 2017; Hu et al., 2019) and underscores a putative role of 
these pathways in our model system.

Extending the data on isolated tissue, we con�rmed in the living 
animal the positive chronotropic e�ect of A2A-AR overexpression 
alone and its stimulation by an A2A-AR selective agonist in the 

FIGURE 9 | Typical electrical tracings showing different manifestations 

(atrium and ventricle) of arrhythmias in isolated Langendorff-perfused hearts 

of A2A-TG. Monophasic action potentials (MAP) in atrium (MAP atrium) or 

ventricle (MAP ventricle) of isolated perfused hearts were established. Non-

sustained atrial fibrillation or atrial tachycardia during fixed rate ventricular 

electrical stimulation were noted in this mouse (A). In (B), a long sustained 

episode of atrial fibrillation in the same heart could be additionally recorded. In 

another mouse, a ventricular asystole (see ECG lane) after spontaneous atrial 

fibrillation (C) could be seen. In three out of five A2A-TG hearts, atrial and/or 

ventricular arrhythmias were noted but not in WT (n = 8, χ2-test, p < 0.05).

TABLE 2 | Duration of action potentials in isolated perfused mouse hearts from WT.

WT CGS21680 Stem CGS21680 WT BASE Stem BASE p-values N WT CGS21680 N WT BASELINE

80 ARD90 23.4 2.2 31.4 1.6 0.073 3 7

ARD70 11.9 1.0 17.6 1.6 0.027 3 7

ARD50 8.2 0.9 12.0 1.2 0,065 3 7

AT 13.1 0.6 13.9 1.4 0.67 3 7

100 ARD90 23.7 0.8 32.5 2.0 0.006 4 7

ARD70 12.4 0.8 18.9 1.6 0.013 3 7

ARD50 8.4 0.6 12.8 1.3 0.025 3 7

AT 13.2 0.4 13.7 1.1 0.699 4 7

120 ARD90 26.3 4.5 33.8 2.4 0.306 3 6

ARD70 15.6 3.2 20.4 2.0 0.356 3 6

ARD50 10.6 2.3 13.7 1.6 0.41 3 6

AT 13.9 1.2 13.8 1.3 0.957 3 6

Cycle length of 80, 100, and 120 ms (first column) under basal conditions (basal) and after application of 1 µM CGS 21680.
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living animal in telemetric ECG measurements. We think it 
is of special relevance that a�er A2A-AR stimulation, we could 
detect an enhanced incidence of arrhythmias in living animals, 
indicating that the proarrhythmic e�ect of A2A-AR expression 
might be so strong that vagal or other neural compensatory 
mechanisms cannot overcome it and we predict the same might 
apply for humans.

An explanation of the higher beating rates noted in right atrial 
preparations of 30-week-old A2A-TG (Boknik et al., 2018) and 
also in freely moving mice might be an increased basal level of 
cAMP production due to the overexpressed A2A-AR.

Mouse models with cardiac-restricted overexpression of the 
human A2A-AR have also been reported before by others. In an 
earlier work, the group of Feldman studied in a mouse model with 
constitutive overexpression of the A2A-AR the functional interaction 
of coexpression of A1- with A2A-ARs in vivo (Chan  et  al., 2008). 
Later, they studied the protective role of A2A-AR by inducible 
overexpression of the A2A-AR in the mouse heart in a pressure 
overload model (aortic banding: Hamad et al., 2012) or the e�ect 
of the A2A-AR on adriamycin-induced cardiotoxicity (Hamad et 
al., 2010). However, we used our model to begin a �rst study on a 
putative proarrhythmic role of A2A-AR overexpression in the mouse 
heart (Boknik et al., 2018).

�e question then arises whether this model has any (patho)-
physiological relevance. For example, A2A-AR agonists like 
regadenoson are clinically used to detect latent ischemia in 
patients (Cerqueira et al., 2008). Hence, it is conceivable that 
A2A-AR activation could lead to arrhythmias at least in those 
patients who already have higher levels of A2A-ARs. Recently, 
A2A-AR stimulation in isolated human atrial myocytes has 
been shown to promote irregularities in calcium transients 
like spontaneous calcium ion waves (Molina et al., 2016). 
Spontaneous Ca2+ release has been reported to initiate atrial 
�brillation in human atrial myocytes (Hove-Madsen et al., 2004; 
Llach et al., 2011b; Voigt et al., 2012).

From a mechanistic point of view, our study adds to our 
knowledge. In patients, it is usually only possible to describe which 
gene alterations are found in e.g. atrial �brillation. For instance, 
there is a wealth of clinical information that the expression of 
A2A-ARs is increased in arrhythmias, but likewise, the expression 
of angiotensin II-receptor, IP3-receptors, opioid receptors, and 
5-HT4-receptors was reported by others to be elevated (Goette et 
al., 2000; Yamda et al., 2001; Lendeckel et al., 2005; Boldt et al., 
2006; Gassanov et al., 2006; Lezoualc’h et al., 2007). Hence, it is 
not clear which of the overexpressed receptors in human atrium 
is more relevant for the genesis of arrhythmias. However, the 

FIGURE 10 | A2A-AR expression per se can increase heart rate in vivo. Heart rate (HR) of freely moving WT (n = 8) and A2A-TG mice (n = 5) was telemetrically 

recorded within 24 h (A). Mean HR is plotted in hourly intervals. ★p < 0.05 vs. WT. #p < 0.05 analysis of variances of the whole curves between A2A-TG and WT. 

Under resting conditions, ECGs (Ctr) were telemetrically recorded, and 1 h after CGS 21680 injection (40 µg kg−1), all arrhythmic events were assessed in the 

following hour. CGS 21680 increased under these conditions the heart rate in A2A-TG but not WT mice (B). Moreover, CGS 21680 injection was accompanied by a 

higher incidence of ventricular extrasystoles in A2A-TG than in WT (C). #p < 0.05 vs. Ctr, ★p < 0.05 vs. WT.
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present work clearly indicates that A2A-AR overexpression alone 
is able to increase the propensity to arrhythmias.

Many years ago, we reported an increased A2A-AR mRNA 
expression in failing human ventricles compared to nonfailing 
ventricles (Stein et al., 1998). �erefore, we speculate that A2A-AR 
may contribute to arrhythmias in end stage human heart failure. 
Another open question is whether the increase in A2A-ARs is 
the cause or the results of atrial �brillation in humans. A2A-AR 
activation is used in the clinic to assess the vasodilatory capability 
of coronary arteries for nuclear magnetic studies (Palani et al., 
2011). Moreover, adenosine is used to treat supraventricular 
arrhythmias. Some of the untoward e�ects of adenosine in the 
context (�ushing, hypotension) have been attributed to the 
action of vasodilatory A2A-ARs (review: Szentmiklosi et al., 
2015). Finally, istradefylline and tozadenant, A2A-AR antagonists, 
are new compounds used in patients to treat Morbus Parkinson 
(Hauser et al., 2014; Schapira et al., 2014; Adams et al., 2015). 
�eir potential cardiac side e�ects have been partially studied in 

healthy volunteers (Wang et al., 2013). Other A2A-AR antagonists 
have been studied clinically for treatment of melanoma (Adams 
et al., 2015). One could speculate from our data that these 
compounds might exert antiarrhythmic e�ects in some patients.

CONCLUSIONS

Based on our recent work (Boknik et al., 2018), we further 
characterized a transgenic mouse with cardiomyocyte-speci�c 
overexpression of the A2A-AR. It is noteworthy that the A2A-AR 
shows a Janus-faced behavior: protection against ischemic 
damage but induction of cardiac arrhythmias. Our main new 
�nding is that this overexpression alone and receptor activation by 
A2A-AR agonists increase the occurrence of cardiac arrhythmias 
in the mammalian heart. It is tempting to speculate that A2A-AR 
antagonists might be useful antiarrhythmic agents in selected 
patients in the future.

FIGURE 11 | Possible signaling pathways through A2A-ARs in cardiac myocytes facilitating arrhythmias. Heptahelical A2A-ARs are activated physiologically by 

adenosine. Moreover, the more selective agonist CGS 21680 activates the A2A-ARs, whereas ZM 241385 will block the receptor. Activation of A2A-ARs leads 

via stimulatory G-proteins (Gs) to the increased activation of adenylyl cyclase (AC) and generation of cAMP. This activates the cAMP-dependent protein kinase 

(PKA). PKA is known to phosphorylate the inhibitory subunit of troponin (TnI) to hasten relaxation and phospholamban (PLB), which de-inhibits the activity of the 

sarcoplasmic reticulum ATPase (SERCA). We speculate that under these conditions A2A-AR activation will also lead to the phosphorylation of the cardiac RYR2 and 

the L-type calcium channel (LTCC). Opening of the RYR2 releases Ca2+ that can bind to troponin C and initiate muscle contractions. Typically, increased opening 

of RYR2 would lead to high concentrations of Ca2+in the vicinity of the sarcolemmal sodium calcium exchanger (NCX). This will lead to loss of Ca2+from the cell and 

sodium influx. As the NCX is electrogenic, this will lead to depolarization of the cell to delayed afterdepolarizations (DAD) and subsequent arrhythmias. Moreover, 

enhanced function of sodium channels (Na+) or through LTCC would facilitate early afterdepolarizations (EAD). Both EAD and DAD are known to lead to mechanical 

arrhythmias in the mammalian heart. In addition, there is growing evidence for the involvement of AKT and ERK not only in protection from hypoxia but also on an 

arrhythmogenic effect.
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