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   Electron	
  transport	
  is	
  conventionally	
  determined	
  by	
  the	
  momentum-­‐relaxing	
  

scattering	
  of	
  electrons	
  by	
  the	
  host	
  solid	
  and	
  its	
  excitations.	
  Hydrodynamic	
  fluid	
  flow	
  through	
  

channels,	
  in	
  contrast,	
  is	
  determined	
  partly	
  by	
  the	
  viscosity	
  of	
  the	
  fluid,	
  which	
  is	
  governed	
  by	
  

momentum-­‐conserving	
  internal	
  collisions.	
  A	
  long-­‐standing	
  question	
  in	
  the	
  physics	
  of	
  solids	
   	
  

has	
  been	
  whether	
  the	
  viscosity	
  of	
  the	
  electron	
  fluid	
  plays	
  an	
  observable	
  role	
  in	
  determining	
  

the	
  resistance.	
  Here	
  we	
  report	
  experimental	
  evidence	
  that	
  the	
  resistance	
  of	
  restricted	
  

channels	
  of	
  the	
  ultra-­‐pure	
  two-­‐dimensional	
  metal	
  PdCoO  𝟐	
   has	
  a	
  large	
  viscous	
  contribution.	
  

Comparison	
  with	
  theory	
  allows	
  an	
  estimate	
  of	
  the	
  electronic	
  viscosity	
  in	
  the	
  range	
  between	
  

𝟔×𝟏𝟎
!𝟑	
   kg(ms)  !𝟏	
   and	
   𝟑×𝟏𝟎!𝟒	
   kg(ms)  !𝟏,	
  to	
  be	
  compared	
  with	
   1×10!!	
   kg(ms)  !!	
   for	
  

water	
  at	
  room	
  temperature.	
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   In	
  a	
  quantum	
  fluid	
  without	
  an	
  associated	
  lattice,	
  such	
  as	
     !He,	
  the	
  momentum	
  of	
  the	
  

fluid	
   is	
   conserved	
   except	
   where	
   it	
   interacts	
   with	
   the	
   walls	
   of	
   a	
   channel	
   through	
   which	
   it	
   is	
  

flowing.	
   As	
   the	
   temperature	
   decreases	
   and	
   the	
   quasiparticle-­‐quasiparticle	
  mean	
   free	
   path	
   ℓ𝓁	
  

within	
   the	
   fluid	
   increases	
   because	
   of	
   the	
   decrease	
   of	
   its	
   quasiparticle	
   scattering	
   rate,	
  

interactions	
   with	
   the	
   walls	
   become	
   more	
   probable,	
   and	
   the	
   viscosity	
   and	
   flow	
   resistance	
  

increase.	
  This	
  is	
  intuitively	
  at	
  odds	
  with	
  the	
  behavior	
  seen	
  for	
  electrons	
  moving	
  in	
  a	
  crystalline	
  

lattice,	
   whose	
   flow	
   resistance	
   decreases	
   as	
   ℓ𝓁	
   increases.	
   The	
   resolution	
   of	
   this	
   apparent	
  

paradox	
   is	
   that	
   coupling	
   to	
   the	
   lattice	
   and	
   its	
   excitations	
   means	
   that	
   the	
   large	
   majority	
   of	
  

collisions	
   in	
   the	
   electron	
   fluid	
   (electron-­‐impurity,	
   normal	
   electron-­‐phonon,	
   Umklapp	
  

electron-­‐electron	
   and	
   Umklapp	
   electron-­‐phonon)	
   relax	
  momentum,	
   taking	
   the	
   fluid	
   far	
   from	
  

the	
  hydrodynamic	
  limit.	
  At	
  least	
  some	
  of	
  these	
  momentum-­‐relaxing	
  collisions	
  are	
  inevitable	
  in	
  

any	
   real	
  material.	
  Strictly	
   speaking,	
  momentum	
  of	
   the	
  electron	
   fluid	
  can	
  never	
  be	
  conserved,	
  

even	
   in	
  a	
  bulk	
   sample	
   for	
  which	
  boundary	
   scattering	
   is	
   insignificant.	
   This	
  does	
  not,	
  however,	
  

mean	
  that	
  the	
  electronic	
  viscosity	
  needs	
  to	
  play	
  no	
  role	
  in	
  determining	
  electrical	
  resistance.	
  A	
  

pragmatic	
   benchmark	
   is	
  whether	
  momentum-­‐conserving	
   processes	
   are	
   faster	
   or	
   slower	
   than	
  

momentum-­‐relaxing	
  ones.	
  If	
  the	
  electron	
  fluid’s	
  momentum	
  is	
  relaxed	
  slowly,	
  it	
  can	
  be	
  thought	
  

of	
  as	
  being	
  quasi-­‐conserved,	
  and	
  hydrodynamic	
  signatures	
  might	
  be	
  observable	
  (1-­‐9). 

The	
  search	
  for	
  hydrodynamic	
  effects	
  in	
  electrons	
  in	
  solids	
  has	
  been	
  given	
  extra	
  impetus	
  

by	
   the	
   introduction	
  of	
   the	
  “holographic	
  correspondence"	
   to	
  condensed	
  matter	
  physics	
   	
   (10).	
  

This	
   technique	
   introduced	
   the	
   concept	
   of	
   a	
   minimum	
   viscosity,	
   argued	
   to	
   be	
   applicable	
   to	
  

strongly	
   interacting	
   fluids	
   as	
   diverse	
   as	
   the	
   quark-­‐gluon	
   plasma	
   and	
   cold	
   atomic	
   gases	
   (11).	
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Hydrodynamic	
  effects	
  have	
  also	
  been	
  postulated	
  to	
  be	
  at	
  the	
  root	
  of	
  the	
  T-­‐linear	
  resistivity	
  of	
  

the	
   high	
   temperature	
   superconductors	
   (6,	
   7),	
   but	
   because	
   momentum-­‐relaxing	
   scattering	
   is	
   	
  

strong	
   in	
   those	
  materials,	
   it	
   is	
   difficult	
   to	
   perform	
   an	
   analysis	
   of	
   the	
   experimental	
   data	
   that	
  

unambiguously	
  separates	
  the	
  two	
  effects.	
  In	
  a	
  pioneering	
  experiment,	
  unusual	
  current-­‐voltage	
  

relationships	
  in	
  a	
  semiconductor	
  wire	
  were	
  convincingly	
  ascribed	
  to	
  hydrodynamic	
  effects	
   	
   (3),	
  

but	
   that	
   avenue	
   of	
   research	
   has	
   not	
   been	
  widely	
   pursued,	
   even	
   though	
   the	
   large	
   difference	
  

between	
  transport	
  and	
  electron-­‐electron	
  scattering	
  rates	
  in	
  semiconductors	
  was	
  subsequently	
  

demonstrated	
  by	
  direct	
  non-­‐equilibrium	
  measurements	
   	
   (12). 

Here	
   we	
   sought	
   to	
   identify	
   a	
   material	
   in	
   which	
   momentum-­‐relaxing	
   scattering	
   is	
  

anomalously	
   suppressed	
   in	
   order	
   to	
   investigate	
   whether	
   a	
   hydrodynamic	
   contribution	
   to	
  

electrical	
   transport	
   could	
   be	
   clearly	
   separated	
   from	
   the	
   more	
   standard	
   contributions	
   from	
  

momentum-­‐relaxing	
  processes.	
  The	
  material	
  that	
  we	
  chose	
  was	
  PdCoO  !,	
  a	
  layered	
  metal	
  with	
  

a	
  series	
  of	
  unusual	
  properties	
   	
   (13-­‐	
  21).	
  Its	
  electronic	
  structure	
  is	
  deceptively	
  simple,	
  with	
  one	
  

highly	
  dispersive	
  band,	
  dominantly	
  of	
  Pd	
  4d/5s	
  character,	
  crossing	
  the	
  Fermi	
  level	
   	
   (22-­‐26).	
  Its	
  

Fermi	
   volume	
   corresponds	
   to	
   one	
   electron	
   per	
   formula	
   unit	
   to	
   high	
   accuracy	
   	
   (18)	
   and	
   the	
  

ratio	
   of	
   in-­‐plane	
   to	
   out-­‐of-­‐plane	
   resistivity	
   is	
   approximately	
   10  !,	
   justifying	
   the	
   use	
   of	
   a	
  

two-­‐dimensional	
  approximation	
  in	
  treating	
  the	
  in-­‐plane	
  properties.	
    

The	
   electrical	
   conductivity	
   of	
   PdCoO   ! 	
   is	
   remarkable.	
   At	
   room	
   temperature,	
   its	
  

resistivity	
  is	
  just	
  2.6	
   𝜇Ω	
   cm,	
  30%	
  lower	
  per	
  carrier	
  than	
  that	
  of	
  elemental	
  copper.	
  Below	
  15	
  K,	
  

the	
   resistivity	
   is	
   essentially	
   independent	
  of	
   temperature,	
   and	
   is	
   below	
  10	
  nΩ	
   cm	
   in	
   the	
  best	
  

single	
  crystals	
   	
   (18).	
  This	
  striking	
  behavior	
  might	
  be	
  attributable	
  to	
  phonon	
  drag,	
  in	
  which	
  the	
  

phonons	
   follow	
   the	
   electrons	
   into	
   an	
  out-­‐of-­‐equilibrium	
  distribution	
  when	
   an	
   electric	
   field	
   is	
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applied.	
   In	
   PdCoO2,	
   the	
   activation	
   temperature	
   for	
  Umklapp	
   electron-­‐phonon	
  processes	
   is	
   at	
  

least	
  160	
  K,	
  unusually	
  high	
  for	
  a	
  metal	
   	
   (18). 

The	
  above	
  properties	
  make	
  PdCoO  !	
   a	
   good	
  candidate	
   for	
  a	
   search	
   for	
  hydrodynamic	
  

effects.	
  Below	
  15	
  K,	
  momentum-­‐relaxing	
  processes	
  are	
  far	
  slower	
  than	
  those	
  observed	
  in	
  most	
  

metals.	
   Better	
   still,	
   if	
   phonon	
   drag	
   is	
   indeed	
   taking	
   place,	
   the	
   normal	
   electron-­‐phonon	
  

processes	
   that	
   usually	
   help	
   prevent	
   electrons	
   in	
   solids	
   from	
   approaching	
   the	
   hydrodynamic	
  

limit	
  are	
  now	
  helping	
  that	
  process,	
  because	
  they	
  contribute	
  a	
  source	
  of	
  momentum-­‐conserving	
  

scattering.	
   An	
   important	
   independent	
   hint	
   that	
   the	
   balance	
   between	
  momentum-­‐conserving	
  

and	
   momentum-­‐relaxing	
   scattering	
   is	
   both	
   unusual	
   and	
   favourable	
   for	
   the	
   observation	
   of	
  

hydrodynamic	
  effects	
  comes	
  from	
  the	
  ratio	
  of	
  the	
  mean	
  free	
  paths	
  deduced,	
  respectively,	
  from	
  

the	
   resistivity,	
   which	
   is	
   sensitive	
   to	
   processes	
   that	
   efficiently	
   relax	
   momentum,	
   and	
   from	
  

analysis	
   of	
   the	
   de	
   Haas-­‐van	
   Alphen	
   effect,	
  whose	
   amplitude	
   is	
   sensitive	
   to	
   a	
  wider	
   range	
   of	
  

scattering	
  processes.	
  The	
  inverse	
  of	
  that	
  ratio	
  is	
  5-­‐10	
  %,	
  an	
  unusually	
  small	
  value	
  approximately	
  

an	
  order	
  of	
  magnitude	
  lower	
  than	
  that	
  seen	
  in	
  ordinary	
  metals	
   	
   (18). 

In	
   a	
   purely	
   hydrodynamic	
   fluid,	
   flow	
   resistance	
   in	
   channels	
   is	
   determined	
   entirely	
   by	
  

momentum-­‐relaxing	
  boundary	
   scattering,	
   the	
  efficiency	
  of	
  which	
   is	
  determined	
  by	
   the	
   fluid’s	
  

viscosity.	
   Boundary	
   scattering	
   also	
   contributes	
   to	
   the	
   resistance	
   in	
   thin	
  wires	
   or	
   channels	
   of	
  

metals	
  in	
  which	
  hydrodynamic	
  effects	
  play	
  no	
  observable	
  role,	
  but	
  the	
  standard	
  theory	
  of	
  this	
  

phenomenon	
   is	
  well	
   established	
   (27).	
  We	
   therefore	
   set	
   out	
   to	
   construct	
   a	
   series	
   of	
   PdCoO  !	
  

“wires",	
  and	
  study	
  how	
  their	
  resistance	
  varied	
  with	
  the	
  channel	
  width	
  and	
  investigate	
  if	
  there	
  

were	
  observable	
  deviations	
  from	
  the	
  predictions	
  of	
  standard	
  theory.	
  The	
  wires	
  were	
  produced	
  

from	
  flux-­‐grown	
  single	
  crystals	
  using	
  Focused	
  Ion	
  Beam	
  (FIB)	
  etching	
  (Fig.	
  1A).	
  Six	
  such	
  devices	
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were	
   made	
   and	
   shown	
   to	
   have	
   consistent	
   properties	
   	
   (28).	
   We	
   discuss	
   the	
   nature	
   of	
   the	
  

boundaries	
   produced	
   by	
   FIB	
   processing	
   in	
   	
   (28)	
   and	
   show	
   that	
   damage	
   is	
   restricted	
   to	
  

approximately	
  20	
  nm	
  from	
  the	
  edge	
  of	
  the	
  channel.	
  Taking	
  all	
  uncertainties	
   into	
  account,	
  the	
  

undamaged	
   channel	
   width	
   can	
   be	
   determined	
   to	
   an	
   accuracy	
   of	
   ±	
   80	
   nm.	
   For	
   the	
   main	
  

experiment,	
   measurements	
   were	
   done	
   on	
   a	
   single	
   successively	
   etched	
   wire	
   from	
   the	
   same	
  

crystal,	
   to	
   remove	
   as	
  many	
   experimental	
   uncertainties	
   as	
   possible.	
  A	
   second	
   crystal	
   (Fig.	
   1B)	
  

was	
   etched	
   into	
   a	
  meander	
   channel	
   ideally	
   suited	
   for	
   a	
  measurement	
   of	
   the	
   Shubnikhov-­‐de	
  

Haas	
   (SdH)	
   effect.	
   For	
   each	
   experiment,	
   we	
   studied	
   the	
   magnetoresistance	
   of	
   the	
   wire	
   in	
  

magnetic	
   fields	
   B	
   of	
   -­‐14	
   T	
   ≤	
   B	
   ≤	
   14	
   T.	
  We	
   also	
   fabricated	
   a	
   multi-­‐contact	
   device	
   used	
   to	
  

verify	
  that	
  our	
  data	
  are	
  length-­‐independent	
  at	
  constant	
  width	
  (28). 

Data	
  obtained	
   in	
   the	
   channel	
  narrowing	
  experiment	
  are	
   shown	
   in	
   Fig.	
   2A	
   ,	
   for	
  widths	
  

ranging	
  from	
  60	
   𝜇m	
  to	
  0.7	
   𝜇m,	
  at	
  a	
  measurement	
  temperature	
  of	
  2	
  K.	
  Data	
  from	
  the	
  meander	
  

channel	
  are	
  shown	
  in	
  Fig.	
  2B.	
  Consistent	
  with	
  previous	
  measurements	
  on	
  other	
  single	
  crystals	
  

(18),	
  the	
  resistivity	
  in	
  zero	
  field	
  for	
  the	
  60	
   𝜇m	
  wide	
  sample	
  is	
  0.009	
   𝜇Ω	
   cm.	
  The	
  value	
  of	
  the	
  

momentum-­‐relaxing	
   mean	
   free	
   path	
   ℓ𝓁!" 	
   is	
   a	
   crucial	
   parameter	
   in	
   the	
   analysis	
   of	
   the	
  

resistance	
   of	
   restricted	
   channels;	
   the	
   single-­‐band	
   electronic	
   structure	
   and	
  well-­‐known	
   Fermi	
  

surface	
   shape	
   and	
   volume	
   	
   (16,	
   18)	
   allow	
   an	
   accurate	
   calculation	
   of	
   ℓ𝓁!" 	
   =18.5+1.5	
   𝜇m	
   	
  

(28).	
  The	
  wire	
  widths	
  W	
  used	
  for	
  the	
  experiment	
  therefore	
  cover	
  the	
  range	
  0.3	
   ≤	
   ℓ𝓁!"/W	
   ≤	
  

26,	
  enabling	
  study	
  of	
  the	
  crossover	
  between	
  a	
  nearly	
  bulk	
  regime	
  and	
  one	
   in	
  which	
  a	
  sample	
  

dimension	
  falls	
  far	
  below	
  the	
  bulk	
  mean	
  free	
  path. 

We	
  adopt	
  the	
  usual	
  solid	
  state	
  physics	
  convention	
  of	
  describing	
  the	
  transport	
  properties	
  

of	
  our	
  channels	
  in	
  terms	
  of	
  the	
  resistivity	
   𝜌.	
  For	
  a	
  channel	
  of	
  width	
  𝑊,	
  length	
   𝐿	
   and	
  thickness	
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𝑇,	
   𝜌 ≡	
   𝑅𝑇𝑊/𝐿.	
   Conceptually,	
   𝜌	
   is	
   a	
   bulk	
   property	
   of	
   the	
   material,	
   so	
   in	
   the	
   absence	
   of	
  

boundary	
  effects	
  it	
  should	
  be	
  independent	
  of	
  𝑊.	
  In	
  contrast,	
  at	
  low	
  fields,	
  the	
  overall	
  channel	
  

resistivity	
   𝜌	
   increases	
  by	
  over	
  an	
  order	
  of	
  magnitude	
  as	
   the	
  wire	
  width	
   is	
  decreased	
  (Fig.	
  2).	
  

Because	
  this	
  involves	
  repeated	
  exposure	
  to	
  ion	
  beam	
  etching,	
  it	
  is	
  natural	
  to	
  wonder	
  whether	
  

this	
  trend	
  is	
  caused	
  by	
  beam	
  damage	
  increasing	
  the	
  scattering	
  in	
  the	
  bulk	
  of	
  the	
  wire.	
  However,	
  

extending	
  the	
  data	
  to	
  higher	
  fields	
  proves	
  that	
  this	
  is	
  not	
  the	
  case.	
  Firstly,	
  we	
  note	
  that,	
  at	
  high	
  

fields,	
  the	
  resistivity	
  is	
  similar	
  at	
  all	
  widths	
  above	
  0.7	
  μm.	
  Secondly,	
  the	
  pronounced	
  maximum	
  

seen	
  at	
  fields	
  B  !"#	
   in	
  the	
  MR	
  for	
  W≤	
   30	
   𝜇m	
  is	
  a	
  well-­‐known	
  phenomenon	
  from	
  the	
  study	
  of	
  

narrow	
  conducting	
  channels	
  for	
  which	
  the	
  bulk	
  mean	
  free	
  path	
   is	
  of	
  the	
  order	
  of	
  the	
  channel	
  

width	
   or	
   larger	
   	
   (29-­‐31).	
   For	
   each	
   channel	
   width,	
   the	
   rise	
   in	
   the	
  magneto-­‐resistivity	
   at	
   low	
  

fields	
   is	
  stopped	
  when	
  the	
  cyclotron	
  orbit	
  radius	
  falls	
  to	
   less	
  than	
  the	
  channel	
  width,	
  because	
  

the	
   helical	
   pitch	
   of	
   the	
   motion	
   of	
   the	
   drifting	
   electrons	
   becomes	
   so	
   tight	
   that	
   boundary	
  

scattering	
  is	
  suppressed,	
  and	
  eventually	
  the	
  bulk,	
  width-­‐independent	
  resistivity	
  is	
  recovered	
  at	
  

high	
   fields.	
   Specifically,	
   𝐵!"# = 𝛼
ℏ!!

!"
	
   (where	
   !	
   is	
   Planck’s	
   constant	
   divided	
   by	
   2π,	
   kF	
   is	
   the	
  

Fermi	
  wave	
  vector	
  and	
  e	
  the	
  electronic	
  charge)	
  with	
  constant	
   𝛼	
   =	
  0.55	
  has	
  been	
  reported	
  for	
  

restricted	
  channels	
  of	
   two-­‐dimensional	
  electron	
  gas	
   	
   (30),	
  and	
  a	
  similar	
   functional	
   form	
  with	
  

𝛼	
   =	
   0.9	
   observed	
   in	
   recent	
   work	
   on	
   graphene	
   	
   (31).	
   The	
   data	
   shown	
   in	
   Fig.	
   2C	
   therefore	
  

provide	
   further	
   evidence	
   that	
   the	
   overall	
   scale	
   of	
   the	
   resistivity	
   is	
   increasing	
   because	
   of	
  

additional	
   boundary	
   rather	
   than	
   additional	
   bulk	
   scattering.	
   Very	
   low	
   field	
   peaks	
   in	
   the	
  

magnetoresistance	
   can	
   still	
   be	
   seen	
   in	
   the	
   30	
   𝜇m	
   wide	
   channel,	
   providing	
   further	
   direct	
  

geometrical	
   evidence	
   that	
   ℓ𝓁!" 	
   is	
   long.	
   Final	
   evidence	
   that	
   extremely	
   high	
   bulk	
   purity	
   is	
  

retained	
  after	
   ion	
  beam	
  etching	
  comes	
   from	
  the	
  data	
   from	
  the	
  meander	
  sample.	
   Its	
  B  !"#	
   is	
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consistent	
  with	
  the	
  measured	
  width	
  of	
  6	
   𝜇m	
  (Figs.	
  2,	
  B	
  and	
  C)	
   	
   and	
  at	
  high	
  fields,	
  clear	
  SdH	
  

oscillations	
  are	
  seen,	
  with	
  frequencies	
  in	
  agreement	
  with	
  those	
  seen	
  in	
  dHvA	
  from	
  bulk	
  crystals	
  

(18).	
   	
   High	
  frequencies	
  are	
  particularly	
  hard	
  to	
  see	
  by	
  the	
  SdH	
  effect;	
   	
   the	
  30	
  kT	
  frequencies	
  

shown	
  in	
  Fig.	
  3B	
  are	
  among	
  the	
  highest	
  ever	
  reported	
  in	
  Shubnikov-­‐de	
  Haas	
  measurements. 

The	
  data	
  presented	
  in	
  Fig.	
  2	
  and	
  Fig.	
  3	
  give	
  strong	
  evidence	
  that	
  boundary	
  rather	
  than	
  

bulk	
   scattering	
   dominates	
   the	
   rise	
   in	
   resistivity	
   seen	
   as	
   we	
   reduce	
   the	
   channel	
   width.	
   As	
  

discussed	
  above,	
  boundary	
  scattering	
  is	
  expected	
  even	
  in	
  the	
  absence	
  of	
  hydrodynamic	
  effects	
  

as	
  the	
  channel	
  width	
  falls	
   to	
   less	
  than	
  the	
  mean	
  free	
  path	
  and	
  the	
  system	
  enters	
  the	
  ballistic	
  

transport	
   regime.	
   The	
   relevant	
   theory	
   	
   (4,	
   27)	
   can	
   be	
   expressed	
   in	
   a	
   useful	
   dimensionless	
  

form,	
   shown	
   in	
   the	
   blue	
   line	
   in	
   Fig.	
   4.	
   If	
   𝜌	
   is	
   normalized	
   to	
   the	
   bulk	
   resistivity	
   𝜌!	
   of	
   an	
  

infinitely	
  wide	
  sample,	
  and	
  plotted	
  against	
   ℓ𝓁!"/W,	
  the	
  prediction	
  has	
  no	
  free	
  parameters.	
  By	
  

ℓ𝓁!"/W	
  =	
  25,	
   𝜌	
   is	
  calculated	
  to	
  be	
  10.3	
   𝜌!.	
  Our	
  measured	
  value	
  for	
   𝜌/𝜌!	
   is	
  over	
  50%	
  larger	
  

than	
  this	
  prediction,	
  and	
  our	
  data	
  also	
  show	
  a	
  functional	
  form	
  that	
   is	
  at	
  odds	
  with	
  the	
  simple	
  

theory. 

In	
  order	
  to	
  examine	
  whether	
  or	
  not	
  the	
  large	
  deviations	
  of	
  the	
  data	
  from	
  the	
  predictions	
  

of	
  standard	
  transport	
  theory	
  are	
  linked	
  to	
  electronic	
  hydrodynamics,	
  we	
  have	
  carefully	
  studied	
  

the	
  predictions	
  of	
  a	
  more	
  sophisticated	
  theory	
  that	
  takes	
  momentum-­‐conserving	
  scattering	
  into	
  

account.	
   Originally	
   formulated	
   to	
   analyze	
   current-­‐dependent	
   hydrodynamic	
   signatures	
  

reported	
   in	
   Ref.	
   	
   (3),	
   the	
   theory	
   encodes	
   momentum-­‐relaxing	
   scattering	
   via	
   the	
   role	
   of	
  

impurities	
   and	
   momentum-­‐conserving	
   scattering	
   via	
   normal	
   electron-­‐electron	
   scattering	
  

processes.	
   In	
   PdCoO  ! ,	
   the	
   scale	
   of	
   momentum-­‐conserving	
   electron-­‐electron	
   scattering	
   is	
  

uncertain	
   due	
   to	
   Fermi	
   surface	
   faceting	
   	
   (26)	
   and	
   phonons	
   dragged	
   out	
   of	
   equilibrium	
   are	
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likely	
  also	
  to	
  be	
  making	
  a	
  contribution	
  to	
  the	
  momentum-­‐conserving	
  processes.	
   In	
  this	
  sense,	
  

even	
  this	
  more	
  sophisticated	
  theory	
   is	
  over-­‐simplified,	
  and	
  it	
  would	
  be	
  dangerous	
  to	
  use	
   it	
  to	
  

predict	
   temperature-­‐dependent	
   transport	
   in	
   PdCoO   ! .	
   However,	
   its	
   results	
   at	
   any	
   fixed	
  

temperature	
  depend	
  only	
  on	
  the	
  ratio	
  of	
  a	
  momentum-­‐conserving	
  mean	
  free	
  path	
   ℓ𝓁!" 	
   to	
  the	
  

momentum	
  relaxing	
  mean	
  free	
  path	
   ℓ𝓁!",	
  and	
  not,	
   in	
  detail,	
  on	
  the	
  microscopic	
  origin	
  of	
   the	
  

scattering	
   that	
   produced	
   that	
   ratio.	
   It	
   is	
   therefore	
   a	
   useful	
   guide	
   to	
   the	
   consequences	
   of	
  

including	
  hydrodynamic	
  effects	
  in	
  experiments	
  performed	
  at	
  constant	
  temperature	
  such	
  as	
  the	
  

one	
  summarized	
  in	
  Fig.	
  4,	
  A	
  and	
  B.	
   	
   For	
  any	
  value	
  of	
   ℓ𝓁!"/ℓ𝓁!" 	
   it	
  predicts	
  a	
  unique	
  functional	
  

form	
  and	
  overall	
  magnitude	
  for	
   𝜌/𝜌!	
   vs	
   ℓ𝓁!"/W,	
  with	
  no	
  free	
  fitting	
  parameters.	
   	
    

As	
   can	
   be	
   seen	
   from	
   the	
   red	
   lines	
   in	
   Fig.	
   4,	
   A	
   and	
   B,	
   the	
   hydrodynamic	
   theory	
   for	
  

ℓ𝓁!"/ℓ𝓁!" 	
   =	
   0.1	
   produces	
   an	
   excellent	
   match	
   to	
   our	
   data.	
   	
   In	
   Fig.	
   4C	
   we	
   show	
   how	
   the	
  

predictions	
  of	
  the	
  theory	
  change	
  as	
  a	
  function	
  of	
   ℓ𝓁!"/ℓ𝓁!",	
  marking	
  the	
  blue	
  and	
  red	
  lines	
  of	
  

Figs.	
   4,	
   A	
   and	
   B	
   on	
   the	
   contour	
   plot	
   for	
   reference.	
   For	
   large	
   ℓ𝓁!"/ℓ𝓁!" 	
   (i.e.	
   weak	
  

momentum-­‐conserving	
  scattering)	
  it	
  limits	
  rapidly	
  to	
  the	
  prediction	
  of	
  the	
  standard	
  theory.	
  At	
  

its	
  other	
  limit	
  of	
  strong	
  momentum-­‐conserving	
  scattering	
  (black	
  line)	
  the	
  prediction	
  for	
   𝜌/𝜌!	
   is	
  

approximately	
  quadratic	
  as	
  a	
  function	
  of	
   ℓ𝓁!"/𝑊.	
  In	
  this	
  regime,	
  viscous	
  effects	
  dominate,	
  and	
  

the	
  𝑊!!	
   dependence	
   of	
   𝜌	
   is	
   equivalent	
   to	
   the	
  𝑊!!	
   prediction	
   for	
   flow	
   resistance	
   that	
   is	
  

obtained	
  from	
  the	
  purely	
  hydrodynamic	
  Navier-­‐Stokes	
  equation	
   	
   (28)	
  . 

Our	
   value	
   for	
   ℓ𝓁!"/ℓ𝓁!" 	
   (red	
   line)	
   sits	
   between	
   these	
   limiting	
   cases.	
   Since	
   viscosity	
   is	
  

inversely	
  proportional	
  to	
   ℓ𝓁!" ,	
   the	
   initial	
   ~𝑊
!!	
   rise	
   is	
  steeper	
  than	
  for	
   ℓ𝓁!"/ℓ𝓁!" 	
   =	
  0.01.	
  As	
  

ℓ𝓁!"/𝑊 	
   rises	
   towards	
   10,	
   ℓ𝓁!" 	
   is	
   no	
   longer	
   much	
   less	
   than	
   𝑊 ,	
   and	
   the	
   Navier-­‐Stokes	
  

prediction	
   evolves	
   smoothly	
   to	
   a	
   solution	
   in	
   which	
   viscous	
   effects	
   are	
   important	
   but	
   the	
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channel	
   constriction	
   is	
   such	
   that	
   we	
   leave	
   the	
   purely	
   hydrodynamic	
   regime.	
   Physically	
   the	
  

system	
  is	
   in	
  a	
  hybrid	
  situation	
   in	
  which	
  traditional	
   impurity	
  and	
  boundary	
  scattering	
  mix	
  with	
  

viscosity-­‐stimulated	
   boundary	
   scattering	
   to	
   produce	
   the	
   overall	
   evolution	
   of	
   resistivity	
   with	
  

channel	
   width.	
   	
   Fig.	
   4	
   C	
   also	
   shows	
   that	
   the	
   hydrodynamic	
   prediction	
   is	
   insensitive	
   to	
   the	
   	
  

precise	
   choice	
   of	
   ℓ𝓁!"/ℓ𝓁!".	
   	
   Our	
   choice	
   of	
   0.1	
   was	
   not	
   the	
   result	
   of	
   fitting,	
   but	
   simply	
   an	
  

estimate	
  motivated	
  by	
  the	
  ratio	
  of	
  scattering	
  rates	
  deduced	
  from	
  measurements	
  of	
  resistivity	
  

and	
  dHvA.	
   	
   Choices	
  a	
   factor	
  of	
   two	
   larger	
  or	
  smaller	
  would	
  give	
  a	
  similar	
   level	
  of	
  agreement	
  

with	
  the	
  data.	
    

The	
  data	
  and	
  predictions	
  shown	
  in	
  Fig.	
  4	
  and	
  discussed	
  further	
  in	
   	
   (28)	
  provide	
  strong	
  

evidence	
  that	
  we	
  have	
  observed	
  a	
  substantial	
  hydrodynamic	
  contribution	
  to	
  electrical	
  transport	
  

in	
  a	
  bulk	
  material.	
  Further	
  analysis	
  of	
  the	
  theory	
  in	
  its	
  Navier-­‐Stokes	
  limit	
  allows	
  a	
  quantitative	
  

estimate	
   of	
   the	
   electronic	
   viscosity	
   itself	
   as	
   a	
   function	
   of	
   the	
   hydrodynamic	
   contribution	
   to	
  

𝜌/𝜌!.	
   As	
   a	
   result,	
  we	
   are	
   able	
   to	
   estimate	
   the	
   dynamic	
   viscosity	
   𝜂	
   of	
   the	
   electronic	
   fluid	
   in	
  

PdCoO   ! 	
   as	
   lying	
   in	
   the	
   range	
   between	
   6×10
!! 	
   kg(ms)   !! 	
   and	
   3×10!! 	
   kg(ms)   !! .	
   For	
  

comparison,	
  those	
  of	
  two	
  well-­‐known	
  fluids,	
  water	
  at	
  room	
  temperature	
  and	
  liquid	
  nitrogen	
  at	
  

75	
  K,	
  are	
   1×10!!	
   kg(ms)  !!	
   and	
   1×10!!	
   kg(ms)  !!	
   respectively. 

Although	
  the	
  bounds	
  we	
  can	
  place	
  on	
  the	
  electronic	
  viscosity	
  of	
  PdCoO  !	
   are	
  not	
  very	
  

precise,	
  we	
  stress	
  that	
  this	
   is	
  an	
   issue	
  of	
  theory,	
  not	
  experiment.	
   In	
  principle,	
  we	
  believe	
  that	
  

there	
   is	
   such	
   a	
   large	
   hydrodynamic	
   contribution	
   to	
   our	
   data	
   that	
   they	
   contain	
   all	
   the	
  

information	
   required	
   to	
   estimate	
   the	
   viscosity	
   precisely,	
   and	
   hope	
   that	
   our	
   experiment	
  

motivates	
   further	
   work	
   on	
   this	
   issue.	
   As	
   discussed	
   throughout	
   the	
   paper,	
   PdCoO  ! 	
   is	
   a	
  

weak-­‐scattering	
   system,	
   so	
   it	
   is	
   not	
   surprising	
   that	
   comparing	
   our	
   estimate	
   of	
   𝜂 	
   with	
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measurements	
   of	
   the	
   entropy	
   density	
   𝑠 	
   	
   (18,	
   15)	
   yields	
   𝜂/s	
   ~10   ! 	
   ℏ/𝑘! ,	
   far	
   from	
   a	
  

proposed	
  minimum	
  viscocity	
  limit	
  (11).	
  It	
  will	
  also	
  be	
  interesting	
  to	
  re-­‐examine	
  a	
  possible	
  role	
  

of	
   hydrodynamic	
   effects	
   in	
   explaining	
   the	
   resistivity	
   in	
   systems	
   in	
   which	
   the	
  

momentum-­‐conserving	
   scattering	
   is	
   extremely	
   strong	
   	
   (6,7,32).	
   In	
   principle,	
   a	
   range	
   of	
  

viscosities	
  is	
  to	
  be	
  expected	
  in	
  different	
  electronic	
  fluids;	
  turbulent	
  electronic	
  flow	
  might	
  even	
  

be	
  attainable	
  in	
  future. 
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   Fig.	
   1.	
   	
   FIB	
   prepared	
   devices	
   of	
   PdCoO  𝟐	
   crystals.	
   (A)	
   The	
   crystal	
   used	
   for	
   our	
  

channel	
   thinning	
   experiment,	
   after	
   the	
   first	
   two	
  processing	
   steps.	
   An	
   initial	
   channel	
   120	
   𝜇m	
  

wide	
  has	
  been	
  re-­‐processed	
  to	
  produce	
  a	
  narrower	
  conducting	
  channel	
  of	
  width	
  60	
   𝜇m.	
  The	
  

same	
  channel	
  was	
  subsequently	
  reprocessed	
  seven	
  further	
  times,	
  narrowing	
  it	
  in	
  approximately	
  

factor	
   of	
   two	
   steps	
   until	
   it	
  was	
   0.7	
   𝜇m	
  wide.	
   (B)	
   A	
  meander	
   channel	
   processed	
   in	
   a	
   second	
  

crystal	
  for	
  use	
  in	
  a	
  search	
  for	
  the	
  Shubnikhov-­‐de	
  Haas	
  effect.	
  Its	
  approximate	
  width	
  is	
  6	
   𝜇m	
  in	
  

the	
   narrowed	
   parts	
   and	
   thickness	
   is	
   17	
   𝜇m.	
   Its	
   resistance	
   in	
   a	
   magnetic	
   field	
   of	
   14	
   T	
   at	
   a	
  

temperature	
  of	
  2	
  K	
  is	
  5.7	
   𝑚Ω.	
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Fig.	
  2.	
   	
   Effect	
  of	
  channel	
  width	
  (W)	
  on	
  magnetotransport.	
  (A)	
  Magnetoresistance	
  data	
  

from	
  the	
  samples	
  shown	
   in	
  Fig.	
  1A	
   	
   taken	
  at	
  2	
  K	
  after	
   successive	
  channel	
   thinning	
  steps.	
   (B)	
  

Magnetoresistance	
  data	
  from	
  the	
  sample	
  shown	
  in	
  Fig.	
  1B	
   	
   taken	
  at	
  2	
  K.	
  (C)	
  B  !"#	
   (indicated	
  

by	
  arrows	
   in	
  (A)).	
  varies	
  as	
   𝛼
ℏ!!

!"
	
   as	
  the	
  device	
  shown	
  in	
  Fig.	
  1A	
   is	
  successively	
  thinned.	
  Both	
  

the	
   functional	
   form	
   and	
   prefactor	
   are	
   in	
   good	
   agreement	
   with	
   theory	
   and	
   with	
   previous	
  

measurements	
  on	
  semiconductor	
  wires. 
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   Fig.	
  3.	
   	
   Shubnikhov-­‐de	
  Haas	
  oscillations.	
  (A,	
  B)	
  Shubnikhov-­‐de	
  Haas	
  oscillations	
  from	
  

the	
   patterned	
  meander	
   track	
   shown	
   in	
   Fig.	
   1B	
   .	
   (C)	
   The	
   frequencies	
   of	
   the	
   SdH	
   oscillations	
  

extracted	
  by	
  Fourier	
  analysis	
  of	
  the	
  data	
  in	
  (A).	
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   Fig.	
   4.	
   	
   Hydrodynamic	
   effect	
   on	
   transport.	
   (A,	
   B)	
   The	
   measured	
   resistivity	
   of	
  

PdCoO  !	
   channels	
   normalised	
   to	
   that	
   of	
   the	
  widest	
   channel	
   (𝜌!),	
   plotted	
   against	
   the	
   inverse	
  

channel	
  width	
  1/W	
  multiplied	
  by	
   the	
  bulk	
  momentum-­‐	
   relaxing	
  mean	
   free	
  path	
   ℓ𝓁!" 	
   (closed	
  

black	
  circles).	
  Blue	
  solid	
   line:	
   	
   prediction	
  of	
  a	
  standard	
  Boltzmann	
  theory	
   including	
  boundary	
  

scattering	
  but	
  neglecting	
  momentum-­‐conserving	
  collisions	
  (Red	
  line:prediction	
  of	
  a	
  model	
  that	
  

includes	
   the	
   effects	
   of	
   momentum-­‐conserving	
   scattering	
   (see	
   text).	
   In	
   (C)	
   we	
   show	
   the	
  

predictions	
  of	
  the	
  hydrodynamic	
  theory	
  over	
  a	
  wide	
  range	
  of	
  parameter	
  space. 



MATERIALS AND METHODS

I. CRYSTAL GROWTH AND EXPERIMENTAL METHODS

A. Crystal growth and characterisation.

Single crystals were grown in sealed quartz tubes, using the reaction PdCl2 + 2CoO →

PdCoO2 + CoCl2, and extracted in hot ethanol. We broadly followed procedures described

in Ref. (17) , but experimented with modified temperature profiles to optimize the growth.

Standard x-ray diffraction, chemical analyses and transport measurements were used for

initial characterization of the phase purity and high conductivity of the crystals.

B. Calculating resistivity and the momentum-relaxing mean free path.

In a rectangular parallelepiped with homogeneous current flow, the resistivity is deduced

from measured resistance using the formula ρ= RLW/T , whereR is the measured resistance,

L the spacing between the voltage contacts, W the width and T the physical thickness of the

sample. In a highly two-dimensional material such as PdCoO2, whose in-plane conductivity

is a thousand times larger than that between the planes, the effective electrical thickness Te

can differ from T : if the voltage contacts are not far enough from the current injection point,

the current has not spread through the entire thickness of the crystal before passing between

the voltage contacts. In bulk measurements this issue is typically avoided by attaching

current leads over the end faces of the sample in an attempt to inject the current evenly across

the whole thickness. In this work, however, the sample and contact geometries involved

current injection through the top surface. Calculation for a parallelepiped modeled on the

device shown in Fig. 1A showed that a modest difference between T and Te was likely. The

main resistivity results are normalized in such a way that any correction factor between

T and Te would drop out from the ρ/ρ0 axes of Fig. 4, but the factor is important to

accurate determination of the momentum-relaxing mean free path ℓMR. Rather than rely

quantitatively on such a calculation, which would inevitably involve some assumptions, we

fabricated the extra device shown in Fig. S1, from a crystal of similar thickness to that

shown in Fig. 1 A. By studying the evolution of the measured ρ along the length of this

multi-contact device, we determined that, for a device with the geometry shown in Fig. 1

1



A, Te =αT , with α = 0.75 ± 0.05. Analysis of our channel data using α = 0.75 and

allowed determination of ρ0 = 8.5 ± 0.6 nΩcm. This is in excellent agreement with other

measurements on bulk crystals from the same batch.

The error associated with converting the measured resistivity ρ0 to the bulk mean free

path is lower than that in determining ρ0. In a two-dimensional metal, the resistivity is

given by the line integral of the mean free path ℓ around the Fermi “surface”. At the low

temperatures relevant to the data shown in Figs. 2 - 4, ℓ can be assumed to be independent

of k in the isotropic-ℓ approximation (33) but in PdCoO2 this is a very mild approximation

since the Fermi velocity vF is almost k-independent in any case. If the Fermi surface has

circular cross-section we arrive at the famous two-dimensional expression ℓ = hd

e2kF ρ
, where

kF is the Fermi wave vector and d is the interlayer spacing.

If the Fermi surface is not circular, a correction is required to this formula because, for

a given area, the perimeter around which the line integral is performed is longer than that

of a circle. The correction is usually small for the shape close to a circle. For the rounded

hexagonal Fermi surface of PdCoO2 (16, 25) it is straightforward to estimate it numerically,

and it produces a 2% change in the calculated mean free path from that estimated by simply

using Eq. S1 and kF defined as (A/π)1/2 where the Fermi surface area A is known to within

1% accuracy from the quantum oscillation frequencies. The perimeter change was taken into

account in our calculation. Taking into account the uncertainty in A, and combining with

that in ρ0 yields ℓMR = 18.5 ± 1.5µm.

After completing our channel narrowing experiments, we verified the validity of our two-

dimensional approximation by etching the narrowest channel from above, to reduce its thick-

ness. Measurements before and after this step showed the expected change in resistance but

no change in resistivity, as expected for a two-dimensional material.

C. Focused Ion Beam sample fabrication

Using Focused Ion Beam (FIB) fabrication to study the width dependence of the resis-

tance of micro-channels is a relatively new approach and thus special care must be taken to

investigate potential issues arising from this technique. In particular, the nature of defect

generation due to the 30kV ion irradiation in the crystal bulk as well as the sidewalls of the

microwires need to be considered. In the following, we will discuss the fabrication details

2



and the expected state of the sidewall surfaces. For a general introduction into the details

of FIB micromachining, we refer to (34) and (35).

FIB fabrication: The PdCoO2 crystals grow naturally as thin platelets, with a typical

in-plane width in the few 100 µm range and a typical thickness around 10 µm. Crystals

were first screened under an optical microscope for evident macroscopic defects such as

strong terrace growth, cracks and intergrowths. Platelets with clear hexagonal morphology

and immaculate surfaces were chosen for further fabrication. The crystals were glued with

epoxy onto a silicon chip and sputter-coated with 150 nm of gold. This gold was structured

by FIB milling into the desired contact configuration. A Helios Nano Lab 600i by FEI was

used for the sample preparation.

In a following step, the crystals were coarsely structured into their final geometry. FIB

milling is a fairly gentle way of structuring compared to mechanical abrasion, laser or spark-

erosion, and as a result, it is a slow process. Therefore coarse structuring was performed

at a high ion flux (25-40 nA). It is important to note that high ion flux cutting does not

generate more defects: Higher currents are achieved by using broader beams, so that the

flux density of ions impacting on the sample remains low. Further, the beam is purposely

defocused to spread out power over an even bigger beam spot. Cutting a crystal into the

shape shown in Fig. 1 takes about 12h.

The broad beam spot used for coarse cutting leads to rough and rounded edges. Therefore

it is essential to polish the sidewalls. The polishing procedure involves cutting the last micron

using smaller currents with smaller spot sizes. Three currents of 2.5 nA, 780 pA and 320 pA

were used successively as the sidewall approached the final desired thickness.

Width determination: The presented results critically rely on a precise determination

of the effective width of the sample. The milling process will always create slightly canted

sidewalls. After an initial rounding on the top, basically vertical sidewalls were achieved.

The effective width was then calculated by taking the average as (2 Wbottom+Wtop)/3. This

weighted average takes the initial rounding of the edges at the top into account. An example

measurement using Scanning Electron Microscope (SEM) images is given in Figure S2. Most

importantly, the same methodology was used throughout the study to ensure consistent

determinations of the sample width.

Surface damage: Another important aspect concerns the nature and depth of the

ion beam induced surface damage layer. While the strong Shubnikov-de Haas oscillations

3



observed in our patterned samples clearly evidence the high crystal quality of the bulk, a

surface damage layer of a priori unknown extent surrounds the pristine core. To estimate the

effective thickness of the amorphous layer, we performed a full damage cascade Monte Carlo

simulation using the widely used software SRIM (Stopping and Range of Ions in Matter)

(36).

Fig. S3 shows the depth profile of 30kV Ga ions impacting on the surface under realistic

conditions of quasi-grazing incidence. The typical implantation profile follows a Gaussian

distribution centered around the lateral stopping range, which is around 2 nm at this high

incidence angle. The Ga implantation is suppressed exponentially by simple statistical

arguments of a random walk by one decade every 6nm up to 20 nm, where a sudden drop

in ion penetration signals a cut-off. At the same time, inelastic processes due to the ion-

matter interaction generate phonons as well as defect cascades. These phenomena generally

follow the profile of the implantation, which an integration over the inelastic processes in

the simulation confirms. Therefore we estimate the damage layer to be on the order of

20 nm at each boundary in PdCoO2. We note that the relatively large atomic number of

Pd is advantageous in reducing the ion implantation lengths. SRIM calculations have been

confirmed to accurately capture the Ga penetration during the FIB process, for example via

atom probe tomography (37), which also confirms the random nature of ion implantation.

This in turn ensures that the edges are rough from the point of view of electron boundary

scattering. This rough wall approximation is therefore adopted in our boundary scattering

calculations. Combining the slight edge damage with our estimate of small lateral width

variations after final polishing, we believe that a conservative estimate of the total error in

our determination of width is 80 nm or less. This would be approximately a 10% effect in

our narrowest channel, falling successively for larger widths.

A check both on our width determination procedure and the overall width uncertainty

is to compare the width obtained from the procedure outlined above with that deduced

from magnetoresistance. As discussed in the main manuscript and shown in Fig. 2, we

observe well-defined maxima in the magnetoresistance for all studied widths. The appear-

ance of these maxima is a well-known phenomenon observed in very clean metals confined

into structures smaller than the mean free path. The existence of a well-defined maximum

evidences that a reasonably well-defined “effective width” exists (a triangular cross-section

would not result in such a maximum). Further, the field values of the maxima for channel

4



widths greater than 2 µm follow the relationship Bmax = 0.62~kF

We
to high accuracy. If, in-

stead of relying on the width measurements, we use the measured field maxima to deduce

the widths of our narrowest channels, we see excellent agreement between the two methods:

0.73 µm (SEM measurement) cf 0.79 µm (magnetoresistance peak); 1.17 µm (SEM mea-

surement) cf 1.15 µm (magnetoresistance peak); 1.90 µm (SEM measurement) cf 2.09 µm

(magnetoresistance peak). This gives us further confidence both in the method we have used

to deduce the width from SEM images and in our error estimates.

D. Checks for length dependence and possible internal heating.

When studying transport properties on short length scales, there is the possibility of cre-

ating significant Joule heating resulting in both a raised average electronic temperature and

a temperature distribution across the sample leading to a position-dependent resistivity. If

these effects were very large, they might also lead to non-linear I-V characteristics, especially

in the presence of phonon drag. We verified during our main experiment that we resolved

no I-V non-linearity, but since this would be a second-order effect, that does not necessarily

rule out significant average sample heating.

Before discussing explicit tests of the electronic temperature and its distribution, we note

that a large effect is unlikely. Although current-dependent heating is an issue in samples

with high resistances, our experiments are performed on an extremely good metal with a

carrier concentration a factor 104 higher than those in the semiconductor devices studied

in the beautiful work of the 1990s (3, 4) . Further, we have approximately 16000 layers

in parallel when we work at our standard constant r.m.s. measurement current of 10 mA,

177 Hz (corresponding to voltages in the range 200 nV to 2 mV r.m.s depending on the

device dimensions). For the narrowest channel we reduced this to 8000 layers in parallel,

but worked at 1 mA r.m.s current. This means that we are applying a maximum of just over

0.5 µA r.m.s. per layer. Typical power dissipation in our devices is in the range nano- to mi-

crowatts, several orders of magnitude lower than the cooling power of the 4He cryostat used

for the measurements, and the sample is thermally anchored to the external thermal reser-

voir through high conductivity metallic current and voltage leads and through direct epoxy

contact along its length. That these methods of thermal sinking are effective can be seen

in several ways. Firstly, we observed high resolution quantum oscillations in the resistivity
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when working at a reservoir temperature of 1.9 K. The oscillations have a strong intrin-

sic temperature dependence when observed in equilibrium magnetic measurements (18),

and the spectrum we saw (Fig. 3C) would not have been observable if the average electron

temperature had been even one degree higher. Further, we saw no change to the relative

weighting of the frequencies as the power dissipation in the device changed by over a factor

of two during the experiment. Both of these observations are consistent with the electronic

temperature being very close to that of the reservoir at our measurement currents. Further

checks on this come from the length dependence of the measured resistances, which scaled

linearly with length in all studied devices, even up to the largest meandered device used for

the quantum oscillation experiments (Fig. 1B). With a total length of 4600 µm, this is the

largest structure we studied. The thickness of crystals of this macroscopic size is never ho-

mogeneous over such large distances, and indeed we observe steps in the thickness (Fig. 1B).

Nonetheless we can calculate the average dimensions of the device: Length 4600 µm, thick-

ness 17.1 µm, width 6 µm. In zero applied field, this device has a 4-terminal resistance

of 9 mΩ at 2 K, and using these average dimensions we obtain a resistivity of 20 nΩ cm.

We conservatively estimate an error of about 15% for the uncertainties in the geometry. In

spite of being 46 times longer than the device used for the channel narrowing experiment,

the two resistivities agree for W = 6 µm to within experimental error. To perform a still

more precise check for length scaling of the resistance within the same crystal, and also to

check for the influence of the length of the current path, we fabricated the device shown in

Fig. S4. The deviations in resistivity between the accessible equally spaced voltage leads

(50 µm spacing) scales with length as expected within an experimental uncertainty of 2%.

For example, sourcing a current through the main structure (colored purple in Fig. S1) at

2 K, we measure a resistance R12 = 89.7 mΩ between the contacts V1 and V2; and R13 =

177.9 mΩ between V1 and V3. The ratio R13 / R12 = 1.983 agrees well with the ratio of the

device length, L13 / L12 = 100 µm / 50 µm = 2 as expected for the usual linear dependence

of resistance to conductor length.

In this structure, we can also directly check for influence of the current path length.

The total length of the conductor between the main current pads is 2700 µm (purple). By

injecting the current alternatively through the contacts V1 and V4, the effective length of

the current path is reduced by more than a factor of 3 to 840 µm . The resistance R23

measured between the central voltage contacts V2 and V3 e is the same within 2% accuracy
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for both current cases (89.7 mΩ at 2700 µm conductor length, 91.2 mΩ at 840 µm conductor

length).

Taken together, we believe that these checks rule out a significant influence of Joule

heating or other sources of systematic error leading to length-dependent resistivity in our

experiments.

II. HYDRODYNAMIC ELECTRONS: THEORY

We first shall give an overview of the theoretical description of the electrons as a two-

dimensional hydrodynamic fluid of charged particles obeying Fermi statistics. We assume

that the scattering of the electrons is comprised of three components, namely momentum-

relaxing collisions with impurities and wire boundaries and momentum-conserving electron-

electron scattering. In particular we ignore electron-phonon interactions as well as electron-

electron umklapp scattering processes. Our calculation closely follows the beautiful work

of de Jong and Molenkamp (4) and reproduces their result. Secondly we illustrate a sim-

ple hydrodynamic model describing the electrons as a flow of classical charged particles

characterized by their viscosity.

A. Momentum conserving and momentum relaxing scattering

Following Ref. (4), we start with a semiclassical description of the motion of the electrons,

and use the standard Boltzmann transport equation

df

dt
=

∂f

∂t
+
∑

i

(

∂xi

∂t

∂f

∂xi

+
∂vi
∂t

∂f

∂vi

)

=
∂f

∂t

∣

∣

∣

∣

imp

(S1)

for the distribution function f(~x,~v) in the phase space of the electrons at positions ~x =

(x1, x2)
T with velocity ~v = (v1, v2)

T in a two-dimensional wire. The term on the right-hand

side of the equation denotes the momentum relaxing collisions of the electrons violating

Liouville’s theorem.

The electrons with mass m are subject to a Lorentz force ~F = ~(∂~k/∂t) = m(∂~v/∂t) =

−e ~E in the applied static electric field, thus we can replace Eq. (S1) with

∑

i

(

vi
∂f

∂xi

−
e

~
Ei

∂f

∂ki

)

=
∂f

∂t

∣

∣

∣

∣

scatt

, (S2)
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where we define (∂f/∂t)scatt to formally comprise all remaining contributions to f .

At equilibrium, f is given by the Fermi-Dirac distribution f0 = [exp (β(ǫ− µ)) + 1]−1 with

single-particle energies ǫ = ~
2/(2m)~k2 = (m/2)~v2 and Fermi energy µ. The temperature

of the electrons in the wire is T = (kBβ)
−1. At small electric fields applied in x1 direction

along the wire, we can expand around the equilibrium,

f(~x,~v) = f0 +

(

−
∂f0
∂ǫ

)

χ(x2, φ), (S3)

which implies that the nonequilibrium part of the distribution function in momentum space

is only in a small area around the (circular) equilibrium Fermi surface. Spatially f(~x,~v) only

depends on the transverse coordinate x2, and its velocity dependence, writing ~v = vv̂ with

v̂ := (cosφ, sinφ)T , is split into an energy dependent part given by (∂f0/∂ǫ) and an explicit

directional dependence parametrized by the angle φ with respect to the v1 direction. With

this distribution function the current density can be evaluated according to

~(x2) = 2e

∫

d2vf(~x,~v)~v

= e

∫

dǫD(ǫ)

(

−
∂f0
∂ǫ

)
∫ 2π

0

dφ

2π
χ(x2, φ)~v

=
eDvF
2π

∫ 2π

0

dφχ(x2, φ)v̂. (S4)

We are using ~v ≈ ~vF = vFv̂ and a constant density of states D(ǫ) = m/(π~2).

Inserting Eq. (S3) into the Boltzmann equation (S2) gives to linear order

v2
∂χ(x2, φ)

∂x2

− eEv1 =
∂χ(x2, φ)

∂t

∣

∣

∣

∣

scatt

(S5)

as the determining equation for the unknown χ(x2, φ).

Following Ref. (4), we make a relaxation-time approximation for the bulk impurity scat-

tering part,
∂χ(x2, φ)

∂t

∣

∣

∣

∣

MR

= −
χ(x2, φ)

τMR

. (S6)

The momentum-conserving electron-electron scattering part is parametrized as

∂χ(x2, φ)

∂t

∣

∣

∣

∣

MC

= (S7)

−
χ(x2, φ)

τMC

+
1

2πτMC

∫ 2π

0

dφ′χ(x2, φ
′)
(

1 + 2v̂T v̂′
)

,

which is the most simple momentum-conserving form for the scattering term assuming that

the electrons relax to a shifted Fermi-Dirac distribution f(~x,~v) ≈ f0(ǫ − m~vT~vdrift) where
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the drift velocity is related to the current density via ~(x2) = ne~vdrift(x2), n := Dµ being

the electron density.

For the boundary scattering we assume diffusive reflection. Given a wire of width W ,

this requires for the solution of Eq. (S3) that

χ(−W/2, φ) =
1

π

∫ 2π

π

dφ′χ(−W/2, φ′), (S8)

χ(W/2, φ) =
1

π

∫ π

0

dφ′χ(W/2, φ′) (S9)

at the transverse boundaries of the wire. (We note that φ ∈ [0, π] for x2 = −W/2 and

φ ∈ [π, 2π] for x2 = W/2.)

We introduce an effective mean free path ℓeff(x2, φ) describing the average length an

electron at position x2 travels in the direction given by the angle φ after its last momentum-

relaxing scattering event through the parametrization

χ(x2, φ) = eE cos(φ)ℓ̃eff(x2, φ). (S10)

From Eqs. (S4) and (S10) it follows that its angular average

ℓeff(x2) :=
1

π

∫ 2π

0

dφ cos2(φ)ℓ̃eff(x2, φ) (S11)

is proportional to the drift velocity,

~vdrift(x2) =
e ~E

mvF
ℓeff(x2). (S12)

Thus defining

Leff :=
1

W

∫ W/2

−W/2

dx2ℓeff(x2) (S13)

the conductivity of the wire is given by

σ =
ne2

mvF
Leff. (S14)

Together with the approximations (S6) and (S7) we insert Eq. (S10) into Eq. (S5) and

transform the resulting differential equation into a Fredholm integral equation of the second
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kind,

ℓeff(x2) = ℓ̂eff(x2)

+ λ

∫ W/2

−W/2

dx′
2K(x2, x

′
2)ℓeff(x

′
2), (S15)

ℓ̂eff(x2) : = ℓ−
2ℓ

π

∫ π/2

0

dφ cos2(φ)
(

e−(W/2+x2)/(ℓ sinφ)

+ e−(W/2−x2)/(ℓ sinφ)
)

, (S16)

K(x2, x
′
2) :=

1

π

∫ π/2

0

dφ
cos2 φ

sinφ
e−|x2−x′

2
|/(ℓ sinφ) (S17)

with λ := 1/ℓMC. Here we have introduced the “bare” mean free path ℓ with 1/ℓ :=

1/ℓMR + 1/ℓMC and ℓMC := vFτMC, ℓMR := vFτMR.

B. Numerics

For given values of the momentum conserving and the momentum relaxing mean free

paths, together with the width of the wire, we eventually solve Eq. (S15) numerically:

Measuring lengths in units of W we discretize x2 with N ≤ 100 segments at {x2 = xj :

j = 1 . . . N} with widths {wj : j = 1 . . . N} between the ±W/2 boundaries and replace the

integration over the kernel K in each of the N partitions by a mean value, mapping the

solution onto a matrix problem, written in components

ℓi − λ

N
∑

j=1

Kijwjℓj = ℓ̂i, i = 1 . . . N (S18)

with Kij := K(xi, xj) and equivalently for ℓ and ℓ̂. The solutions to this linear system can

be found easily as long as λ ≡ (ℓMC/W )−1 is not too large, i. e. for weak electron-electron

scattering. In the opposite case ℓMC/W ≪ 1, Eqs. (S15) and (S18) become numerically

unstable. To overcome this instability, we solve the equivalent problem

ℓeff(x2)

(

1− λ

∫ W/2

−W/2

dx′
2K(x2, x

′
2)

)

= (S19)

ℓ̂eff(x2) + λ

∫ W/2

−W/2

dx′
2K(x2, x

′
2) (ℓeff(x

′
2)− ℓeff(x2)) ,

again mapping it onto a matrix problem as before. Fig. S5 displays the resulting dependence

of the resistivity ρ on the ratio ℓMR/W for fixed values ℓMC/ℓMR.
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C. Viscous flow of charged particles

In this section, we present a calculation of the flow of charged particles through a two-

dimensional channel in the fully hydrodynamic limit, i. e. when momentum is fully conserved

in the bulk of the fluid. We start from Newton’s second law ρ~̇v = ~g, introducing a mass

density ρ := m
∫

d2vf(~x,~v) and a force field ~g(~x). The electrons are subject to two forces,

(a) shear forces characterized by a finite viscosity, and (b) an electrostatic field gradient

along the wire in direction x1 (Lorentz force). We regard the electrons as an incompressible

fluid and ignore all momentum relaxing processes. In particular we assume that no point

scatterers are present in the wire.

The shear modulus of an infinitesimally small cube inside the fluid is

Sij := η

(

∂vi
∂xj

+
∂vj
∂xi

)

, (S20)

and the ith component of the corresponding force field thus is

gi =
∑

j

∂Sij

∂xj

= η

[(

∑

j

∂2

∂xj

)

vi +
∂

∂xi

(

∑

j

∂vj
∂xj

)]

,

where the second term inside the square brackets vanishes due to the incompressibility of

the electrons (∇~v ≡ 0). Together with the electric field ~E along the wire we have to solve

the equation

ρ~̇v = η∆~v − ρ
e

m
~E, (S21)

which is equivalent to the Navier-Stokes equation for a stationary laminar flow of an incom-

pressible fluid. We seek a steady state, so ~̇v = 0 as well. With ~E = −(V/L)x̂1 for our wire

with length L and width W (x̂i := xi/|~x|), the solution is given by ~v = v(x2)x̂1,

v(x2) =
1

2

ρ

η

e

m
E

(

x2
2 −

W 2

4

)

(S22)

for −W/2 ≤ x2 ≤ W/2. With n = ρ/m, this causes a current

I = neT

∫ W/2

−W/2

dx2v(x2) (S23)

through the wire of thickness T (being infinitely smooth at x3 = ±T/2), and we obtain for

the resistance R = V/I

R =
12L

T

η

(ne)2
1

W 3
. (S24)

We note that the finiteness of the resistance is exclusively due to the finite width of the wire:

Because the electronic momentum is conserved, we must have R → 0 in the bulk limit.
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D. Intuitive significance of the de Jong-Molenkamp theory

The comparison of Eq. (S24) with the solid line in Fig. S5 is significant. Resistance R

varying as 1/W 3 is equivalent to resistivity ρ varying as 1/W 2 because of the extra ge-

ometrical factor TW/L in the definition of ρ. The quadratic extra contribution to ρ in

the calculation of sections IIA and IIB at high rates of momentum-conserving scattering

(ℓMC/ℓMR → 0) is therefore naturally identified with a viscous contribution to the resistiv-

ity. In the opposite limit when the rate of momentum-conserving scattering tends to zero

(ℓMC/ℓMR → ∞) the dotted line limits to the ballistic transport result calculated in theo-

ries that ignore momentum-conserving scattering (30). Since the theory limits to physically

reasonable results at both its extremes, we believe that some confidence can be placed in

its predictions. When plotted in the dimensionless units of Fig. S5, these predictions are

unique for each value of ℓMC/ℓMR, and contain no free parameters. In other words, both the

functional form and the magnitude of the change in resistivity as a function of channel have

physical significance. In this context, the closeness of the prediction for to the experimental

data shown in Fig. 4A of the main paper for ℓMC/ℓMR = 0.1 is very good.

The 1/W 3 variation predicted for R at ℓMC/ℓMR = 0.005 gives the opportunity to calibrate

ρ/ρ0 − 1 against viscosity. Specifically, for ℓMC/ℓMR ≪ 1, we approximately have

ρ

ρ0
≈ 1 + b

(

ℓMR

W

)2

, (S25)

with a coefficient b strongly depending on the exact ℓMC/ℓMR ratio. We note that in the

strong electron-electron scattering limit we are at the border of validity of the theory,

mirrored by the fact that we suffer from numerical instabilities when solving Eq. (S15)

for ℓMC/ℓMR . 0.005. With these ambiguities in mind, we obtain an estimate b =

O(10−3 . . . 10−2).

III. ANALYSIS OF EXPERIMENTAL DATA USING HYDRODYNAMIC THE-

ORY

A. Estimate of viscosity

For analyzing the actual experimental data from PdCoO2, we first note that the mo-

mentum conserving scattering processes relevant to our experiment likely include normal
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electron-phonon events (since the strong phonon drag prevents these from relaxing the mo-

mentum of the electron assembly) as well as electron-electron events. However, both types

of processes can safely be encoded by the parameter ℓMC for the purposes of our analysis,

since it is performed at fixed temperature. A more sophisticated theory would be required

to extend it reliably to situations in which the temperature is varied.

Next, we estimate the viscosity η. First we note that comparison of Eqs. (S24) and (S25)

implies that

b =
12η

(ne)2ρ0ℓ2mr

. (S26)

Taking the estimate of the value of b obtained from here, using the known values for n, e, ℓMR

and ρ0 (4.9×1028 m−3, 1.602×10−19 C, 2×10−5 m and 8×10−11 Ωm respectively) and working

at our maximum measured value of ℓMR/W = 20, for which ρ/ρ0 − 1 ≈ 4 for ℓMC/ℓMR =

0.005 (Fig. S5, solid line), we obtain η in the range 1.6 × 10−4 . . . 1.6 × 10−3 kg(m s)−1.

Converting this unambiguously to the viscous contribution to our experimental data at

ℓMR/W = 20 would require being able to decouple the viscous effects on boundary scattering

from those associated with the impurity scattering. This is possible for the ℓMC/ℓMR → ∞

limit (impurity scattering dominates) and ℓMC/ℓMR → 0 (viscous effects dominate) but

cannot be done with certainty for the parameter range (ℓMC/ℓMR ≈ 0.1) relevant to the

experiments. However, two limits can be established on the viscous contribution to the

experimental data. One extreme is to attribute the entire extra resistivity to viscous effects,

i.e. to set (ρ/ρ0 − 1)visc = 14. The other is to attribute the viscous contribution only to the

difference between the measured data and the boundary scattering that would have resulted

in the absence of any momentum conserving scattering processes. This sets (ρ/ρ0−1)visc = 6.

The true viscous contribution must lie between these limits, yielding an estimate for the

viscosity of the electron fluid in PdCoO2 of η between 3× 10−4 and 6× 10−3 kg(m s)−1.

Viscosities of everyday fluids are typically quoted either as dynamic viscosity η as given

above, or as kinematic viscosity ν, obtained by dividing out the mass density. Doing that for

our PdCoO2 results gives 0.01 m2s−1< ν < 0.3 m2s−1. In a Fermi liquid, ν can be estimated

as ανF ℓMC , with α ∼0.2 (38) . Fig. 4 of the main paper show that our data are consistent

with ℓMC∼2 µm, and νF for PdCoO2 is approximately 7.5 × 105 ms−1 (18) , giving a second

estimate for ν that falls within our quoted range. This is a useful internal cross-check on

our method for estimating viscosity. Taken together, these analyses mean that the electron

fluid in PdCoO2 has a dynamic viscosity similar to that of water (1×103 kg(ms)−1 at room
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temperature) but a kinematic viscosity greater closer that of honey (∼0.01 m2s−1 at room

temperature).

After submission of our manuscript, a report of measurements of the viscosity of the

electron fluid in graphene appeared on the archive (39). For those samples the kinematic

viscosity is similar to that deduced here for PdCoO2, but the dynamic viscosity is approxi-

mately 104 smaller due to the low carrier concentration.

B. Effect of varying ℓMC/ℓMR by changing sample temperature

As discussed in the main text, the theory of Ref. (4) cannot be expected to directly

calculate temperature dependent hydrodynamic effects in PdCoO2 accurately because it is

likely to have different temperature dependent sources for its momentum-conserving scat-

tering than those expected in the low carrier density two-dimensional electron gas for which

the theory was designed. However, one can anticipate that, by changing the temperature,

one can alter the ℓMC/ℓMR ratio. Since the Fermi temperature of PdCoO2 is so high (ap-

proximately 30000 K) that all thermally-induced momentum-relaxing scattering at room

temperature and below is quasi-elastic, this is similar to studying the effects of changing

residual resistivity, but with an unknown accompanying change to ℓMC . Although the ℓMC

change is not controlled, such an experiment has the capability of checking for sensitivity

to momentum-conserving scattering, as outlined in Figs. S6 A and B. In each figure, the

ℓMC/ℓMR ratio is changed by a factor of 20 by starting from different assumed values of

ℓMC/ℓMR and varying ℓMR . In Fig. S6 A, where the starting value is 0.05 is in the region

deduced from the analysis accompanying Fig. 4 C of the main paper, changing the ratio by

decreasing ℓMR results in predicted changes to the data because the viscous contribution to

the boundary scattering is being changed. In Fig. S6 B, in contrast, the only change resolved

is restriction of the accessible ℓMR/W range. This is because in this range of ℓMC/ℓMR the

momentum-conserving scattering is too weak to affect the resistance, and all the curves are

essentially the same as the standard transport theory curve of Fig. 4 in the main paper.

In Fig. S6 C we present analysis of data at 20, 30, 40, 50, and 75 K, a range across which

ℓMR changes substantially, by amounts that can be deduced from the restriction along the

ℓMR/W axis. The curves “fan out” from each other like the data predicted in Fig. S6 A,

rather than following the near-universal curve predicted in Fig. S6 B or the completely uni-
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versal curve that would be predicted by traditional transport theory. We believe that this is

further evidence that momentum-conserving scattering and hence electronic hydrodynamics

play an important role in determining the resistance of our channels.
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FIG. S1. The sample fabricated to check current flow and electrical thickness as a function of

length along our device. The voltage contacts are spaced with a separation approximately a factor

of three closer together than on the device shown in Fig. 1 of the manuscript, allowing determination

of the electrical thickness of that sample as described in the text. Current is injected through the

top contacts marked ‘I’.
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FIG. S2. Width and height determination in the SEM for a sample around W =4 µm. In this

case, Wtop =3.2 µm and Wbottom =4.5 µm, yielding a weighted average width of W=4.06 µm.
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FIG. S3. Ga implantation and damage range in PdCoO2 for high angle incidence (87.5o).
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FIG. S4. PdCoO2 microstructure designed for consistency checks of the resistivity scaling with

conductor length. The main current path is highlighted in purple. The current is injected into the

structure through large meandered paths, to ensure current homogeneity in the central bar.
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FIG. S5. Dependence of the resistivity ρ normalized to the bulk resistivity ρ0 on the ratio ℓMR/W

at fixed ℓMC/ℓMR = 0.005 (solid line, strong electron-electron scattering), 0.1 (dashed line), and

1000 (dotted line, weak electron-electron scattering).
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FIG. S6. A and B: Predictions of the hydrodynamic theory over similar dynamic ranges of

ℓMC/ℓMR but different starting values. In A they are seen to fan out because in that part of the

predicted phase diagram the results have sensitivity to changes in ℓMC/ℓMR , while in B they follow

a quasi-universal curve. In C we show data from PdCoO2 in which the ℓMC/ℓMR ratio is tuned

by raising the temperature. Lines are guides to the eye made using second-order polynomials, not

fits to the theory. The precise changes to ℓMC/ℓMR are not known, so the test is only qualitative,

but the data are seen to be consistent with the prediction in panel A and definitely not consistent

with the prediction in panel B.
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