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Abstract 

It is well known that the performance of a stochastic lo- 
cal search procedure depends upon the setting of its noise 
parameter, and that the optimal setting varies with the prob- 
lem distribution. It is therefore desirable to develop general 
priniciples for tuning the procedures. We present two statis- 
tical measures of the local search process that allow one to 
quickly find the optimal noise settings. These properties are 
independent of the fine details of the local search strategies, 
and appear to be relatively independent of the structure of 
the problem domains. We applied these principles to the 
problem of evaluating new search heuristics, and discovered 
two promising new strategies. 

Introduction 

The performance of a stochastic local search procedure crit- 
ically depends upon the setting of the “noise” parameter 
that determines the likelihood of escaping from local min- 
ima by making non-optimal moves. In simulated annealing 
(Kirkpatrick et al. 1983, Dowsland 1993) this is the tem- 
perature; in tabu search (Glover 1986, Glover and Laguna 
1993), the tenure (the length of time for which a modified 
variable is tabu); in GSAT (Selman et al. 1992), the random 
walk parameter; and in WSAT (also called “walksat”, Sel- 
man et al. 1994), the parameter is simply called noise. The 
optimal noise parameter setting depends both upon charac- 
teristics of the problem instances, and on the fine-grained 
details of the search procedure, which may be influenced 
by other parameters. It requires considerable effort to find 
the optimal noise parameter setting for a given problem 
distribution using trial-and-error. Furthermore, sometimes 
one is faced with a unique, difficult problem to solve, and 
therefore cannot tune the noise by solving similar problems. 
Thus it would be extremely desirable to find a way to set 
the noise parameter that does not vary with the particular 
search algorithm or the particular problem instance. 

This paper presents empirical evidence that such useful 
invariants (i.e., properties that hold across strategies and 
domains) do indeed exist. We first studied six variations 
of the basic WSAT architecture on a class of hard random 
problem instances. Based on this study we uncovered two 
invariants. First, for a given problem class, the “noise level” 
measured by the objective function value (the number of 
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unsatisfied clauses) at the optimal parameter settings was 
approximately constant across solution strategies. We call 
this the “noise level invariant”. We also discovered an even 
more general principle which shows that the optimal param- 
eter setting is one that approximately minimizes the ratio of 
the objective function’s mean to its variance. We will show 
how this “optimality invariant” can be used to tune the noise 
parameter for a unique problem instance, without having to 
first solve that instance or a similiar one. As we will see, 
the optimal value of the noise parameter for a given strategy 
can be quickly and accurately estimated by analyzing the 
statistical properties of several short runs of the strategy. 

In order to verify that these invariants are not simply due 
to special properties of random instances, we then confirmed 
our findings on highly structured instances from the domains 
of planning and graph coloring. 

The results presented in this paper provide immediate 
practical guidelines for parameter tuning for WSAT and 
its variants. We further hypothesize that the same invari- 
ants hold across other classes of local search procedures, 
because the variants of WSAT we considered were in fact 
based on some of these other procedures: for example, a 
tabu version, a GSAT-like version, and so on. Confirming 
this hypothesis will require future work. Our results also 
suggest that the invariants we observed may hold in general, 
because the domains we considered were so distinct in other 
aspects. Along with the presentation of the empirical results 
we will also discuss intuitive explanations as to why these 
invariants may hold. The current state of the theory of local 
search does not allow one to analytically derive the exis- 
tence of these invariants, and we present the development 
of such a predictive framework as a challenge to the theory 
community. 

Another practical consequence of our work is that it can 
be used to help design new local search heuristics. It can 
be very time-consuming to empirically evaluate a suggested 
heuristic. Because local heuristics are so sensitive to the set- 
ting of their noise parameter, one can only rule out a heuristic 
if it is tested at its optimal setting. When testing dozens or 
hundreds of heuristics, however, it is computationally pro- 
hibitive to exhaustively test all parameter settings. In our 
own search for better heuristics, however, the parameter 
settings determined by the invariants consistently yielded 
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the best performance for each strategy. This allowed us to 
quickly identify two new heuristics that outperformed all 
the other variations of WSAT on our test instances. 

There have been, of course, previous comparative studies 
of the performance of different local search algorithms for 
SAT. For example, Gent and Walsh (1993) compared the 
performance of an “alphabet soup” of variations of GSAT, 
concluding that one called “HSAT” could solve random 
problems most quickly. Our aim here is different: we 
are less interested in finding the best algorithm for ran- 
dom instances than in finding general principles that reveal 
whether or not different algorithms are in fact searching 
the same space in approximately the same manner. Parkes 
and Walser (1996) studied a modified version of WSAT, us- 
ing GSAT’s minimization function at the “p -50%” noise 
level. They concluded the original WSAT was superior to 
the modified version. As we shall see, however, the param- 
eter p has different optimal values for different strategies, 
and in particular is not optimal at 50% for the modified 
WSAT. Recent work by Battiti and Protasi (1996) is similar 
in spirit to the present study, in that they develop a general 
feedback scheme for tuning the noise parameters of local 
search SAT algorithms. Their calculation is based on the 
“mean Hamming distance” the algorithm travels in the tail 
of the search. By contrast, we believe that the statistical 
measures we employed (described below) more accurately 
and clearly reveals the optimal noise settings for a variety 
of algorithms. 

Local Search Procedures for Boolean Satisfiability 

We consider algorithms for solving Boolean satisfiability 
problems in conjunctive-normal form (CNF). A formula is a 
conjuction of clauses; a clause is a disjuction of literals; and 
a literal is a propositional variable or its negation. In 3SAT, 
each clause contains exactly three distinct literals. Clauses 
in a “random 3SAT” formula are generated by choosing 
three distinct literals uniformly at random, and then negating 
each or not with equal probability. Mitchell et al. (1992) 
showed that random 3SAT problems are computationally 
hard when the ratio of clauses to variables in such formula 
is approximately 4.3. 

A local search procedure moves in a search space where 
each point is a truth assignment to the given variables. A so- 
lution is an assignment in which each clause of the formula 
evaluates to true. The WSAT procedure begins by consider- 
ing a random truth assignment. It searches for a solution by 
repeatedly selecting a violated clause at random, and then 
employing some heuristic to select a variable in that clause 
to “flip” (change from true to false or vice-versa). 

The objective function that local search for SAT attempts 
to minimize is the total number of unsatisfied clauses. The 
characteristic of a search strategy that causes it to make 
moves that are non-optimal - in the sense that the moves 
increase or fail to decrease the objective function, even when 
such improving moves are available in the local neighbor- 
hood of the current state - is called noise. As noted earlier, 
noise allows a local search procedure to escape from local 
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RIVOVELTU: This is the same as NOVELTY, except in 
the case where the best variable is the most recently 
flipped one. In this case, let n be the difference in the 
objective function between the best and second-best vari- 
able. (Note that n 2 1.) There are then four cases: 

1. 

2. 

3. 
4. 

When p < 0.5 and n > 1, pick the best. 
When p < 0.5 and n = 1, then with probability 2p 
pick the second-best, otherwise pick the best. 

When p 2 0.5 and n = 1, pick the second best. 
When p 2 0.5 and n > I, then with probability 2(p - 
0.5) pick the second-best, otherwise pick the best. 

optima. Each heuristic described below takes a parameter 
that can vary the amount of noise in the search. As we 
will see, the values assumed by this parameter are not di- 
rectly comparable across strategies: e.g., a value of 0.4 for 
one strategy may yield a search with more frequent non- 
improving moves than the search performed by a different 
strategy with the same parameter value. In fact, the noise 
level invariant we will describe later can be simply viewed 
as a normalized way of measuring noise that is comparable 
across strategies. 

We considered six heuristics for selecting a variable from 
within a clause. The first four are variations of known 
procedures, while the last two were created during this study, 
and are described here for the first time. They are: 

G: With probability p pick any variable, otherwise pick a 
variable that minimizes the total number of unsatisfied 
clauses. The value p is the noise parameter, which ranges 
from0 to 1. 

B: With probability p pick any variable, otherwise pick a 
variable that minimizes the number of clauses that are 
true in the current state, but that would become false if 
the flip were made. In the original description of WSAT, 
this was called “minimizing breaks”. Again p is the noise 
parameter. 

SKC: Like the previous, but never make a random move 
if one with a break-value of 0 exists. Note that when 
the break-value is 0, then the move is guaranteed to also 
improve the objective function. This is the original WSAT 
strategy proposed by Selman, Kautz, and Cohen (1994). 

‘I’ABU: The strategy is to pick a variable that minimizes 
the number of unsatisfied clauses. At each step, however, 
refuse to flip any variable that had been flipped within the 
past t steps; if all the variables in the chosen unsatisfied 
clause are tabu, choose a different unsat clause instead. 
If all variables in all unsatisfied clauses are tabu, then the 
tabu list is ignored. The tabu list length t is the noise 
parameter. 

NOVELTY: This strategy sorts the variables by the total 
number of unsatisfied clauses, as does G, but breaking ties 
in favor of the least recently flipped variable. Consider 
the best and second-best variable under this sort. If the 
best variable is not the most recently flipped variable in 
the clause, then select it. Otherwise, with probability p 
select the second-best variable, and with probability 1 -p 
select the best variable. 



The intuition behind NOVELTY is that one wants to avoid 
repeatedly flipping the same variable back and forth. The 
intuition behind R-NOVELTY is that the objective function 
should influence the choice between the best and second- 
best variable - a large difference in the objective function 
favors the best. Note that R-NOVELTY is nearly determin- 
istic. To break deterministic loops in the search, every 100 
flips the strategy selects a random variable from the clause. 
Although few flips involve non-determinism, as we shall 
see the performance of R-NOVELTY is still quite sensitive 
to the setting of the parameter p. 

Noise Level Invariant 

hard random 3SAT 
16 I I I I 

G+- 

0 20 40 60 80 100 
noise 

Figure 1: Sensitivity to noise. 

As we have discussed, noise in local search can be controlled 
by a parameter specifying the probability of a locally non- 
optimal move, as in strategies G, B, and SKC, NOVELTY, 
and R-NOVELTY. Tabu procedures instead take a parameter 
specifying the length of the tabu list. Searches with short 
tabu lists are more susceptible to local minima (i.e. are less 
noisy) than searches with long tabu lists. 

In Figure 1 we show the results of a series of runs of 
the different strategies as a function of the setting of the 
noise parameter, on a collection of 400 variable hard random 
3SAT instances. The horizontal access is the probability of a 
random move. The tabu length ranged from 0 to 20, and was 
normalized in the graph to the range of 0 to 100. The vertical 
axis specifies the percentage of instances solved. Each data 
point represents 16,000 runs with a different formula each 
run, where the maximum number of flips per run is fixed at 
10,000. 

We have plotted the value of the noise parameter versus 
the fraction of the instances that were solved. For example, 
R-NOVELTY solved almost 16% of the problem instances 
when p was set to 60%. Considering the fraction solved 
with a fixed number of flips allows us to gather accurate 
statistics on the effectiveness of each strategy. If instead we 
tried to solve every instance, we would face the problem of 

dealing with the high variation in the run-time of stochastic 
procedures - for example, a few runs could require millions 
of flips, simply by chance - and the problem of dealing with 
runs that never converged. 

As is clear from the figure, the performance of each strat- 
egy varies greatly depending on the setting of the noise 
parameter. For example, running R-NOVELTY at a noise 
level of 40% instead of 60% degrades its performance by 
more than 50%. Furthermore, the optimal performance ap- 
pears at different parameter settings for each strategy. This 
immediately suggests that in comparing strategies one has 
to carefully optimize the parameter setting for each, and that 
even minor changes to a strategy require that the parameters 
be appropriately re-adjusted. 
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Figure 2: Strategy invariance of normalized noise level on 
random formulas. 

Given the preceding observation, the question arises: is 
there a better characterization of the noise level, which is 
less sensitive to the details of individual strategies? We 
examined a number of different measures of the behavior 
of the local search strategies. Let us define the normal- 
ized noise level of a search procedure on a given problem 
instance as the the mean value of the objective function dur- 
ing a run on that instance. Then we can observe that the 
optimal normalized noise level is approximately constant 
across strategies. This is illustrated in Figure 2. In other 
words, when the noise parameter is optimally tuned for each 
strategy, then the mean number of unsatisfied clauses during 
a run is approximately the same across strategies. 

We call this phenomena the noise level invariant. It 
provides a useful tool for designing and tuning local search 
methods: Once we have determined the mean violation 
count giving the optimal performance for a single strategy 
over a given distribution of problems, we can then simply 
tune other strategies to run at the same mean violation count, 
in the knowledge that this will give us close to the optimal 
performance. 

After hypothesizing the existence of this invariant based 
on our study of random formulas, we wished to see whether 
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it also held for classes of real-world, structured satisfiability 
problems. Figures 3 and 4 present confirming evidence. 

Figure 3 is based on solving a satisfiablity problem 
that encodes a blocks-world planning problem (instance 
“bw_large.a”, from (Kautz and Selman 1996)). The origi- 
nal problem is to find a 6-step plan that solves a planning 
problem involving 9 blocks, where each step moves a block 
(i.e., a pickup followed by a putdown). After the problem is 
encoded and then simplified by unit propagation, it contains 
459 variables and 4675 clauses. Each stochastic procedure 
was run 16,000 times, with a different random seed for each 
run, at each data point. (Note that this is unlike the case 
with the random formulas, where a different formula was 
generated for each try. Of course, the entire point of this 
exercise was to test our hypothesis on a real structured prob- 
lem, not on a collection of randomly-generated instanced. 
We wanted to make sure that the observed invariant was not 
simply due to some statistical property of random formulas.) 

Figure 4 shows the noise level invariant on a SAT encod- 
ing of a graph coloring problem. The instance is based on 
an 18 coloring of a 125node graph (Johnson et al. 1991). 
This formula contains 2,250 variables and 70,163 clauses. 
Because this formula is so large, we could not perform as 
many runs for each data point as in the previous experi- 
ments. Each point is based on just 1,000 samples. The 
explains the somewhat irregular nature of the curves. 

Figure 3: Strategy invariance of normalized noise level on 
a planning formula. 

The noise level invariant does not imply that all strategies 
are equivalent in terms of their optimal performance level. 
We have informally experimented with a large number of 
heuristics for selecting the variable to change in the WSAT 
program for solving Boolean satisfiability problems. The 
noise level invariant allowed us to quickly evaluate more 
than 50 variations of WSAT, while being confident that 
each was tested at its optimal noise level. This led to the 
development of the NOVELTY and R-NOVELTY strate- 
gies, which consistently outperform the other variants, by 
roughly a factor of two. 

mean violation count 

Figure 4: Strategy invariance of normalized noise level on 
a graph coloring formula. 

The Optimality Invariant 

The noise level invariant gives us some handle on dealing 
with the noise sensitivity of local search procedures. In or- 
der to use it, however, one needs to be able to gather statistics 
on the success rate of at least one strategy across a sample of 
a given problem distribution. In practice we are often faced 
with the need to solve a particular novel problem instance. 
Furthermore, this instance can be extremely hard, and solv- 
ing it even once may require a large amount of computation 
even at the (yet unknown) optimal noise setting. What is 
desirable, therefore, is a way of quickly predicting the set- 
ting of the noise parameter for a single problem instance, 
without actually having to solve it. 

Fortunately, our empirical study of noise sensitivity has 
yielded a preliminary principle for setting noise parameters 
based on statistical properties of the search. More specif- 
ically, we make many short runs of the search procedure. 
We record the final value of the objective function for each 
run and the variance of the values over that run. We then 
take the average of these values over the runs. 

At low noise levels (running too “cold”), the mean value 
of the objective function is small - i.e., we are reaching 
states with low numbers of unsatisfied clauses. However, 
the variance is also very small; so small, in fact, that the al- 
gorithm seldom reaches a state with zero unsatisfied clauses. 
When this occurs, the algorithm is stuck in a deep local min- 
ima. On the other hand, at high noise levels (running too 
“hot”), the variance is large, but the average number of un- 
satisfied clauses is even larger. Once again, the algorithm is 
unlikely to reach a state with zero unsatisfied clauses. 

Therefore, we need to find the proper balance between 
the mean and variance. Our experiments show that the ratio 
of the mean to the variance provides a useful balance. In 
fact, optimal performance is obtained when the noise value 
is slightly above that at which the ratio is minimized. We 
call this observation the optimal&y invariant. Furthermore, 
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Figure 5: Tuning noise on random instances. 

this invariant holds for all the variations of WSAT we con- 
sidered. 

To illustrate the principle, In Figure 5 we present the frac- 
tion of problems solved as a function of the mean to variance 
ratio on a collection of hard random problem instances. For 
each strategy the data points form a loop. Traversing the 
loop in a clockwise direction starting from the lower right 
hand corner corresponds to increasing the noise level from 
0 to its maximum value. As we see, at some point during 
this traversal one reaches a minimum value of the mean 
to variance ratio. For example, the ILNOVELTY strategy 
(the highest curve) has a minimum mean to variance ratio 
of around 2.5. At that point it solves about 11% of the 
instances. By raising the noise somewhat further, and thus 
increasing again the mean to variance ratio, we reach the 
peak performance of 15% at a ratio of 2.8. We observe the 
same pattern for all strategies. In our experiments we found 
the optimal performance when the ratio is about 10% higher 
than its minimum value. 

Figures 6 and 7 again confirm this observation on the 
planning and graph coloring instances. Again we see that 
all the curves reach their peak slightly to the right of the 
minimal mean to variance ratio. 

We should stress again that measuring the mean to vari- 
ance ratio does not actually require solving the problem 
instance. We can measure the ratio at each noise value by 
simply doing several short runs where we compute the mean 
and the variance of the violation count during the run. Then, 
by repeating this procedure at different noise parameter set- 
tings we can determine the settings necessary to obtain a 
mean to variance ratio that is 10% above its minimum. This 
gives a noise parameter setting at which we can then in- 
vest a significant amount of computational effort in order to 
actually solve the instance. 

2.5 3 3.5 4 4.5 5 
violaLIon count --- mean to variance ratio 

Figure 6: Tuning noise on a planning instance. 

Another way of solving a unique problem instance is to 
start a run at an arbitrary noise level. Then, one can measure 
the mean to variance ratio during the run, and dynamically 
adjust the noise level to obtain optimal performance. We 
are currently experimenting with such a self-tuning version 
of WSAT. 

We presented two statistical measures of the progress of lo- 
cal search algorithms that allow one to quickly find optimal 
noise settings. First, we showed that the optimal mean value 
of the objective function is approximately constant across 
different local search strategies. Second, we showed that 
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Figure 7: Tuning noise on a graph-coloring instance. 

one can optimize the performance of a local search pro- 
cedure by measuring the ratio of the mean to variance of 
the objective function during a run. The second measure 
allows one to find good noise level settings for previously 
unseen and unsolved problem classes. Finally, we applied 
these principles to the task of evaluating new local search 
heuristics, and as a result discovered two new heuristics that 
significantly outperformed other versions of WSAT on all 
the test data. 
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