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Evidence for massive bulk Dirac fermions in
Pb1� xSnxSe from Nernst and thermopower
experiments
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Topological surface states protected by mirror symmetry are of interest for spintronic

applications. Such states were predicted to exist in the rocksalt IV–VI semiconductors, and

several groups have observed the surface states in (Pb,Sn)Te, (Pb,Sn)Se and SnTe using

photoemission. An underlying assumption in the theory is that the surface states arise from

bulk states describable as massive Dirac states, but this assumption is untested. Here we

show that the thermoelectric response of the bulk states displays features specific to the

Dirac spectrum. By relating the carrier density to the peaks in the quantum oscillations, we

show that the first (N¼0) Landau level is non-degenerate. This finding provides robust

evidence that the bulk states are indeed massive Dirac states. In the lowest Landau level, Sxx

displays a striking linear increase versus magnetic field characteristic of massive Dirac

fermions. In addition, the Nernst signal displays a sign anomaly in the gap-inverted phase at

low temperatures.
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T
he rocksalt IV–VI semiconductors have been identified by
Fu et al.1,2 as a novel class of insulators—the topological
crystalline insulators—which display surface states that are

protected by crystalline symmetry. The topological surface states
in topological crystalline insulators are to be contrasted with
those in the widely investigated Z2 invariant topological
insulators, which are protected by time-reversal invariance3,4.
Angle-resolved photoemission spectroscopy (ARPES) experiments
have obtained evidence for the surface states in Pb1� xSnxSe
(ref. 5), SnTe (ref. 6) and Pb1� xSnxTe (ref. 7).

In the alloys Pb1� xSnxTe and Pb1� xSnxSe, the bulk electrons
occupy four small Fermi surface (FS) pockets located at the L
points in k space (inset, Fig. 1). The conduction band is
predominantly derived from the cation Pb 6p orbitals, whereas
the uppermost valence band is predominantly anion 4p (or 5p)
orbitals (ordering similar to the atomic limit)8. As the Sn content
x increases, the system undergoes gap inversion when x exceeds a
critical value xc (refs 9–12). In samples with xZxc, gap inversion
occurs when the temperature T is lowered below the gap-
inversion temperature Tinv. The ARPES experiments5–7 confirm
that the predicted topological surface states appear in the gap-
inverted phase.

The new topological ideas invite a fresh look at the bulk states
of the IV–VI semiconductors. To date, the gap inversion appears
to have no discernible effect on transport properties (the
resistivity, Hall coefficient and thermopower vary smoothly
through Tinv). This is surprising given that transport probes the
states at the Fermi level. Moreover, a long-standing prediction8,13

is that the bulk electrons occupy states described by the massive

Dirac Hamiltonian. This assumption underlies the starting
Hamiltonian of Hsieh et al.2 However, no experimental test
distinguishing the massive Dirac from the Schrödinger
Hamiltonian has appeared to our knowledge.

We have grown crystals of Pb1� xSnxSe (x¼ 0.23) in which the
n-type carriers have high mobilities (m¼ 114,000 cm2V� 1 s� 1 at
4 K). The low electron density (3.46� 1017 cm� 3) enables the
quantum limit to be reached at 7.7 T (measurements reveal that
holes are absent). In addition to resistivity, we have used both
thermopower and the Nernst effect to probe the states in fields up
to 34 T. Surprisingly, the Nernst signal is observed to change
its sign at Tinv. To date, this appears to be the only transport
or thermodynamic quantity that is strongly affected by gap
inversion.

In a thermal gradient �rT k x̂ and an applied magnetic field
B k ẑ, the diffusion of carriers produces an electric field E, which
is expressed as the thermopower signal Sxx¼ �Ex/|rT| and the
Nernst signal Sxy¼Ey/|rT |. In the semiclassical regime, the Mott
relation14 simplifies Sxx and Sxy to the form (see Methods section)

SxxðBÞ ¼ A s2

s2 þs2xy
Dþ

s2xy
s2 þ s2xy

DH

 !
ð1Þ

SxyðBÞ ¼ A ssxy
s2 þs2xy

ðDH �DÞ; ð2Þ

where A ¼ p2k2BT=3e. The dependence on B appears only
in the conductivity matrix elements sij(B) (for brevity, we write
s�sxx). The parameters D¼ qlns/qz and DH¼ qlnsxy/qz are
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Figure 1 | Thermopower and Nernst effect in a topological crystalline insulator. The panels provide an overview of how the thermopower Sxx and Nernst

signal Sxy vary with field B in a high-mobility crystal (sample 1) of Pb1� xSnxSe with x¼0.23. (a, b) Curves of Sxx versus B at selected T (sample 1). At each T,

the V-profile bracketing B¼0 reflects the rapid crossover from small mB to large mB regime. (c) The Nernst signal Sxy/T from 60 to 300K. The sharp peaks

reflect the semiclassical response. An anomalous sign change occurs at Tinv¼ 180K. (b,d) Fits equations 1 and 2 (thin curves) to Sxx and Sxy at low B. For Sxy
(d), we have had to invert the sign. At 30.3 K, the best-fit values of m, D and DH are 51,404 cm2V� 1 s� 1, 61.5 eV� 1 and 104.6 eV� 1, respectively.

At 4.71 K, the corresponding values are 113,250cm2V� 1 s� 1, 52.3 eV� 1 and 81.3 eV� 1. The inset shows the L (111) points on the hexagonal faces of

the Brillouin Zone.
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independent of the mobility m (z is the chemical potential).
Equation 1 describes the crossover in Sxx from AD (at B¼ 0) to
ADH when mB441. Correspondingly, Sxy increases linearly from
0 to peak at the value 1/2A(DH�D) at B¼ 1/m before falling as
1/B when mB441. For n-type carriers, both A and sxy are
negative, and Sxxo0. From equation 2, the Nernst signal Sxy is
positive if DH4D (we discuss the sign convention in the
Methods section). In terms of the exponents b and bH defined by
s(E)BEb and sxyBEbH, we have D¼b/EF and DH¼ bH/EF.

Even for one-band systems, equations 1 and 2 have not
received much experimental attention, possibly because real
materials having only a single band of carriers with a low density
(and high mobility) are rare. The analysis of Sij is complicated by
the extreme anisotropy of the FS pockets in many semi-metals.
For recent Nernst measurements on Bi and Bi2Se3, see refs 15,16.
For results on Sij in graphene, see refs 17–19. The angular
variation of the SdH period in Bi is investigated in refs 20,21. In
the annealed crystals of Pb1� xSnxSe (with xCxc) investigated
here, our measurements reveal only n-type carriers (holes are
absent). The FS pockets are very small (the quantum limit is
reached at 7.7 T) and nearly isotropic (as shown by field-tilt
measurements). We find that equations 1 and 2 provide a very
good fit to Sxx and Sxy in the semiclassical regime.

Here we provide evidence that the bulk electronic states at the
L points are in fact massive Dirac states. A characteristic feature
of the massive Dirac spectrum is that in a magnetic field, the
lowest Landau level (LL) is non-degenerate with respect to the
spin degrees, whereas all higher LLs are doubly degenerate.
Knowing the carrier density, we show that the field at which the
chemical potential jumps to the lowest LL accurately determines
its spin degeneracy to be 1. This confirms the starting assumption
of ref. 2. The unusual thermoelectric response is also investigated
deep in the quantum limit. In addition, we show that the sign of
the Nernst signal is anomalous (relative to standard Boltzmann
theory) within the gap-inverted phase.

Results
Semiclassical regime. Figure 1a and 1b plots curves of the
thermopower Sxx versus B for selected T. From 250 to 160K, the
dominant feature is the rapid increase in weak B followed by
saturation to a B-independent plateau at large B. As noted, the
Nernst signal (shown as Sxy/T in Fig. 1c) changes from positive to
negative as T is decreased below 180K (identified with Tinv).

As shown in Fig. 1b, the curves of Sxx versus B fit very well to
equation 1 in the semiclassical regime (|B|o1T). Likewise, below
100K the curves of Sxy also fit well to equation 2 up to an overall
sign (Fig. 1d). Although the fit parameters (m, D, DH) for Sxx are
independent of those for Sxy, we find that they agree with each
other (at the level of ±2%) below 60K (see Methods section). At
each T, the two curves, Sxx(B) and Sxy(B), are described by just
three parameters. This provides a potent self-consistency check of
equations 1 and 2. As a further test, we have also fitted the
measured conductivity tensor sij(B) and obtained similar values
for m below 100K (Methods). By and large, the close fits to both
tensors Sij and sij demonstrate that we have one band of carriers
below 100K.

The semiclassical expressions are no longer valid when
quantum oscillations appear at higher B. In particular, the giant
step at 7.7 T in the curves at 30 and 40K (Fig. 1a) is a relic of the
quantum regime that remains resolvable up to 100K. The step
has a key role in the discussion later. In the opposite extreme
above 100K, the two sets of fit parameters begin to deviate. The
disagreement is especially acute near 180K, where Sxy changes
sign. We reason that the one-band assumption breaks down
because of strong thermal activation of holes as the gap closes and

re-opens across Tinv. The evidence comes from the T dependence
of the Hall density nH¼B/eryx (solid circles in Fig. 2a). Whereas
nH is nearly T-independent below 80K, in agreement with the
one-band model, it deviates upwards above 180K. Thermal
activation of a large population of holes leads to partial
cancellation of the Hall E-field and a reduction in |ryx|.

In Fig. 2a, we have also plotted the zero-H thermopower
S�Sxx(0) to bring out its nominally T-linear variation below
100K (bold curve). The large value of the slope S(T)/T¼ 1.41
mVK� 2 implies an unusually small EF.
As discussed, the Nernst signal changes sign at Tinv¼ 180K.

The T dependence of its initial slope dSxy/dB (B-0) is displayed
in Fig. 2b. From the fits to equations 1 and 2, we may address the
interesting question whether the sign anomaly occurs in the gap-
inverted phase (ToTinv) or in the uninverted phase. On both
sides of Tinv, the fits of Sxx imply DH4D (that is, |Sxx| always
increases as mB goes from 0 to values 441). As SxyB(DH�D),
we should observe a positive Sxy. Hence, the sign anomaly occurs
in the gap-inverted phase (in Fig. 1d, we multiplied the curves by
an overall minus sign). The sign of the Nernst signal below Tinv
disagrees with that inferred from equations 1 and 2, despite the
close fit. Further discussion of the sign anomaly is given below
(see Discussion section). However, we note that the sign of Sxy is
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Figure 2 | Temperature dependence of Hall density, thermopower and

Nernst slope. (a) The T dependence of the Hall density nH¼ B/ryx e
inferred from the Hall resistivity ryx and the zero-B thermopower S (T)�
Sxx(T, B¼0) in Pb1� xSnxSe (x¼0.23). The Hall signal is n-type at all

T. Below 20K, nH equals 3.46� 1017 cm� 3 (sample 1). nH increases

significantly above 200K signalling thermal activation of holes across the

band gap. (b) The T dependence of the initial slope of the Nernst signal

dSxy/dB (B-0) to show the sign change at Tinv. The error bars correspond

to 1 s.d. in determining dSxy/dB in the limit B-0.
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independent of the carrier sign. As seen in Fig. 2a, both S and nH
vary smoothly through Tinv without a sign change.

Quantum oscillations. As shown in Fig. 3, oscillations in Sxx and
Sxy grow rapidly below 60K to dominate the weak-B semiclassical
profile. The most prominent feature in Sxx is the large step
decrease at the field B1¼ 7.7 T (at which the chemical potential z
jumps from the N¼ 1 LL to the N¼ 0 LL). In the Nernst curves,
plotted as Sxy/T in Fig. 3b, the quantum oscillations are more
sharply resolved. As Sxy is the off-diagonal term of the tensor Sij,
its maxima (or minima) are shifted by 1/4 period relative to the
extrema of the diagonal Sxx (analogous to the shift of sxy relative
to s). This shift is confirmed in Fig. 4a, which plots the traces of
Sxx and Sxy versus 1/B. For the analysis below, we ignore the weak
spin splitting, which is resolved in the N¼ 1 LL (and barely in
N¼ 2).

Figure 4b shows the index plot of 1/Bn (inferred from the
maxima in |Sxx| and Sxy) plotted versus the integers n. From
the slope of the line, we derive the FS section SF¼ 5.95 T¼
5.67� 1016m� 2. Assuming a circular cross-section, we have
kF¼ 0.0134Å� 1. The electron concentration per FS pocket is

then ne ¼ k3F=3p
2 ¼ 8.2� 1016 cm� 3. As there are four pockets,

the total carrier density is 4ne¼ 3.28� 1017 cm� 3, in good
agreement with the Hall density nH at 4K (3.46� 1017 cm� 3).

Using sample 2, we have tracked the variation of the SdH
period versus the tilt angle y of B. Figure 5a plots the fields B1 and
B2 versus y (B is rotated in the y–z plane). Here, B1 and B2 are the
fields at which z jumps from N¼ 1-0 and from N¼ 2-1,
respectively. To our resolution, the SdH period is nearly isotropic.
The fields B1 and B2 are also independent of tilt angle when B is
rotated in the x–y plane. This justifies treating the FS pockets as
nominally spherical.

The N¼ 0 Landau level. We next address the question whether
the bulk states in the inverted phase are Dirac fermions or
Schrödinger electrons. The two cases differ by a distinctive feature
in their LL spectrum that is robust against small perturbations. In
the quantum limit, the massive Dirac Hamiltonian exhibits an
interesting twofold difference in degeneracy between the N¼ 0
and N¼ 1 levels. Wolff22 considered a three-dimensional (3D)
massive Dirac Hamiltonian with spin–orbit interaction but no
Zeeman energy term. More recently, Serajedh et al.23 included the
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Zeeman energy term as well as a Rashba term in the massive two-
dimensional (2D) Dirac Hamiltonian. Other 3D massive Dirac
cases are discussed by Bernevig and Hughes24. All these authors
find that N¼ 0 LL is non-degenerate with respect to spin degrees,
whereas the LLs with Na0 are doubly spin degenerate (we
discuss in Methods section a pedagogical example, which shows
that this anomaly is related to the conservation of states). By
contrast, for the Schrödinger case, all LLs are doubly degenerate.

In Pb1� xSnxSe, the ability to measure accurately both ne and
the ‘jump’ field B1 provides a crisp confirmation of this prediction.

The energy of the Nth LL is EN;kz ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmDv2Þ2 þð

ffiffiffiffiffiffi
2N

p
�hv=‘BÞ2 þð�hvkzÞ2

q
, where mD is the Dirac

mass and ‘B ¼
ffiffiffiffiffiffiffiffiffiffi
�h=eB

p
the magnetic length24. At B1, EF lies just

below the bottom of the N¼ 1 LL so that all the electrons are
accomodated in the N¼ 0 LL. Integrating the density of states
(DOS) for one spin polarization in the N¼ 0 LL from mDv2 to EF,
we find (see Methods section)

ne" ¼
ffiffiffi
2

p
=ð2p2‘3BÞ: ð3Þ

Ignoring the small spin splitting, we equate B1 with 7.7 T.
Equation 3 then gives nem¼ 9.0� 1016 cm� 3, which agrees
within 10% with the measured ne (the agreement is improved if
we correct for spin splitting). All the electrons are accomodated
by an N¼ 0 LL that is non-degenerate, in agreement with the
prediction for massive Dirac states22–24, but disagreeing with the
Schrödinger case by a factor of 2. As the singular spin degeneracy
of the N¼ 0 LL cannot be converted to a double degeneracy, the
experiment uncovers a topological feature of the bulk states that is
robust. As predicted in refs 22–24, the N¼ 0 LL has only one spin
state (0,þ ); the spin-down partner (0,� ) is absent.

To check this further, we extended measurements of Sxx to 34 T
to search for the transition from the sublevel (0,� ) to (0,þ )
(which should occur if N¼ 0 LL were doubly degenerate). From
extrapolation of the spin split N¼ 1 and N¼ 2 LLs, we estimate
that the transition (0,� )-(0,þ ) should appear in the interval
22–28 T. As shown in Fig. 5b, the measured curves show no
evidence for this transition to fields up to 34T.

Finally, we note an interesting thermopower feature in the
quantum limit. At fields above B1, Sxx displays a B-linear profile
that extends to 34T (Fig. 5). The B-linear behaviour is most
evident in the curve at 44 K. As T is decreased to 18.6 K, we
resolve a slight downwards deviation from the linear profile in the
field interval 10–20 T. The B-linear profile appears to be a
characteristic property of massive Dirac fermions in the quantum
limit. We discuss below a heuristic, semiclassical approach that
reproduces the observed profile.

Discussion
We summarize the electronic parameters inferred from our
experiment and relate them to ARPES measurements.

As noted, the FS section derived from the index plot (Fig. 4b)
corresponds to a total electron density 4ne¼ 3.28� 1017 cm� 3, in
good agreement with the Hall density nH at 4K (3.46� 1017 cm� 3).

We may estimate EF from the slope of the thermopower
S(T)/T¼ 1.41 mVK� 2. Using the Mott expression S(T)¼ (p2/3)
(kB/e)(kBT/EF)b, we find for the Fermi energy EF¼ 17.0 bmeV.
For the massive Dirac dispersion, we have ne � k3F, which
implies that b has the minimum value 3 (if the mobility increases
with E, b is larger). Using the lower bound, b¼ 3, S/T gives
EF¼ 51meV.

These numbers may be compared with ARPES measurements.
We estimate the Fermi velocity from the expression vCEF/:kF
(valid when EFcmDv2 withmD the Dirac mass). Using our values
of EF and kF, we find v¼ 5.74� 105m s� 1 as the lower bound.
Although ARPES experiment cannot resolve v in the conduction
band, the ARPES estimate5 for the hole band velocity is
5.6� 105m s� 1, in good agreement with our lower bound. It is
likely to be that the conduction band has a higher velocity (which
would then require b43).

One of our findings is that gap inversion changes the sign of
the Nernst signal. As the energies of states involved in gap
inversion are very small, the resulting dispersion can be hard to
resolve by ARPES measurement. Transport quantities would
appear to be more sensitive to these changes. As noted, however,
most transport quantities are either unaffected or only mildly
perturbed. The Hall effect and thermopower are unchanged in
sign across Tinv (Fig. 2a). Although nH shows a gradual increase,
this is largely attributed to thermal activation of holes across a
reduced gap for T4Tinv. Hence, the dramatic sign change
observed in Sxy stands out prominently; its qualitative nature may
provide a vital clue.

It has long been known10 that in the lead rocksalt IV–VI
semiconductors, the energy gap Eg undergoes inversion as the Sn
content x increases from 0. Moreover, within a narrow range of x,
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gap inversion is also driven by cooling a sample (the critical
temperature is x dependent within this interval). Strauss10

performed early optical transmission measurements of Eg in a
series of single-crystal films of Pb1� xSnxSe, with x ranging from 0
to 0.35. For x¼ 0.25, he reported that Eg closes at 195K. A slight
interpolation of his data shows that at our doping x¼ 0.23, Eg
should vanish at 179K, remarkably close to our Tinv¼ 180K. The
recent ARPES measurements of Dziawa et al.5 is consistent with
Eg closing between 100 and 200K. Given the ARPES resolution,
these results are all consistent with our inference that our Tinv
corresponds to the gap inversion temperature. Hence, we reason
that the Nernst signal changes sign either at, or very close to, the
gap inversion temperature. The inverted sign of Sxy below 180K
in Fig. 1c,d occurs in the gap-inverted phase. We refrain from
making the larger claim that this is also the topological transition
because we are unable to resolve the surface states in our
experiments.

The fits of Sxy to equation 2 (Fig. 1d) shows that the curves
below 100K are well described by the Boltzmann–Mott
expression assuming a single band of carriers, but there is an
overall sign disagreement. Despite the sign problem, the analysis
singles out the physical factors that fix the sign and delineates the
scope of the problem. For example, reversing the sign of both b
and bH inverts the sign of Sxy, but also that of Sxx. Alternately, one
might try reversing the signs of b and bH, and e simultaneously.
This will invert the sign of Sxy but leave Sxx unchanged. However,
ryx is forced to change sign.

The analysis assumes that in the gap-inverted phase, the FS is
simply connected. This may not be valid. Gap inverion may lead
to the existence of a small pocket surrounded by a larger FS sheet
(topologically similar to the FS of the ‘giant Rashba’ material
BiTeI25). As the small pocket dominates the thermoelectric
response, the Nernst effect may be detecting this novel situation.
These issues will be left for future experiments.

We may attempt to understand the striking B-linear profile of
Sxx/T in Fig. 5 using a semiclassical approach. In N¼ 0 LL, the
long-lived quasiparticles complete a large number of cyclotron
orbits between scattering events (for example, from mBB220, we
estimate this number isB35 at 20 T). The scattering results in the
drift of the orbit centres X in a direction transverse to the applied
�,T. Ignoring the fast cyclotron motion, we may apply the
Boltzmann equation to X. The thermopower is then given by the
high-B limit of equation 1, Sxx(T,H)-AbH0 /EF, where EF is now
measured from the bottom of N¼ 0 LL and bH0 differs from the
weak-field bH. In this picture, the B dependence of Sxx arises
solely from how EF changes with B.

For B4B1, only N¼ 0 LL is occupied. From equation 14
(Methods), we have the relation between EF, ne and B, viz.

E2
F ¼ ðmDv

2Þ2 þ P2

B2
; P ¼ 2p2�h2vne

gse

� �
: ð4Þ

In the limit EFcmDv2, we obtain the relation EFB1/B. This
immediately implies that Sxx/T increases linearly with B as
observed. Setting gs¼ 1, we derive from equation 4 the rate of
increase

@Sxx=T
@ðBÞ ¼ k2B

6�h2
b0H
vne

ð5Þ

Repeating this calculation for the Schrödinger case, we get
instead Sxx/TBB2.

From Fig. 5, the thermopower slope q(Sxx/T)/q(B)¼ 8.71
� 10� 8 VK� 2 T� 1. Using the above values of v and ne in
equation 5, we find (qSxx/T)/q(B)¼ 6.1 b0H� 10� 8VK� 2 T� 1.
The value of b0H is not known. Comparison of the calculated slope
with experiment suggests b0HB1.5. Hence, this back-of-the-

envelop estimate can account for the rate at which Sxx/T increases
with B.

Methods
Semiclassical fits to Sxx and Sxy. In the presence of a magnetic field B, an electric
field E and a temperature gradient �rT (in an infinite medium), the total current
density is given by14 J¼ r �Eþa � (�rT). Here, sij is the conductivity tensor and
aij is the thermoelectric tensor. Setting J¼ 0 (for a finite sample) and solving for E,
we have E¼ � q �a � (�rT), with q¼ r� 1 the resistivity tensor.

In the geometry with B jj ẑ and �rT jj x̂, the components of the E-field
(for an isotropic system) are

Ex= j rT j¼ � ðrxxaxx þ ryxaxyÞ ð6Þ

Ey= j rT j¼ rxxaxy � ryxaxx: ð7Þ
The thermoelectric tensor Sij is given by Ei¼ SijqjT (Sxx40 for hole carriers and

Sxy40 if Ey40 when Hz40).
The Mott relation14,

aij ¼ A @sij
@e

� �
z
; A ¼ p2

3
k2BT
e

� �
; ð8Þ

where kB is Boltzmann’s constant, e is the elemental charge and z the chemical
potential, has been shown to hold under general conditions, for example, in the
quantum Hall Effect (QHE)26,27. Using equation 8, equations 6 and 7 reduce to
equations 1 and 2, respectively.

The fits of Sij to these equations displayed in Fig. 1d were carried out using the
one-band, Boltzmann–Drude expressions for the conductivity tensor, viz.

sxxðBÞ ¼ Neem=ð1þ m2B2Þ; ð9Þ

sxy Bð Þ ¼ Neem2B=ð1þ m2B2Þ; ð10Þ

where the total carrier density Ne is 4ne (ne is the density in each of the FS pocket at
the L points).

In the geometry with B jj ẑ and �rT jj x̂, we define the sign of the Nernst
signal to be that of the y component of the E-field Ey. More generally, if EN is the E-
field produced by the Nernst effect, the sign of the Nersnt signal is that of the triple
product EN �B� (�rT). This agrees with the old convention based on ‘Amperean
current’28 and with the one adopted for vortex flow in superconductors29.

At each T, we have fitted the measured curves of Sxx and Sxy versus B to
equations 1 and 2 using equations 9 and 10 for the conductivity tensor. The
separate fits of Sxx and Sxy yield two sets of the parameters m, D and DH, which are
displayed in Fig. 6 (solid triangles and open circles, respectively). The three-
parameter fit places strong constraints on the curves of Sxx and Sxy. Disagreement
between the two sets signals that the one-band model is inadequate.

Below 100K, the two sets agree well, whereas closer to Tinv they begin to
deviate. The reason is that equation 2 cannot account for the change of sign in the
Nernst signal given the relative magnitudes of D and DH fixed by the curves of Sxx.
Above 200 K, the two sets are inconsistent because thermal excitations of holes
across the small band gap is important at elevated T and the one-band assumption
becomes inadequate. This is evident in the onset above 200K of significant T
dependence in the Hall density nH (see Fig. 2a).

We remark that Sxx¼Vx/dT is directly obtained from the observed voltage
difference Vx and the temperature difference dT between longitudinal electrical
contacts (their spatial separation Lx is immaterial). However, for the Nernst signal,
we have Sxy¼ (Vy/dT)(Lx/Ly), where Ly is the spatial separation between the
transverse contacts. Hence, the aspect ratio Ly/Lx is needed to convert the observed
Nernst voltage Vy to Sxy. The ratio Ly/Lx is measured to be 4±0.4. The fits are
improved significantly if this value is refined to 4.20, which we adopt for the curves
at all T.

Fits to equation 9 and 10 of the conductivity tensor measured in the same
sample are shown in Fig. 7 for weak B at selected T from 5 to 150K. The fits yield
values of the mobility m similar to those shown in Fig. 6a. The inferred carrier
density Ne is also similar to the measured Hall density nH.

Indexing the quantum oscillations. For the 3D systems, one identifies the index
field Bn as the field at which the DOS displays a sharp maximum (diverging as
½E�ðnþ 1

2Þ�hoc��
1
2 in the absence of disorder). From the quantization rule for

areas in k-space, Bn is related to the FS cross-section SF as

SF ¼ 2p
‘2B

ðnþ gÞ; ð11Þ

where ‘B ¼
ffiffiffiffiffiffiffiffiffiffi
�h=eB

p
and g (the Onsager phase) is 1

2 for Schödinger electrons. The
plot in Fig. 3b follows equation 11. From its slope, we obtain SF. The intercept g is
close to zero in Fig. 3b. We will discuss g elsewhere.

We note that, in the 2D systems in the QHE regime, the index field is the field at
which the chemical potential z falls between adjacent LLs, where the DOS vanishes,
and the Hall conductance displays a plateau. The difference between 2D and 3D
systems arises because the integer n counts the number of edge states in the QHE
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case, whereas n indexes the DOS peaks in the 3D case. One needs to keep this in
mind in interpreting g.

We have verified that the slope in Fig. 4b is insensitive to the tilt angle y of B
relative to the crystalline axes. As shown in Fig. 5a, the SdH period is virtually
independent of y within the experimental uncertainties, consistent with negligible
anisotropy in the small FS pockets. The good agreement between SF and nH (Hall
density) at 5 K is also evidence for a negligible anisotropy.

Spin degeneracy in N¼0 LL. Knowledge of the field B1 (the transition from
N¼ 1 to the N¼ 0 LL) and the electron density per valley ne suffices to determine
the spin degeneracy of the N¼ 0 LL.

For the 3D Dirac case24, the energy in the Nth LL is

EN;kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmDv2Þ2 þ

ffiffiffiffiffiffi
2N

p
�hv

‘B

� �2

þð�hvkzÞ2
s

; ð12Þ

with mD the Dirac mass, kz the component of k along B and ‘B ¼
ffiffiffiffiffiffiffiffiffiffi
�h=eB

p
the

magnetic length.
For N¼ 0 LL, we solve for kz(E)

kzðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � E2

00

q
=�hv; ð13Þ

where E00¼mDv2.
Let us assume that only N¼ 0 LL is occupied. To obtain the relation linking EF,

B and ne, we integrate the 3D DOS D(E)dE¼ (gLgs/p)dkz, with gs the spin
degeneracy and gL ¼ 1=2p‘2B the 2D LL degeneracy per spin. Using equation 13,
we have

ne ¼
ZEF
E00

DðEÞdE ¼ gLgs
p�hv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
F �E2

00

q
: ð14Þ

This equation is valid until B is reduced to the jump field B1, whereafter
electrons enter the N¼ 1 LL. At the jump field, EF lies just below the bottom of
N¼ 1 LL, that is, E2

F ¼ E2
10 ¼ ðmDv2Þ2 þð

ffiffiffi
2

p
�hv=‘BÞ2. Using this in equation 14,

we have

ne ¼
ffiffiffi
2

p
gs

2p2‘3B
ðB ¼ B1Þ: ð15Þ

In relation to equation 3, we showed that equation 15 gives a value equal
(within 10%) to the total electron density per valley if gs¼ 1, that is, when B4B1,
all the electrons can be accomodated by the N¼ 0 LL with only one spin
polarization. This is direct evidence for the non-degeneracy of the N¼ 0 LL.

Interestingly, equation 15 is identical for the isotropic Schrödinger case,
for which

EN;kz ¼ ðN þ 1
2
Þ�hoc þ

�h2k2z
2m

; ð16Þ

where oc¼ eB/m and m is the mass. However, for N¼ 0 LL of the Schrödinger
spectrum, we must have gs¼ 2, so it can be excluded.

A simple example of massive Dirac spectrum. An example illustrating the non-
degeneracy of N¼ 0 LL is the spinless fermion on the 2D hexagonal lattice (valley
degeneracy replaces spin degeneracy in this example). The sublattices A and B have
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distinct on-site energies EA and EB as in BN. The Dirac cones remain centred at the
inequivalent ‘valleys’ K and K0 in k-space (inset, Fig. 8). Both valleys acquire a mass
gap.

For states close to the valley at K, the 2D massive Dirac Hamiltonian is

H2D ¼ m kx � iky
kx þ ky �m

� �
; ð17Þ

in the basis (1,0)T (pseudospin up) and (0,1)T (pseudospin down), where k is
measured from K and m40 represents the gap parameter proportional to EA–EB
(we set the velocity v to 1). In a field B, we replace k by p¼ k–eA with the vector
gauge A¼ (0,Bx,0). Introducing the operators

ay ¼ ð‘B=
ffiffiffi
2

p
Þp� ; a ¼ ð‘B=

ffiffiffi
2

p
Þpþ ; ð18Þ

with p±¼px±ipy, and eigenstates |NS satisfying

ay j Ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
j N þ 1i; a j Ni ¼

ffiffiffiffi
N

p
j N � 1i; ð19Þ

we diagonalize the Hamiltonian to get eigenenergies EN given by

E2
N ¼ m2 þð2N=‘2BÞ ð20Þ

(for brevity, we will write E for EN).
For positive E, the (unrenormalized) two-spinor eigenstates are (for N¼ 0,1,?)

j CN;þ i ¼
j Ni

1
Eþm

ffiffiffiffiffi
2N

p

‘B
j N � 1i

� �
; ðE40Þ: ð21Þ

For the negative energy states, the corresponding eigenvectors are (N¼ 1,2,?)

j CN;� i ¼
j Ni

� 1
j E j �m

ffiffiffiffiffi
2N

p

‘B
j N � 1i

 !
; ðEo0Þ: ð22Þ

Setting N¼ 0 in equation 21, we find that the positive-energy state |C0,þS
¼ (|0S,0)T (pseudospin up). For Eo0, however, the lower entry in equation 22 is
non-determinate (0/0). This implies that the state N¼ 0 does not exist for Eo0.
Thus, for the valley at K, there is only one LL with N¼ 0. It has positive energy
E0¼ |m|; the corresponding LL at � |m| is absent (the spectrum of K is sketched as
curve 1 in Fig. 8).

Repeating the calculation for K0 , we find the opposite situation (the
Hamiltonian is the conjugate of equation 17). Now N¼ 0 LL has energy
E0¼ � |m|, but N¼ 0 LL is absent in the positive spectrum (the spectrum of K0 is
the curve 2 in Fig. 8).

A transport experiment detects the sum of the two spectra (curves of KþK0 at
different B are collectively labelled as 3 in Fig. 8). In the total spectrum, the two
N¼ 0 LLs are non-degenerate, whereas all LLs with Na0 have a valley degeneracy
of 2. The difference simply reflects the conservation of states. In the limit m-0, we
recover the spectrum of graphene. If, at finite m, each of the N¼ 0 LLs had a valley
degeneracy of 2, we would end up with an N¼ 0 LL in graphene with fourfold
valley degeneracy.

The authors in refs 22–24 and others have shown that the non-degeneracy of
the N¼ 0 LL also holds in massive Dirac systems even when a Rashba term and a
Zeeman energy term are included.
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