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Abstract

Plants have unique features that evolved in response to their environments and ecosystems. A full

account of the complex cellular networks that underlie plant-specific functions is still missing. We

describe a proteome-wide binary protein-protein interaction map for the interactome network of

the plant Arabidopsis thaliana containing ~6,200 highly reliable interactions between ~2,700

proteins. A global organization of plant biological processes emerges from community analyses of

the resulting network, together with large numbers of novel hypothetical functional links between

proteins and pathways. We observe a dynamic rewiring of interactions following gene duplication

events, providing evidence for a model of evolution acting upon interactome networks. This and

future plant interactome maps should facilitate systems approaches to better understand plant

biology and improve crops.

Classical genetic and molecular approaches have provided fundamental understanding of

processes such as growth control or development, and molecular descriptions of genotype-

to-phenotype relationships for a variety of plant systems. Yet more than 60% of the protein-

coding genes of the model plant Arabidopsis thaliana (hereafter Arabidopsis) remain

functionally uncharacterized. Knowledge about the biological organization of

macromolecules in complex and dynamic “interactome” networks is lacking for Arabidopsis

(fig. S1, tables S1, S2), depriving us of an understanding of how genotype-to-phenotype

relationships are mediated at the systems level (1).

A high-quality binary protein-protein interactome map for Arabidopsis

To generate a map of the Arabidopsis interactome network, we used a collection of ~8,000

open reading frames representing ~30% of its predicted protein-coding genes (table S3) (2,

3). We tested all pair-wise combinations of proteins encoded by these constructs (space 1)

with an improved high-throughput binary interactome mapping pipeline based on the yeast

two-hybrid (Y2H) system (fig. S2) (3, 4). Confirmed pairs were assembled into a dataset of

5,664 binary interactions between 2,661 proteins, called Arabidopsis Interactome version 1

“main screen” (AI-1MAIN) (table S4).

The quality of AI-1MAIN was evaluated against a positive reference set (PRS) of 118 well-

documented, manually re-curated (5) Arabidopsis protein-protein interactions and a random

reference set (RRS) of 146 random protein pairs (fig. S3; table S5) (3, 5–9). We determined

the fraction of true biophysical interactions in AI-1MAIN, its “precision”, to be ~80%, by

comparing the validation rates of a random sample of 249 interactions from AI-1MAIN to

those of the PRS and RRS in a “well-Nucleic Acid Programmable Protein Array”

(wNAPPA) protein-protein interaction assay (Fig. 1A; fig. S4; table S5) (3, 8).
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To estimate the size of the complete Arabidopsis protein-protein interactome network and

the proportion covered by AI-1MAIN, its “coverage”, we calculated the screening

completeness, the percentage of all possible Arabidopsis pair-wise protein combinations

screened in space 1 (~10%) (fig. S2), and the overall sensitivity, a parameter that combines

both the assay sensitivity of our Y2H version (Fig. 1A) and the sampling sensitivity of our

screens (~16%) (fig. S5; table S5) (3, 6, 7, 9). Since AI-1MAIN contains 5,664 interactions,

we estimate that the complete Arabidopsis biophysical binary protein-protein interactome,

excluding isoforms, is 299,000 ± 79,000 binary interactions (mean ± standard deviation) (3),

of which AI-1MAIN represents ~2%. While the Arabidopsis interactome is estimated to be

larger than those of yeast, worm or human (6, 7, 9) the number of interactions per possible

protein pairs is similar in all four species (5–10 per 10,000). The overall topology of

AI-1MAIN is qualitatively similar to that observed for interactome maps of these other

species (fig. S6) (6, 7, 9, 10). While all global network analyses were performed with

AI-1MAIN, local network analyses were done with AI-1

(http://interactome.dfci.harvard.edu/A_thaliana/index.php?page=2010anm_download and

http://interactome/A_thaliana/index.php?page=display; table S4), a dataset combining

AI-1MAIN and interactions identified in repeated screens on the subspace indicated in fig.

S2, performed to estimate sampling sensitivity (tables S4, S6, S7) (3).

Comparing AI-1MAIN to a network of Arabidopsis literature-curated

interactions

We assembled 4,252 literature-curated binary interactions between 2,160 Arabidopsis

proteins (LCIBINARY) (fig. S1; tables S1, S4) (3). The observed overlap with AI-1MAIN lies

within the range expected given the AI-1MAIN coverage (Fig. 1B) (3). With similar numbers

of proteins (nodes) and interactions (edges), AI-1MAIN and LCIBINARY are both small-world

networks (fig. S6). However, LCIBINARY shows longer distances between nodes and a

higher tendency to form clusters of highly interacting nodes (Fig. 1B) (fig. S6). This is likely

due to biases inherent to literature-curated datasets, as hypothesis-driven research focuses on

few proteins designated to be important (5–7, 9–11). AI-1MAIN and LCIBINARY contain

similar fractions of plant-specific proteins (19% and 14%, respectively; fig. S6; table S8)

(3), but the presence of several highly connected plant-specific hubs in AI-1MAIN results in

twice as many plant-specific interactions (40% and 20%; fig. S6; table S9).

Overlap of AI-1 with other biological relationships

To estimate the overall biological relevance of AI-1 interactions, we used statistical

correlations with genome-wide functional information available for Arabidopsis (7, 9). We

observed a significantly higher co-expression correlation for pairs of transcripts encoding

interacting proteins than for control pairs (fig. S7) (3). Interacting proteins are also enriched

in common Gene Ontology (GO) annotations, particularly those describing specific

biological functions and thus assigned to only a few proteins, which we refer to as “precise”

(fig. S7) (3). This enrichment holds true for GO annotations based strictly on genetic

experiments (fig. S7) (3). Protein pairs that do not directly interact but share interactors are

also enriched in common precise GO annotations (fig. S7) (3). Similar to the whole

Arabidopsis proteome, but in contrast to proteins involved in literature-curated interactions,

two-thirds of proteins in AI-1 lack any or precise GO annotations; for these AI-1 provides

starting points for hypothesis development (fig. S7; tables S8, S9).

Plant signaling networks in AI-1

Integration of biophysical interactions with orthogonal functional data can uncover novel

biological relationships at the scale of individual proteins, pathways, and networks (1). We
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examined ubiquitination enzymes and their substrates, an expanded system in plants relative

to other species (12). The specific targets of most ubiquitination enzymes remain elusive and

a systems level understanding of ubiquitin signaling is missing. We identified 32

interactions between E3 proteins and potential target proteins shown to be ubiquitinated in

biochemical experiments (tables S8, S9) (3). Many E3 proteins showed interactions with the

same putative target, and conversely, several putative targets interacted with a single

common E3 (Fig. 2A) (3). Thus, our data support a high combinatorial complexity within

the ubiquitination system and, with similar analyses of phosphorylation signaling cascades

(fig. S8; tables S8, S9) (3), provide starting points for analysis of directional information

flow through protein-protein interactome networks.

Plant hormones regulate developmental processes and mediate responses to environmental

stimuli. In the auxin signaling pathway, auxin/indole-3-acetic acid (AUX/IAA) proteins

mediate transcriptional repression of response genes via physical interactions between their

ethylene-response-factor-associated amphiphilic repression (EAR) motifs and the co-

repressor TOPLESS (TPL) (13). Twelve interactions between AUX/IAA and TPL or TPL-

related3 (TPR3) were observed in AI-1, including six novel ones (fig. S8). While two non-

AUX/IAA interactors of TPL have been reported so far (14, 15), there are 21 such

interactors in AI-1, of which 15 contain a predicted EAR motif (16) (P < 10−24,

hypergeometric test). TPL interactors include ZIM-domain transcriptional repressors (JAZ5,

JAZ8), regulators of salicylic acid signaling (NIMIN2, NIMIN3), and a transcriptional

regulator of ethylene response (ERF9) (Fig. 2B, fig. S8). AI-1 also reveals direct interactions

among co-repressors, similar to the recently described crosstalk between JAZ proteins and

gibberellin-related DELLA proteins (17), as well as shared transcription factor targets of

JAZ and jasmonic acid insensitive ZIM related family members (Fig. 2B; fig. S8). These

observations suggest that transcriptional co-repressors and adaptors assemble in a modular

way to integrate simultaneous inputs from several hormone pathways and that TPL plays a

central role in this process.

Communities in AI-1MAIN

In many networks, communities can be identified with densely interconnected components

that function together (18). We applied an edge clustering approach (19) to identify

communities in AI-1MAIN and investigated their biological relevance. We identified 26

communities containing more than five proteins in AI-1MAIN (Fig. 3; fig. S9) (3).

Approximately 25% of AI-1MAIN proteins (661/2,661) could be assigned to one community,

while ~1% (23/2,661) belong to more than one community. We found that ~90% of these

communities are enriched in at least one GO annotation (Fig. 3; table S10) (3), whereas

negative control networks randomized by degree-preserving edge shuffling showed fewer

communities and little GO annotation enrichment (P < 0.01; Fig. 3). Detailed inspection of

AI-1MAIN communities (figs. S10–35) both recapitulated available biological information

and suggested new hypotheses. For example, the “brassinosteroid signaling/phosphoprotein-

binding” community contains several 14-3-3 proteins known to regulate brassinosteroid

signaling (fig. S10). Consistent with the tendency of 14-3-3 proteins to interact with

phosphorylated partners (20), this community is enriched in experimentally identified

phosphoproteins (P = 0.005, Fisher’s exact test). The interactions between the 14-3-3

proteins and the abscisic acid-responsive element binding transcription factor AREB3 are

corroborated by previous findings in barley (21), and suggest that plant 14-3-3 proteins

mediate multiple hormone signaling pathways.

Several communities, such as “transcription” and “nucleosome assembly”, share proteins

indicating linked biological processes (fig. S36). Particularly striking is the large

“transmembrane transport” community sharing 13 proteins with the “vesicle mediated
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transport” community and six with the “water transport” community (fig. S36). These

shared proteins are bridged via four well-connected proteins within the “transmembrane

transport” community, including two membrane-tethered NAC-type transcription factors,

ANAC089 and NTL9 (fig. S36). Transcription factors in this plant-specific protein family

are activated by release from the cellular membrane by endopeptidase- or ubiquitin-

mediated cleavage (22). Interactions corresponding to both mechanisms are found in the

“transmembrane transport” community (fig. S37).

Four distinct communities correspond to “ubiquitination”. The largest is predominantly

composed of interactions between 36 F-box proteins and two Skp proteins, known to form

degradative SCF (Skp1, Cullin, F-box) ubiquitin ligase complexes (fig. S27). Two others are

composed of shared E2 ubiquitin conjugating enzymes and distinct RING-finger family E3

ligases (figs. S12, S16). The “ubiquitination and DNA repair” community includes the

UBC13 and MMS2/UEV E2 ubiquitin conjugating enzymes, which participate in non-

proteolytic polyubiquitination (fig. S13) (23). Distinct types of ubiquitin-related processes

were thus identified in AI-1.

Our analyses support the relevance of communities identified in AI-1MAIN and we anticipate

that with increasing coverage interactome network maps will improve our understanding of

the systems-level molecular organization of plants.

Evidence for network evolution

Whether or not natural selection shapes the evolution of interactome networks remains

unclear. Gene duplication, a major driving force of evolutionary novelty, has been studied in

yeast providing a framework for understanding subsequent protein-protein interaction

rewiring (Fig. 4A) (24). However, the difficulty to date ancient gene duplication events and

the low coverage of available protein-protein interaction datasets limit the interpretation of

these studies (3, 24–27). The high fraction of duplicated genes in the Arabidopsis genome

compared to non-plant species, combined with the relatively large size of AI-1MAIN,

provides interactome data for 1,882 paralogous pairs (fig. S38). These pairs span a wide

range of apparent interaction rewiring, as measured by the fraction of shared interactors for

each pair (fig. S38).

To verify that the apparent interaction rewiring in AI-1MAIN reflects functional divergence,

we focused on paralogous pairs classified as having “no”, “low”, or “high” functional

divergence on the basis of morphological consequences observed in functionally null

mutants of single or pairs of paralogous genes (28). For the 17 pairs in AI-1MAIN for which

comparative phenotypic data is available, the fraction of shared interactors accurately

predicted this functional divergence classification (Fig. 4B).

To study the dynamics of interaction rewiring, we dated gene duplication events using a

comparative genomics approach that brackets these events on the basis of multi-taxonomic

phylogenetic trees (3). This allowed us to divide AI-1MAIN paralogous pairs into four “time-

since-duplication” age groups covering up to ~700 million years (fig. S39). To account for

the illusion of divergence induced by low experimental coverage, we empirically determined

the average fraction of common interactors detected for a set of proteins screened twice as

performed for AI-1MAIN (fig. S40) (3). We used this expected upper bound to calibrate the

fraction of observed shared interactors between paralogous proteins, assuming that

duplicates are identical at the time of duplication (Fig. 4C) (3). Our observations are not

driven by the existence of certain large protein families in AI-1MAIN (fig. S41). As reported

for yeast (24, 26, 27), the average fraction of common interactors decreases over

evolutionary time, showing substantial and rapid divergence, even after correcting for the

coverage of AI-1MAIN. Yet, in Arabidopsis, paralogous pairs that have been diverging for

Page 4

Science. Author manuscript; available in PMC 2012 January 29.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



~700 million years still share more interactors than random proteins pairs (P < 2.2 × 10−16,

Mann-Whitney U-test), indicating that the long-term fate of paralogous proteins is not

necessarily a complete divergence of their interaction profiles.

The proportion of shared interactors does not decay exponentially with time-since-

duplication, as expected when assuming neutral evolution (3, 29, 30), i.e. random interaction

rewiring, with no impact on fitness (31). Instead, the rate of rewiring appears “rapid-then-

slow”, as suggested by a better fit to a power-law decay (Fig. 4C; fig. S42) (3). This trend

mirrors that of protein sequence divergence for these paralogous pairs (Fig. 4C), which

reflects the variation of selective pressure at different times after the duplication event. After

an initial transient relaxation leading to rapid protein sequence divergence, selective

pressure tightens on retained paralogs and their divergence decelerates (3, 25) (fig. S39).

The fact that interactions diverge in a time-dependent manner similar to protein sequences

supports the hypothesis that protein-protein interactions drive the evolution of duplicated

genes.

To investigate the interplay between duplication mechanism and the fate of duplicates (32),

we compared duplicates originating from whole-genome duplications (WGDs) to those from

other types of gene duplications. In our most recent age group containing paralogs specific

to the Arabidopsis genus, 109 paralogous pairs arose during the two most recent WGDs in

the Arabidopsis lineage (α and β WGDs) (3, 33). As previously observed for yeast (34),

these pairs share more interactors than other paralogous pairs in the same age group (Fig.

4D; fig. S43), but this effect could simply reflect the younger age of WGD pairs as revealed

by more precise time estimates (fig. S43). While gene dosage balance has been proposed to

determine loss or retention of duplicates following WGDs (33), the observed extensive

rewiring reinforces previous observations pointing to functional divergence as a major

feature of the long-term evolution of polyploid plants (35).

Expression profile divergence is rapid, non-random and substantial in Arabidopsis (36, 37)

(fig. S44), yet appears to play a limited role in the functional divergence of paralogs (28).

We tested whether the evolutionary forces acting on expression profiles and protein

interaction divergence are complementary or correlated. For each duplication age group, the

most co-expressed paralogous pairs tend to share more interactors than the least co-

expressed ones (Fig. 4E). This suggests that selective pressures driving functional

divergence concurrently act on both aspects of protein function.

With >65% sequence identity and strongly correlated expression profiles, the most recent

paralogous pairs share less than half of their interactors (41%) (Fig. 4C; figs. S44, S45). This

contrast is consistent with the common understanding that protein-protein interactions are

only one of many constraints limiting sequence changes during evolution, allowing for small

sequence changes to induce fate-determining network rewiring (38, 39). One example of

interaction rewiring despite sequence conservation is observed in the actin family. Each

actin protein pair shares >90% sequence identity, yet collectively the actin family exhibits

time-dependent interaction rewiring (fig. S45).

Modeling interaction rewiring with non-constant rates should provide insight into the

evolution of interactome networks and their topology (40). Whether this rewiring is merely a

consequence of sequence divergence or is a primary driver remains an open question.

Together with observations of fast rewiring of other types of biological networks (41, 42),

our data invite speculation that edge-specific rewiring is faster than node evolution in

biological networks.
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Conclusion

Our empirically determined high-quality protein-protein interaction map for a plant

interactome network should not only hasten the functional characterization of unknown

proteins, including those with potential biotechnological utility, but also enable systems

level investigations of genotype-to-phenotype relationships in the plant kingdom. One

example is how AI-1 illuminates mechanisms and strategies by which plants cope with

pathogenic challenges (Mukhtar et al., co-submitted).

The paradigms established here are compatible with models in which the interactome

network constrains and shapes sequence evolution. Studying sequence variation,

conservation, mutation, and evolution rate has shed light on how natural selection drives

evolution. Explorations of interaction variation will similarly broaden the understanding of

network evolution whether in the context of duplication or trans-kingdom comparative

interactomics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Quality of AI-1MAIN. (A) Fraction of PRS, RRS or AI-1MAIN sample pairs positive in Y2H

or in wNAPPA at a scoring threshold of 1.5. Error bars: standard error of the proportion. P-

values: one-sided two-sample t-tests (3). PRS pairs are more often detected than RRS pairs

in wNAPPA (P = 2 × 10−8, one-sided two-sample t-test) and Y2H (P < 2.2 × 10−16, one-
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sided Fisher’s exact test). (B) The number of literature-curated interactions recovered

reflects AI-1MAIN framework parameters (6). Top: network representations of LCIBINARY

and AI-1MAIN. Bottom left: data sets are represented by squared Venn diagrams; size is

proportional to the number of interactions (3). Bottom right: observed and expected overlap

given sensitivity and completeness of AI-1MAIN (see main text and (3)). PRS pairs were

removed from LCIBINARY multiple evidence for this analysis. Error bars: two standard

deviations from the expected counts.
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Fig. 2.

Plant signaling networks in AI-1. (A) Putative ubiquitination subnetwork extracted from

LCIBINARY and AI-1. Bar plot: number of protein-protein interactions between proteins in

the ubiquitination cascade in LCIBINARY and AI-1 (outside and within space 1). (B) Protein-

protein interactions in AI-1 suggest a modular assembly of transcriptional hormone-response

regulators and support a global regulatory role for TPL.
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Fig. 3.

Communities in AI-1MAIN (bottom) and in a typical randomized network (top left; fig. S9).

Only largest connected component of networks are shown. Colored regions indicate

communities enriched in GO annotations summarized by the indicated terms (table S10).

Upper right: distribution of randomized networks as a function of the total and GO

annotation enriched number of communities they contain; white arrow: position of the

shown randomized network, red dot and arrow: position of AI-1MAIN. GA: gibberellic acid,

JA: jasmonic acid, TCA: tricarboxylic acid.
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Fig. 4.

Evidence for network evolution in AI-1MAIN. (A) Interaction rewiring over time according

to the duplication-divergence model (24). (B) Average fraction of interactors shared

between pairs of paralogous proteins with no (n=4), low (n=10), and high (n=3) functional

divergence (28). Error bars: standard error of the mean. P-value: one-sided Kendall ranking

correlation test (τ= association) (3). (C) Average fraction of shared interactors, corrected for

low experimental coverage (3), and average protein sequence identity between pairs of

paralogous proteins as a function of the estimated Δ time-since-duplication. Error bars:

standard error of the mean (3). Dashed black line: corrected average fraction of shared

interactors of non-paralogous pairs. myrs: million years. (D) Corrected average fraction of

shared interactors (3), for pairs of paralogous proteins originating from polyploidy events

(n=109) as compared to other paralogous protein pairs of similar age (n=147). Error bars:

standard error of the mean (3). P-values: Mann-Whitney U-test. (E) Corrected average

fraction of shared interactors (3), for pairs of paralogous proteins encoded by gene pairs with

high or low co-expression correlation (top and bottom tertile, respectively) as a function of

phylogeny-based age group. Error bars: standard error of the mean (3). P < 0.05 (*), < 0.01

(**), < 0.001 (***).
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