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Evidence for Domesticated and Wild
Populations of Saccharomyces cerevisiae
Justin C. Fay

*
, Joseph A. Benavides

Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America

Saccharomyces cerevisiae is predominantly found in association with human activities, particularly the production of
alcoholic beverages. S. paradoxus, the closest known relative of S. cerevisiae, is commonly found on exudates and bark
of deciduous trees and in associated soils. This has lead to the idea that S. cerevisiae is a domesticated species,
specialized for the fermentation of alcoholic beverages, and isolates of S. cerevisiae from other sources simply
represent migrants from these fermentations. We have surveyed DNA sequence diversity at five loci in 81 strains of S.
cerevisiae that were isolated from a variety of human and natural fermentations as well as sources unrelated to
alcoholic beverage production, such as tree exudates and immunocompromised patients. Diversity within vineyard
strains and within saké strains is low, consistent with their status as domesticated stocks. The oldest lineages and the
majority of variation are found in strains from sources unrelated to wine production. We propose a model whereby two
specialized breeds of S. cerevisiae have been created, one for the production of grape wine and one for the production
of saké wine. We estimate that these two breeds have remained isolated from one another for thousands of years,
consistent with the earliest archeological evidence for winemaking. We conclude that although there are clearly strains
of S. cerevisiae specialized for the production of alcoholic beverages, these have been derived from natural populations
unassociated with alcoholic beverage production, rather than the opposite.

Citation: Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1(1): e5.

Introduction

Sensu strictu species of the genus Saccharomyces, as their
scientific name implies, are yeast specialized for growth on
sugar. In comparison to other yeasts, Saccharomyces favor
aerobic fermentation over respiration in the presence of high
concentrations of sugar [1]. Fermentation results in the
production of ethanol and a competitive advantage, as these
yeasts are tolerant to high concentrations of ethanol [2]. One
of these species, S. cerevisiae, has served as one of the best
model systems for understanding the eukaryotic cell and has
served as the dominant species for the production of beer,
bread, and wine [3]. However, it is worth noting that strains of
S. bayanus are sometimes used for wine production and strains
of S. pastorianus, hybrids between S. cerevisiae and S. bayanus, are
used to brew lagers [4].

Since the discovery of yeast as the cause of fermentation
[5], numerous strains of S. cerevisiae have been isolated, the
majority of which have been found associated with the
production of alcoholic beverages [6–9]. In many instances,
the strains are clearly specialized for use in the lab [10] and
the production of wine [11], beer [12], and bread [13]. This
has lead to the common view that S. cerevisiae is a
domesticated species that has continuously evolved in
association with the production of alcoholic beverages
[3,6,14]. Under this model, the occasional strains of S. cerevisiae
found in nature are thought to be migrants from human-
associated fermentations.

The first use of S. cerevisiae is likely to have been for the
production of wine, rather then bread or beer [3,15]. S.
cerevisiae has been associated with winemaking since 3150 BC,
based on extraction of DNA from ancient wine containers
[16], and the earliest evidence for winemaking is to 7000 BC
from the molecular analysis of pottery jars found in China
[17]. The idea that S. cerevisiae was first used to produce wine

rather than beer or bread is further supported by the fact
that the production of wine requires no inoculum of yeast [7].
In addition, strains associated with whisky, ale, and bakeries
show amplified fragment length polymorphism (AFLP)
profiles similar to various wine strains [18].
To examine the relationship between vineyard and non-

vineyard strains of S. cerevisiae and to understand their
evolutionary origin, we have surveyed DNA sequence
variation in 81 strains isolated from geographically and
ecologically diverse sources (Table 1). These include 60 strains
associated with human fermentations, predominantly from
vineyards, and 19 strains not associated with human
fermentations, predominantly from immunocompromised
patients and tree exudates.

Results/ Discussion

DNA sequence variation was examined in 81 yeast strains at
five unlinked loci (see Materials and Methods). A total of 184
polymorphic sites were found. Figure 1 shows all of the
variable sites along with a neighbor-joining tree constructed
from these sites. There are two immediately striking features
of the data. First, there are high levels of linkage disequili-
brium between sites found in unlinked genes. This linkage
disequilibrium cannot be explained by a lack of recombina-
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tion because the four gamete test [19] shows evidence of
recombination both within and between loci. The high level
of linkage disequilibrium is most likely caused by population
subdivision and suggests that the data from these five genes
provide a genomic view of population differentiation among
these strains. Second, there are significant levels of popula-
tion differentiation based on the source from which the
samples were isolated (see Materials and Methods). A number
of strains are worth noting. Y9 is very closely related to the
saké strains and was obtained from Indonesian ragi, or yeast
cake, which like saké is made by fermenting koji, a mixture of
rice and the mold Aspergillus oryzae [20]. Y3 and Y12 were
isolated from African palm wine, made from fermenting sap

Table 1. Strains Studied and Their Source

ID Strain Location Source Date

B1 Lalvin 71B France Vineyard (commercial) NA

B2 Levuline ALS NA Vineyard (commercial) NA

B3 Zymaflore F15 France Vineyard (commercial) NA

B4 Lalvin CY-3079 NA Vineyard (commercial) NA

B5 Lalvin BM45 NA Vineyard (commercial) NA

B6 Zymalfore VL3 France Vineyard (commercial) NA

CDB Côte des Blancs Germany Vineyard (commercial) NA

I14 Italy Vineyard (soil) 2002

K1 Kyokai no. 1 Japan Saké 1906

K5 Kyokai no. 5 Japan Saké 1925

K9 Kyokai no. 9 Japan Saké 1950s

K10 Kyokai no. 10 Japan Saké 1952

K11 Awamori-1 Japan Saké 1981

K12 AKU-4011 Japan Saké (Shochu) NA

K13 NRIC 23 Japan Saké NA

K14 NRIC 1413 Japan Saké NA

K15 NRIC 1685 Japan Saké NA

M1 Italy Vineyard 1993

M2 Italy Vineyard 1993

M3 Italy Vineyard 1993

M4 Italy Vineyard 1993

M5 Italy Vineyard 1993

M6 Italy Vineyard 1993

M7 Italy Vineyard 1993

M8 Italy Vineyard 1993

M9 Italy Vineyard 1993

M11 Italy Vineyard 1993

M12 Italy Vineyard 1993

M13 Italy Vineyard 1993

M15 Italy Vineyard 1993

M17 Italy Vineyard NA

M19 Italy Vineyard NA

M20 Italy Vineyard NA

M21 Italy Vineyard NA

M22 Italy Vineyard NA

M24 Italy Vineyard NA

M29 Italy Vineyard 1994

M30 Italy Vineyard 1994

M31 Italy Vineyard 1994

M32 Italy Vineyard NA

M33 Italy Vineyard NA

M34 Italy Vineyard NA

PR Pasteur Red France Vineyard (commercial) NA

S288C California, United States Nature (fig) 1937

SB S. boulardii Indonesia Nature (lychee fruit) NA

UC1 UCD 51 France Vineyard 1948

UC2 UCD 175 Sicily, Italy Vineyard 1953

UC4 UCD 529 Germany Vineyard Pre-1958

UC5 UCD 612 Kurashi, Japan Saké Pre-1974
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Synopsis

The budding yeast, Saccharomyces cerevisiae, has been used to
make bread, beer, and wine for thousands of years. To investigate
the evolutionary history of this species, the authors examined DNA
sequence variation from a large collection of yeast strains isolated
from a variety of sources, including saké wine, grape wine, clinical
samples, tree exudates, and fruit. The DNA sequence diversity
among these strains shows that both saké and grape wine strains
form two distinct groups that have remained isolated for a
substantial period of time. The data suggest that S. cerevisiae
consists of both ‘‘wild’’ and ‘‘domesticated’’ populations and that at
least two independent domestication events lead to extant grape
wine and saké wine strains.



of the oil palm, Elaeis guineensis. Y5 was isolated from African
bili wine.

If strains of S. cerevisiae that are not associated with human
fermentations have escaped their manmade environments,
their progenitors should be closely related to strains isolated
from human fermentations. Two aspects of the data indicate
this is not the case. First, the oldest lineages at the root of the
tree, that are most similar to S. paradoxus, were isolated from
tree exudates in North America and Africa, or from
immunocompromised patients. Although one of the clinical
samples is most closely related to vineyard strains, the
majority of clinical isolates are not closely related to strains
obtained from human-associated fermentations. Second,
strains from grape wine and saké wine production contain
significantly less variation, as measured by the average
number of pairwise differences between strains [21], than is
found in natural and clinical isolates, which contain just as
much variation as is found in the total sample (Table 2).
However, diversity in strains associated with human fermen-
tations other than grape and saké wine production is not
reduced compared to the clinical and natural isolates. The
four strains associated with fermentations, three of which
were isolated from traditional African wines, show the
greatest diversity and represent some of the oldest lineages.
This raises the possibility that S. cerevisiae was domesticated in
Africa and that most vineyard and saké strains were derived

from a domesticated African strain. If so, one would expect
clinical and natural isolates to be more closely related to
strains isolated from vineyards, which have a cosmopolitan
distribution compared to strains from traditional African
wine. Clinical and natural isolates, however, show no obvious
relationship to strains associated with manmade fermenta-
tions.
Although the genealogical relationships among strains of S.

cerevisiae show that the species as a whole is not domesticated,
the data do support the hypothesis that some strains are
domesticated. Based on the low levels of diversity within
vineyard and saké strains and the clear separation of these
two groups, we propose two domestication events, one for
yeast used to produce grape wine and one for yeast used to
produce rice wine. When might these events have occurred?
Domestication would have occurred after the divergence
between the vineyard and saké strains but before differ-
entiation among the vineyard and among the saké strains.
These two time points can be roughly estimated by the
average number of differences per synonymous site between
the saké and vineyard strains, 1.28 3 10�2, and the average
number of differences among the vineyard, 2.92 3 10�3, and
among the saké strains, 4.06310�3, respectively (see Materials
and Methods). Assuming a point mutation rate of 1.84310�10

per base pair (bp) per generation and 2,920 generations per
year, the estimate for the divergence time between the two

Table 1. Continued

ID Strain Location Source Date

UC6 UCD 765 Australia Vineyard NA

UC7 UCD 781 Switzerland Vineyard NA

UC8 UCD 820 South Africa Vineyard Pre-1988

UC9 UCD 762 Italy Vineyard Pre-1984

UC10 UCD 2120 California, United States Vineyard 1998

Y1 NRRL y390 NA Nature (mushroom) Pre-1940

Y3 NRRL y1438 Africa Fermentation (palm wine) Pre-1946

Y4 NRRL y1532 Indonesia Nature (fruit) Pre-1947

Y5 NRRL y1546 West Africa Fermentation (bili wine) Pre-1947

Y6 NRRL yb1952 French Guiana NA Pre-1950

Y8 NRRL y2411 Turkey Vineyard Pre-1957

Y9 NRRL y5997 Indonesia Fermentation (ragi) Pre-1962

Y10 NRRL y7567 Philippines Fermentation (coconut) Pre-1973

Y12 NRRL y12633 Ivory Coast Fermentation (palm wine) Pre-1981

YJM145 seg. YJM128 Missouri, United States Clinical Pre-1989

YJM269 NA Fermentation (apple juice) 1953

YJM270 Europe Vineyard Pre-1957

YJM280 seg. YJM273 United States Clinical Pre-1994

YJM308 United States Clinical Pre-1994

YJM320 seg. YJM309 United States Clinical Pre-1994

YJM326 seg. YJM310 United States Clinical

YJM339 seg. YJM311 United States Clinical Pre-1994

YJM421 seg. YJM419 United States Clinical Pre-1994

YJM434 Europe Clinical

YJM436 Europe Clinical Pre-1994

YJM440 United States Clinical Pre-1994

YJM454 United States Clinical Pre-1994

YJM627 seg. Y55 France NA

YJM1129 NRRL y-567 NA Fermentation (distillery) Pre-1912

YPS1000 New Jersey, United States Nature (oak exudate) 2000

YPS1009 New Jersey, United States Nature (oak exudate) 2000

YPS163 Pennsylvania, United States Nature (oak exudate) 1999

NA, not available; seg., segregant.

DOI: 10.1371/journal.pgen.0010005.t001
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groups is approximately 11,900 years ago, and within the
vineyard group and saké group is approximately 2,700 and
approximately 3,800 years ago, respectively (see Materials and
Methods). These dates could easily be an order of magnitude

older if the number of generations per year is one tenth that
obtained assuming an exponential growth rate. Interestingly,
the time period is consistent with the earliest archeological
evidence for winemaking, approximately 9,000 years ago [17].

Figure 1. A Neighbor-Joining Tree Shows Differentiation among Yeast Strains Isolated from Different Sources

The tree was constructed from polymorphic sites found at five unlinked loci and was rooted using S. paradoxus. Strains are colored according to the
substrates from which they were isolated. The right side shows color-coded polymorphism data with minor alleles shown in black, major alleles shown
in white, missing data shown in light gray, and heterozygous sites shown in orange.
DOI: 10.1371/journal.pgen.0010005.g001
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It should be noted that proof that these strains are
domesticated requires evidence that they have acquired
characteristics advantageous to humans through human
activity, whether intentional or not. The alternative hypoth-
esis to domestication is that initial fermentations selected
those natural isolates most amenable to alcoholic beverage
production and that these initial isolates have been used by
humans ever since.

The source population for both the saké and grape wine
strains is not clear, but is likely similar to the source
population for the clinical strains. Insects, particularly fruit
flies, present one possibility [22,23]. Numerous strains of S.
cerevisiae and S. paradoxus have been isolated from oak tree
exudates in North America [24], and tree exudates are often
visited by insects [22]. Three of these oak tree isolates were
included in our study and are among the most diverse of the
strains (Figure 1). Given that S. paradoxus is most often found
in association with tree exudates from both Europe [25,26]
and North America [24], strains of S. cerevisiae isolated from
tree exudates may be truly ‘‘wild’’ yeast. Whether the yeast
isolated from African palm wine is domesticated remains an
open question, although it is worth noting that African palm
wine is made by collecting sap tapped from oil palm trees and
fermentation occurs naturally without the addition of yeast.

Materials and Methods

Strains were obtained from a number of individuals and stock
centers. B1–B6 were obtained from B. Dunn; I14 from J. Fay; CDB and
PR from Red Star, Berkeley, California, United States; K1–K15 from
N. Goto-Yamamoto and the NODAI culture collection; M1–M34 from

R. Mortimer; SB from Whole Foods, Berkeley, California, United
States; UC1–UC10 from the University of California, Davis stock
center; Y1–Y12 from C. Kurtzman and the ARS culture collection;
YJM145–YJM1129 from J. McCusker; and YPS163–YPS1009 were from
the collection of P. Sniegowski.

Five genes, CCA1, CYT1, MLS1, PDR10, and ZDS2, and their
promoters were sequenced in 81 strains (see Table 1). These genes
were randomly chosen from all divergently transcribed intergenic
sequences upstream of functionally annotated genes with clear
orthologs in S. paradoxus. The sequenced regions include 3,671 bp
of coding sequence and 3,561 bp of noncoding sequence. For each
gene, both strands of purified PCR products were sequenced using
Big Dye (Perkin Elmer, Boston, Massachusetts, United States)
termination reactions. Sequence variation was identified using phred,
phrap, and consed [27]. For construction of the neighbor-joining
tree, a single allele was used from strains with heterozygous sites. The
allele was randomly chosen from the two haplotypes inferred by
PHASE [28].

Sequence data were analyzed using DNASP [29]. Population
subdivision was tested by a permutations test according to the source
categories from which each strain was obtained (Table 1). The average
time since divergence of two strains was obtained by k¼ 2lt, where k
is the substitution rate, l is the mutation rate per bp and t is the time
in generations. The mutation rate has been estimated at CAN1 and
SUP3 at 2.25 3 10�10 per base pair per generation [30]. Given that
82% of spontaneous mutations are single base substitutions [31], we
estimate the point mutation rate is 1.84 3 10�10 per bp per
generation. S. cerevisiae can reproduce in 90 min, or 16 generations
per day. However, even under optimal laboratory conditions the
number of generations over a 24-h period is typically much less. To
obtain divergence time in years rather than generations, we assumed
S. cerevisiae can go through a maximum of eight generations per day
or 2,920 generations per year.

Supporting Information
Accession Numbers

The sequences of the genes CCA1, CYT1, MLS1, PDR10, and ZDS2 that
are discussed in this paper have been deposited into GenBank (http://
www.ncbi.nlm.nih.gov/Genbank/) as accession numbers AY942206–
AY942556.
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