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Objective. Several confirmed genetic susceptibil-
ity loci for lupus have been described. To date, no clear
evidence for genetic epistasis in lupus has been estab-
lished. The aim of this study was to test for gene–gene

interactions in a number of known lupus susceptibility
loci.

Methods. Eighteen single-nucleotide polymor-
phisms tagging independent and confirmed lupus sus-
ceptibility loci were genotyped in a set of 4,248 patients
with lupus and 3,818 normal healthy control subjects of
European descent. Epistasis was tested by a 2-step
approach using both parametric and nonparametric
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methods. The false discovery rate (FDR) method was
used to correct for multiple testing.

Results. We detected and confirmed gene–gene
interactions between the HLA region and CTLA4, IRF5,
and ITGAM and between PDCD1 and IL21 in patients
with lupus. The most significant interaction detected by
parametric analysis was between rs3131379 in the HLA
region and rs231775 in CTLA4 (interaction odds ratio
1.19, Z � 3.95, P � 7.8 � 10�5 [FDR <0.05], P for
multifactor dimensionality reduction � 5.9 � 10�45).
Importantly, our data suggest that in patients with
lupus, the presence of the HLA lupus risk alleles in
rs1270942 and rs3131379 increases the odds of also
carrying the lupus risk allele in IRF5 (rs2070197) by
17% and 16%, respectively (P � 0.0028 and P � 0.0047,
respectively).

Conclusion. We provide evidence for gene–gene
epistasis in systemic lupus erythematosus. These find-
ings support a role for genetic interaction contributing
to the complexity of lupus heritability.

Recent candidate gene and genome-wide associ-
ation studies led to the discovery and validation of
multiple susceptibility loci for systemic lupus erythema-
tosus (SLE) (1). However, the heritability of lupus
cannot be completely explained by the susceptibility loci
already discovered. We suggest that the missing herita-
bility in lupus can be explained by 3 potential mecha-

nisms: a heritable epigenetic component, common and
rare disease susceptibility variants yet to be discovered,
and gene–gene interactions involving known and per-
haps yet to be discovered genetic variants for disease
susceptibility. The data regarding gene–gene interaction
(epistasis) in lupus (2,3) are very limited and controver-
sial. Consequently, it is widely accepted that the known
lupus susceptibility loci operate additively rather than
epistatically to increase the risk of lupus.

Herein, we sought to examine gene–gene inter-
actions in some of the previously established and con-
firmed susceptibility loci for lupus, using a large set of
patients with lupus and control subjects. We identified
and confirmed 6 novel gene–gene interactions for lupus,
using both parametric and nonparametric statistical
methods.

PATIENTS AND METHODS

Study participants and genotyping. A total of 4,248
patients with lupus and 3,818 normal healthy control subjects
of European descent were included in this study. Eighteen
single-nucleotide polymorphisms (SNPs) representing previ-
ously confirmed and independent autosomal lupus susceptibil-
ity loci were genotyped (Table 1). A summary of the allelic
association results in these loci, based on the patients and
controls included in this study, is shown in Table 2.

Two tag SNPs in the HLA region were genotyped.
These 2 SNPs were selected because they were recently shown

Table 1. Previously reported lupus susceptibility loci analyzed for gene–gene interaction in this study*

Gene/region Chromosome
Associated

SNP
Risk
allele OR† Reference

BANK1 4q24 rs10516487 G 1.38 26
C8orf13-BLK 8p22–23 rs13277113 A 1.39 27
CTLA4 2q33 rs231775 G 1.23 28
FCGR2A 1q23 rs1801274 C 1.35 29
HLA region 1 6p21.33 rs3131379 A 2.36 4
HLA region 2 6p21.32 rs1270942 G 2.35 4
IL21 4q26 rs907715 G 1.29 30
IRF5 7q32 rs2070197 C 1.85‡ 5
IRF5 7q32 rs729302 A 1.39‡ 5
IRF5 7q32 rs10954213 A 1.25‡ 5
ITGAM 16p11.2 rs1143679 A 1.78 31
KIAA1542 11p15.5 rs4963128 C 1.28 4
MBL 10q11 rs1800450 A 1.41 32
PDCD1 2q37.3 rs11568821 A 2.85 33
PTPN22 1p13 rs2476601 A 1.53 34
PXK 3p14.3 rs6445975 C 1.25 4
STAT4 2q32.2 rs7574865 T 1.55 35
TNFSF4 1q25 rs2205960 T 1.28 36

* SNP � single-nucleotide polymorphism; OR � odds ratio.
† Patients with systemic lupus erythematosus versus healthy control subjects, as reported in previous
studies.
‡ Transmitted:untransmitted ratio, based on trio and family studies.
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to have independent genetic effects, by logistic regression
analysis of a large number of lupus-associated SNPs in the
HLA region (4). Likewise, 3 tag SNPs representing indepen-
dent genetic susceptibility effects in IRF5 were genotyped (5).
All lupus patients fulfilled the American College of Rheuma-
tology criteria for the classification of SLE (6,7). Genotyping
was performed using an Illumina custom bead system on an
iScan instrument as part of a large lupus candidate gene
association study, to reduce the cost of genotyping and maxi-
mize sample size. We genotyped 347 ancestry-informative
markers in all of the samples included in this study (8–11).

Individuals with a genotype success rate of �90% (361
samples) were excluded from the analysis. The remaining
samples were then evaluated for duplicates or related individ-
uals, and one individual from each pair was removed (117
samples) if the proportion of alleles shared identical by descent
was �0.4. Samples were assessed for mismatches between the
reported sex of the individual and his or her genetic data. One
hundred twelve samples were removed from the analysis
because they did not meet the following criteria: an assigned
male subject was required to have chromosome X heterozy-
gosity of �10% and to be heterozygous at rs2557524, and an
assigned female subject was required to have chromosome X
heterozygosity of �10% and to be homozygous at rs2557524.
The SNP rs2557524 is mapped on a region on chromosomes X
and Y that is identical except for this one base. Because of this
one-base difference, male subjects generate a heterozygous
genotype (due to the presence of both X and Y chromosomes),
and female subjects generate a homozygous genotype (due to
the presence of only X chromosomes).

Next, samples with increased heterozygosity (�5 SDs
from the mean) were removed from the analysis (n � 5).
Finally, 42 genetic outliers, as determined by principal compo-
nents analysis, were removed from further analysis. An addi-
tional 2 outlier samples identified by admixture proportions

calculated using AdmixMap were also removed. After the
quality control measures detailed above were applied, samples
from the following individuals were included in our analysis:
3,936 lupus patients of European descent (3,592 women and
344 men), and 3,491 healthy control subjects of European
descent (2,340 women and 1,151 men).

Detection of gene–gene interaction. Testing for gene–
gene interaction was performed sequentially, using 2 indepen-
dent statistical approaches. First, a parametric analysis for
epistasis was applied as implemented in Plink (12). Epistatic
interactions detected using Plink were validated using allelic
2 � 2 tables among lupus patients to calculate interaction odds
ratios (ORs) and identify the specific alleles in each SNP pair
that contributed to the interaction detected. Allelic 2 � 2
tables (Figure 1) were obtained from 3 � 3 genotypic tables
(Figure 2) for each interaction tested. The allelic 2 � 2 tables
are based on 4n allele counts, where n is the total number of
individuals, with each individual contributing a total of 4
independent alleles. Z scores were calculated as the natural
logarithm of the OR divided by the square root of the variance,
and associated P values were assigned from the Z scores for
each interaction. Chi-square statistics for pairwise interaction
were calculated as were chi-square–derived P values. Second, a
pairwise nonparametric epistasis test was applied utilizing
multifactor dimensionality reduction (MDR) analysis (13,14).
The false discovery rate (FDR) method as described by
Benjamini and Hochberg was used to correct for multiple
comparisons (15,16).

RESULTS

To test for gene–gene interactions within the
known lupus susceptibility loci examined, we performed
a 2-step epistasis analysis using a parametric approach,

Table 2. Genetic association analysis for each locus included in the gene–gene interaction analysis, using
patients and controls included in this study*

Gene SNP
Associated

allele

Frequency

P OR (95% CI)Patients Controls

BANK1 rs10516487 G 0.738 0.693 1.66 � 10�9 1.25 (1.16–1.34)
C8orf13-BLK rs13277113 A 0.291 0.238 6.73 � 10�13 1.32 (1.22–1.42)
CTLA4 rs231775 G 0.361 0.347 0.074 1.06 (0.99–1.14)
FCGR2A rs1801274 G 0.541 0.508 6.59 � 10�5 1.14 (1.07–1.22)
HLA region 1 rs3131379 A 0.177 0.094 1.04 � 10�47 2.06 (1.87–2.27)
HLA region 2 rs1270942 G 0.177 0.094 1.45 � 10�48 2.08 (1.88–2.29)
IL21 rs907715 G 0.686 0.656 8.78 � 10�5 1.15 (1.07–1.23)
IRF5 rs2070197 G 0.175 0.104 3.73 � 10�35 1.83 (1.66–2.01)
IRF5 rs729302 A 0.743 0.678 1.70 � 10�18 1.38 (1.28–1.48)
IRF5 rs10954213 A 0.680 0.625 2.53 � 10�12 1.28 (1.19–1.36)
ITGAM rs1143679 A 0.194 0.126 5.30 � 10�29 1.67 (1.52–1.83)
KIAA1542 rs4963128 G 0.708 0.667 1.13 � 10�7 1.21 (1.13–1.30)
MBL rs1800450 A 0.145 0.139 0.305 1.05 (0.96–1.15)
PDCD1 rs11568821 G 0.888 0.882 0.213 1.07 (0.96–1.18)
PTPN22 rs2476601 A 0.109 0.081 4.66 � 10�9 1.40 (1.25–1.56)
PXK rs6445975 C 0.293 0.264 0.000105 1.15 (1.07–1.24)
STAT4 rs7574865 A 0.307 0.225 1.60 � 10�28 1.53 (1.42–1.65)
TNFSF4 rs2205960 A 0.269 0.214 6.89 � 10�15 1.35 (1.25–1.46)

* SNP � single-nucleotide polymorphism; OR � odds ratio; 95% CI � 95% confidence interval.
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followed by a nonparametric analysis. This 2-step ap-
proach has the strength of examining and confirming
epistatic interactions using 2 independent statistical

methods. This is necessary, because the best methodol-
ogy for detecting gene–gene interaction remains contro-
versial.

We first used a case-only pairwise epistasis ana-
lysis implemented in Plink. The case-only analysis was
selected because it was shown to be a more powerful test
for epistasis compared with case–control analysis
(17,18). Interactions with an FDR of �0.05 were con-
sidered established, and those with an FDR of �0.05

Figure 2. Genotypic 3 � 3 tables used to generate the allelic 2 � 2
tables shown in Figure 1.

Figure 1. Allelic 2 � 2 tables used to calculate interaction odds ratios
and identify the specific alleles in each single-nucleotide polymorphism
pair that contributed to the interaction detected.
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and �0.25 were considered suggestive interactions that
require confirmation. A high FDR was used in the initial
screening for suggestive interactions to avoid excluding
true gene–gene interactions from confirmatory analyses.

We identified 6 gene–gene interactions using
parametric analysis (Table 3). The 2 most significant
interactions were between CTLA4 and the 2 SNPs
representing 2 independent genetic effects within the
HLA region (FDR �0.05). The detected epistasis signal
between the risk alleles in CTLA4 and rs3131379 (HLA
region 1) and CTLA4 and rs1270942 (HLA region 2)
showed interaction ORs of 1.19 and 1.18, respectively
(Z � 3.95 [P � 7.8 � 10�5] and Z � 3.88 [P � 1.0 �
10�4], respectively). These data indicated that in lupus
patients, the presence of the lupus risk allele in CTLA4
increases the odds of carrying the risk allele in either of
the HLA lupus-associated loci by �20%, and vice versa
(Figure 1). Four additional suggestive gene–gene inter-
actions (FDR �0.25) were observed between the HLA

region and IRF5, the HLA region and ITGAM, and IL21
and PDCD1 (Table 3). The presence of the risk allele in
the 2 HLA lupus-associated loci examined (rs1270942
and rs3131379) increased the odds of carrying the lupus
risk allele in IRF5 (rs2070197) by 17% and 16%, respec-
tively, and vice versa (P � 0.0028 and P � 0.0047,
respectively). Interestingly, our data suggested that the
presence of the risk allele in ITGAM increases the odds
of carrying the protective allele in rs3131379 (HLA) by
16% (P � 0.0075).

Next, and in order to confirm the 2 gene–gene
interactions that we established using parametric tests,
and to test whether the other 4 suggestive gene–gene
interactions can be established, we applied MDR analy-
sis to the interactions initially identified using paramet-
ric analysis. The MDR is a nonparametric test for
nonlinear epistasis. A pairwise MDR analysis was ap-
plied to test the specific interactions detected using
parametric analysis. It should be noted, however, that

Table 3. Gene–gene interaction results in 18 known independent lupus susceptibility loci, using logistic
regression analysis implemented in Plink*

Locus Polymorphism
Risk
allele

Interacting
alleles

Interaction
OR

Z
score

P for Z
score �2 P for �2

CTLA4 rs231775 (A/G) G
HLA rs3131379 (A/G) A GXA 1.19 3.95 7.8 � 10�5 15.19 9.7 � 10�5

CTLA4 rs231775 (A/G) G
HLA rs1270942 (A/G) G GXG 1.18 3.88 1.0 � 10�4 14.87 1.0 � 10�4

IRF5 rs2070197 (A/G) G
HLA rs1270942 (A/G) G GXG 1.17 2.99 0.0028 8.93 0.0028
IRF5 rs2070197 (A/G) G
HLA rs3131379 (A/G) A GXA 1.16 2.83 0.0047 7.98 0.0047
HLA rs3131379 (A/G) A
ITGAM rs1143679 (A/G) A GXA 1.16 2.67 0.0075 6.93 0.0085
IL21 rs907715 (A/G) G
PDCD1 rs11568821 (A/G) A AXA 1.16 2.64 0.0084 6.80 0.0091

* Only interactions with a false discovery rate of �0.25 are shown. Z scores were calculated as the natural
logarithm of the odds ratio (OR) divided by the square root of the variance.

Table 4. Multifactor dimensionality reduction (MDR) analysis for pairwise interactions detected using
parametric analysis in lupus patients and controls*

Interaction

Cross-
validation

consistency
Balanced
accuracy �2 P, 3df

CTLA4 (rs231775) � HLA (rs3131379) 10/10 0.5737 208.57 5.9 � 10�45

CTLA4 (rs231775) � HLA (rs1270942) 10/10 0.5744 212.76 7.4 � 10�46

HLA (rs1270942) � IRF5 (rs2070197) 10/10 0.5949 270.60 2.3 � 10�58

HLA (rs3131379) � IRF5 (rs2070197) 10/10 0.5946 268.81 5.6 � 10�58

HLA (rs3131379) � ITGAM (rs1143679) 10/10 0.5985 287.71 4.6 � 10�62

PDCD1 (rs11568821) � IL21 (rs907715) 10/10 0.5235 17.44 5.7 � 10�4

* Cross-validation consistency reflects the number of times MDR analysis identified the same model as the
data were divided into different segments. Balanced accuracy is defined as (sensitivity � specificity)/2,
where sensitivity � true positives/(true positives � false negatives), and specificity � true negatives/(false
positives � true negatives). This gives an accuracy estimate that is not biased by the larger class (37).
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results obtained using the MDR nonparametric analysis
reflect a joint effect consisting of the main genetic
association effect in the loci examined and the interac-
tion effect. These results are presented in Table 4 (also
see Supplementary Table 1 and Supplementary Figure
1, available on the Arthritis & Rheumatism Web site at
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)
1529-0131).

DISCUSSION

The nature and very existence of genetic epistasis
in lupus have been elusive. We combined the strengths
of 2 independent approaches to test for genetic epistasis
in lupus and identified several novel gene–gene interac-
tions, using a large sample derived from individuals of
European descent. The most significant interaction
identified was between the HLA region and CTLA4.
Indeed, 2 independent lupus-associated SNPs within the
HLA region (rs3131379 and rs1270942) showed evi-
dence for significant interaction with rs231775 in CTLA4
(Tables 3 and 4). The HLA–CTLA4 interaction in lupus
underscores antigen presentation and T cell stimulation
as important processes involved in the pathogenesis of
lupus. This interaction is biologically logical, because
CTLA-4 is up-regulated on T cells following T cell
activation by antigen-presenting cells (19). Following T
cell activation via binding of the major histocompatibil-
ity complex–antigen complex to the T cell receptor
(signal 1), the binding of CD80/CD86 on antigen-
presenting cells to CD28 on the surface of T cells (signal
2) ensures T cell activation and interleukin-2 (IL-2)
production (19). CTLA-4 competes with CD28 to bind
CD80/CD86 and provides a negative signal that sup-
presses T cell activation. This process is thought to be
important to control T cell activation and prevent auto-
immunity.

A role for antigen-presenting cells in lupus is
highlighted again with the HLA–ITGAM gene–gene
interaction, although this interaction is between the risk
and protective alleles in these 2 loci. ITGAM (integrin,
alpha M) encodes for CD11b, the � chain in the integrin
molecule CD11b/CD18 (Mac-1, CR3). It is expressed on
the surface of antigen-presenting cells and neutrophils
and plays a role in cell–cell adhesions, leukocyte extrav-
asation, and in complement-mediated phagocytosis of
C3bi-opsonized antigens (20,21).

We also showed evidence for gene–gene interac-
tion between the 2 independent lupus-associated SNPs
within the HLA region and rs2070197 in IRF5. This

interaction emphasizes the role of the interferon path-
way in the pathogenesis of lupus.

The other gene–gene interaction that we identi-
fied was between rs907715 in IL21 and rs11568821 in
PDCD1. This interaction is very interesting, because it
highlights a role for follicular helper T (Tfh) cells in
lupus. High PDCD1 expression and IL-21 production
are hallmarks of Tfh cells (22). Tfh cells promote
germinal center formation, plasma cell differentiation,
and antibody isotype switching (23). PDCD1 deficiency
results in impaired germinal center B cell survival and
diminished production of long-lived plasma cells (24).
Indeed, the production of IL-21 is reduced in Tfh cells
from Pdcd1�/� mice (24). IL-21 deficiency results in
impaired germinal center formation, plasma cell differ-
entiation, and isotype class switching (23), emphasizing a
central role for IL-21 in Tfh cell function. Of interest, a
higher fraction of circulating Tfh cells was detected in
the peripheral blood of patients with lupus compared
with normal control subjects (25).

In summary, we provided strong evidence that in
patients with lupus, the presence of one risk allele can
influence the presence or absence of other risk alleles,
across different loci. We have identified novel gene–
gene epistatic interactions in lupus. Gene–gene interac-
tions might help explain at least part of the “missing
heritability” in complex diseases. Our findings provide
evidence against a simple “additive” genetic model in
autoimmunity and highlight antigen presentation and T
cell activation, the interferon pathway, and Tfh cells as
important contributors to the pathogenesis of lupus.
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