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Joshua J. Roering, James W. Kirchner, and William E. Dietrich 
Department of Geology and Geophysics, University of California, Berkeley 

Abstract. Steep, soil-mantled hillslopes evolve through the downslope movement of soil, 
driven largely by slope-dependent transport processes. Most landscape evolution models 
represent hillslope transport by linear diffusion, in which rates of sediment transport are 
proportional to slope, such that equilibrium hillslopes should have constant curvature 
between divides and channels. On many soil-mantled hillslopes, however, curvature 
appears to vary systematically, such that slopes are typically convex near the divide and 
become increasingly planar downslope. This suggests that linear diffusion is not an 
adequate model to describe the entire morphology of soil-mantled hillslopes. Here we 
show that the interaction between local disturbances (such as rainsplash and biogenic 
activity) and frictional and gravitational forces results in a diffusive transport law that 
depends nonlinearly on hillslope gradient. Our proposed transport law (1) approximates 
linear diffusion at low gradients and (2) indicates that sediment flux increases rapidly as 
gradient approaches a critical value. We calibrated and tested this transport law using 
high-resolution topographic data from the Oregon Coast Range. These data, obtained by 
airborne laser altimetry, allow us to characterize hillslope morphology at •2 m scale. At 
five small basins in our study area, hillslope curvature approaches zero with increasing 
gradient, consistent with our proposed nonlinear diffusive transport law. Hillslope 
gradients tend to cluster near values for which sediment flux increases rapidly with slope, 
such that large changes in erosion rate will correspond to small changes in gradient. 
Therefore average hillslope gradient is unlikely to be a reliable indicator of rates of 
tectonic forcing or baselevel lowering. Where hillslope erosion is dominated by nonlinear 
diffusion, rates of tectonic forcing will be more reliably reflected in hillslope curvature 
near the divide rather than average hillslope gradient. 

1. Introduction 

The morphology of hillslopes reflects the erosional pro- 

cesses that shape them. In steep, soil-mantled landscapes, 

ridge and valley topography (Figure 1) is formed by the inter- 

action between two general types of mass-wasting processes: 

hillslope diffusion and landsliding. Diffusive processes, such as 

rainsplash, tree throw, and animal burrowing, detach and mo- 

bilize sediment, moving soil gradually downslope [Dietrich et 

al., 1987; Black and Montgomery, 1991; Heimsath et al., 1997]. 
These disturbance-driven processes have been termed diffu- 

sive because the resulting sediment flux is thought to be pri- 

marily slope-dependent. Additional diffusive processes include 

the cyclic wetting and drying of soils, as well as freeze/thaw and 

shrink/swell cycles [Carson and Kirkby, 1972]. Soil-mantled hill- 

slopes are also shaped by shallow landslides, which commonly 

begin in topographically convergent areas and may travel long 

distances through the low-order channel network, scouring and 

depositing sediments along their runout path [e.g., Pierson, 
1977; Sidle, 1984; Johnson and Sitar, 1990; Hungr, 1995; Benda 

and Dunne, 1997; Iverson et al., 1997]. Small shallow landslides 

can also initiate on steep, planar sideslopes, coming to rest 

after traveling a short distance. Landslides are often triggered 

by elevated pore pressures in the shallow subsurface, and 

therefore are sensitive to topographically driven convergence 
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of subsurface flow and transient inputs of rainfall. Because 

shallow landslides typically scour the soil mantle, thus ampli- 

fying the topographic convergence that may contribute to their 

initiation, they tend to incise terrain rather than diffuse mate- 
rial across it. 

This paper explores the mechanics of diffusive processes and 

their influence on hillslope morphology. In soil-mantled land- 

scapes, slopes tend to steepen with distance downslope from 

the drainage divide [Gilbert, 1909]. On sufficiently long hill- 

slopes, slope angles tend to converge toward a limiting gradi- 

ent, before shallowing at the transition to the valley network 

[Strahler, 1950; Penck, 1953; Schumm, 1956; Howard, 1994a, b]. 

Many soil-mantled hillslopes are not only convex in profile but 

also convex in planform, which creates divergent pathways of 

downslope sediment transport [Hack and Goodlett, 1960]. Hill- 

slopes with profile and planform convexity occur in diverse 

climatic and tectonic regimes, suggesting that diffusive sedi- 

ment transport processes control hillslope morphology in many 

different settings. 

Following the qualitative observations of Davis [1892], Gil- 

bert [1909] used the following conceptual model to suggest that 

convex hillslopes result from slope-dependent transport pro- 

cesses. On a one-dimensional hillslope that erodes at a con- 

stant rate, sediment flux must be proportional to distance from 

the divide. If gravity is the primary force impelling sediment 
downhill, the hillslope must become steeper with distance from 

the divide in order to transport the required sediment flux, and 
a convex form results. 
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Figure 1. Aerial photograph of steep, soil-mantled landscape, Oregon Coast Range. Note the steep and 
relatively uniform gradient hillslopes. 

Culling [1960, 1963] and Hirano [1968] modeled hillslope 

evolution through an analogy with Fick's law of diffusion (in 

which fluxes are proportional to chemical gradients). In the 
hillslope analogy, sediment flux (L 3/L/T) Fts is proportional to 
the topographic gradient Vz: 

•s = Kiln •7z (1) 

where Kli , is linear diffusivity (L2/T) and z is elevation (L). 
Field estimates of downslope sediment flux on low to moderate 

gradient hillslopes are consistent with (1) over both short 
[Schumm, 1967] and long [McKean et al., 1993] timescales. 

Sediment flux and landscape lowering rates can be related 

through the continuity equation 

Oz 

--Os -•-: [Js•7ø•s qL Oreo (2a) 

where Or and Ps are the bulk densities of rock and sediment, 

respectively (M/L3), O z/Ot is the rate of change in the land 
surface elevation (L/T), and C O is the rate of rock uplift 
(L/T). If the rate of surface erosion is approximately balanced 

by rock uplift (i.e., dynamic equilibrium, as posited by Gilbert 
[1909] and Hack [1960]), Oz/Ot --- 0 and (2a) becomes 

--Oreo = Os•7 ø •s (2b) 

We can combine (1) and (2b) to obtain an expression relating 
the ratio of the landscape erosion rate (which equals the rock 

uplift rate Co) and diffusivity, C o/Klin, and hillslope curvature 
•72Z - 

prCo 

-- psK,i-- • = V2z (3) 

This relationship indicates that all else being equal, equilib- 

rium hillslopes that erode by linear diffusion should have con- 
stant curvature. 

Recently, geomorphic simulation models have been devel- 

oped to explore how tectonic activity, climate change, and land 

use affect landscape evolution [e.g., Nash, 1984; Andrews and 

Hanks, 1985; Hanks and Schwartz, 1987; Koons, 1989; I4qllgoose 
et al., 1991; Rosenbloom and Anderson, 1994; Rinaldo et al., 

1995; Arrowsmith et al., 1996; Kooi and Beaumont, 1996; Braun 

and Sambridge, 1997; Tucker and Slingerland, 1997]. These 

models simulate hillslope erosion as a linear diffusive process, 

but the morphology of most soil-mantled hillslopes is incon- 

sistent with the linear diffusion law. Soil-mantled hillslopes 

typically do not exhibit constant curvature; instead, curvature 

tends to approach zero as slopes steepen toward a limiting 

angle (Figure 2). Extreme examples can be found in steep, 
high-relief mountainous terrain, where many hillslopes are 

nearly planar, with marked convexity only near divides. This 

zone of convexity is broader on soil-mantled hillslopes, but 

there is nonetheless a pronounced decrease in convexity down- 

slope with slopes becoming nearly planar far from the divide. 

This hillslope form conflicts with constant-curvature (i.e., par- 

abolic) slope profiles predicted by the linear diffusive transport 

law (Figure 2). What processes could cause this downslope 
decrease in convexity, and how can such processes be mod- 
eled? 

To simulate the evolution of nearly planar hillslopes, recent 

landscape evolution models hypothesize that, on steep slopes, 

sediment transport increases nonlinearly with gradient [Kirkby, 

1984, 1985; Anderson and Humphrey, 1989; Anderson, 1994; 

Howard, 1994a, b, 1997]. These models postulate that sediment 
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Figure 2. (a) Elevation, (b) gradient, and (c) curvature along 
a profile for (1) a theoretical hillslope modeled with linear 
diffusion (equation (1)), shown by thick lines, (2) a hillslope in 
the Oregon Coast Range (OCR), shown with gray points, and 
(3) a theoretical hillslope modeled with our proposed nonlin- 
ear model (equation (8)), shown by a thin line. The theoretical 
hillslopes are calculated assuming constant erosion. For both 
model simulations the diffusivity equals 0.003 m2/yr, the con- 
stant erosion rate Co equals 0.075 mm/yr, and Pr/Ps equals 2.0. 
For the nonlinear hillslope, S c = 1.2. 

discussion of Howard [1997]). These sediment transport mod- 

els have not been calibrated or directly tested against field 
data. 

In this contribution we derive a simple, theoretical expres- 

sion that describes how sediment transport on soil-mantled 

hillslopes varies with slope angle. In contrast to previous stud- 

ies, which have assumed that disturbance-driven transport pro- 

cesses may be represented by linear diffusion, our analysis 

suggests that diffusive transport'varies linearly with slope at 

low gradients but increases nonlinearly as slope approaches a 

critical value. We test and calibrate our proposed transport 

law, using a unique high-resolution topographic data set ob- 

tained by airborne laser altimetry. At our study site, hillslope 

morphology is consistent with our proposed nonlinear diffu- 

sion law. Our results indicate that on soil-mantled hillslopes, 

small changes in slope angle may lead to disproportionate 

changes in erosion rate. 

2. Theory: Nonlinear Diffusive 
Sediment Transport 

On soil-mantled hillslopes, disturbances (such as tree throw, 
animal burrowing, rainsplash, and wet/dry cycles) mobilize sed- 

iment, allowing it to be transported downslope. The balance 

between local frictional and gravitational forces acts to dissi- 

pate the energy supplied by disturbances [e.g., van Burkalow, 
1945; Jaeger and Nagel, 1992] and may control how sediment 

flux varies with hillslope angle. Here we present a derivation 

showing that the combined effects of disturbances, friction, 

and gravity produce a nonlinear relationship between sediment 

flux and hillslope gradient. First, we write a general statement 

for sediment flux (L3/L/T) as 

V 

F:/s = •- • (4) 

where V/A is the volume of mobile sediment per unit area 

along the slope (L 3/L 2) and • is the velocity of its movement 
downslope (L/T). We assume that over geomorphic time- 
scales, disturbance processes expend energy at a given rate 

(i.e., supply power) in detaching and mobilizing sediment. Us- 
ing the physical relationship P = F•; where P is work done in 

transporting soil per unit time by disturbing agents and F is the 

net force resisting transport, we can substitute for velocity in 

(4) and express sediment flux as a function of power per unit 
area P/A and dissipative force per unit volume F/V: 

P/A 

Els = F/V (5) 

flux combines two distinct process types: (1) diffusive processes 

(e.g., biogenic activity, rainsplash, soil creep, and solifluction) 
typically represented with equation (1) and (2) slope failure 
processes (e.g., soil slips and slumps) which occur more fre- 
quently on steep slopes and may be influenced by a threshold 
slope angle. According to these models, at low slopes, sedi- 
ment flux increases approximately linearly with gradient, but as 

slopes approach a critical value, slope failure processes be- 
come more prevalent, and small increases in hillslope gradient 
cause large increases in sediment flux. At or just below this 

critical gradient, sediment flux is effectively infinite, such that 

steeper slopes cannot be maintained. As a result, nearly planar 
hillslopes may evolve, limited by the critical hillslope angle (see 

In the absence of evidence suggesting a directional preference 

to disturbance processes, we assume that geomorphic distur- 

bances supply power isotropically on hillslopes, such that equal 

power is available to move sediment in all directions. The net 

downslope sediment flux then becomes the difference between 

the fluxes in the downslope and upslope directions, according 
to 

q s= F/VJdown- F/VJup=• - (F/V)dow n - (F/V)up/ 
(6) 

The upslope and downslope fluxes differ because the down- 

slope dissipative force (F/•dow n is less than the upslope dis- 

sipative force (F/•u p. Downslope transport is resisted by fric- 
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Figure 3. Theoretical relationships between sediment flux and gradient. (curve a) Nonlinear transport law 
(equation (8)); (line b) linear diffusion law (equation (1)). The critical gradient Sc is the gradient at which flux 
becomes infinite for the nonlinear transport law. 

tional force (F/V)f and aided by gravitational force (F/V)a, 
whereas upslope transport is resisted by both friction and grav- 

ity, thus (F/[/)Sow n -- (F/[/)f - (F/De , and (F/V)u p = 
(F/V)f + (F/V)a. For this formulation we assume that friction 
is the only component of shear strength in the soil. The fric- 

tional force per unit volume calculated along the slope is tZps # 

cos 0, and the downslope component of the gravitational force 

per unit volume is Ps# sin 0, where Ix is the effective coefficient 

of friction, Ps is the bulk density of sediment, # is gravitational 

force, and 0 is slope angle. The net downslope sediment flux 

calculated in the horizontal plane then becomes 

_ P ( cos 0 q s=•- (tzpsgCOS 0-psgsin0) 

cos 0 ) - (tzpsg cos 0 + Psg sin 0) (7) 

where the cos 0 term in the numerator projects the along-slope 

forces into the horizontal plane. Equation (7) can be simpli- 
fied. By substitutingK = (P/A)(2/gtjC2ps), Vz = tan 0, and Sc 
--- Ix, we obtain a theoretical expression for how sediment flux 

varies with hillslope gradient: 

KVz 

_ (iVzl/Sc)= (8) 
where K is diffusivity (L2/T) and S• is the critical hillslope 
gradient. In our proposed model, diffusivity varies linearly with 

the power per unit area supplied by disturbance processes. 

Diffusivity K also varies inversely to the square of the effective 
coefficient of friction, Ix, which • follows the intuition that sed- 

iment mobilization and transport will vary with the shear 

strength of the soil. Thus, all else being equal, sediments with 
more frictional resistance will have lower diffusivities. Andrews 

and Bucknam [1987] derived a model effectively equivalent to 

(8), using a framework in which ballistic particles are projected 
along a hillslope [Hanks and Andrews, 1989]. 

The behavior of (8) is similar to the transport law proposed 

by Howard [1994a, b, 1997] in that sediment flux increases in a 

nearly linear fashion at low hillslope gradients (which is sup- 

ported by a field study [McKean et al., 1993]) and increases 

rapidly as the gradient approaches a critical value (Figure 3) 

(note: the transport law presented by Howard [1994a, equation 

(6)] was misprinted; see Howard [1997, equation (2)] for the 

correct form). In our proposed model the rate of sediment flux 

becomes infinite at the critical hillslope gradient S•. This at- 

tribute of the model is consistent with the concept of threshold 

hillslopes; when slope angles approach the critical value, in- 

creases in the rate of downcutting do not significantly steepen 

slopes, but instead lead to higher sediment fluxes. 

We distinguish the critical gradient parameter S• contained 

in this model from the commonly used "threshold" slope or 

gradient St. Assuming that erosion does not become weather- 

ing-limited, slope angles equal to S• should not be observable 

in the field because flux is infinite for such slopes and they 

would rapidly decline. In contrast, the threshold slope angle is 

generally equated with the angle of repose and thus is the 

maximum angle observed in the field [e.g., Strahler, 1950; Car- 

son and Petley, 1970; Young, 1972; Burbank et al., 1996]. 

Our formulation is not sensitive to the assumption of iso- 

tropic power expenditure by diffusive agents. On steep slopes, 

where power may be preferentially supplied in the downhill 

direction (i.e., anisotropically), the resulting sediment flux is 

similar to that predicted by assuming isotropic power expen- 

diture because the net flux is dominated by the downslope 

component. 

Our model does not explicitly include small soil slips (which 

travel short distances over divergent or planar hillslopes) as 

part of its conceptual framework, but it may capture their 

diffusive behavior over long timescales. However, our trans- 

port law does not address larger landslides that (1) are con- 

trolled by elevated pore pressures due to topographically in- 

duced convergent subsurface flow, (2) tend to travel long 

distances through low-order channel networks, (3) scour col- 
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luvium and sediments and expose bedrock, and (4) tend to 
incise into hillslopes rather than diffuse sediment across them. 

In the following sections, we describe our study site in the 

Oregon Coast Range, test the proposed transport law, and 

describe two techniques for calibrating K and S c. We also 

compare our proposed transport law with the linear diffusion 

law and explore its implications for hillslope evolution. 

3. Study Site: Oregon Coast Range 

3.1. Description 

We tested and calibrated our proposed transport law at five 

small watersheds within a 2 km 2 area of the central Oregon 
Coast Range (OCR), near Coos Bay, Oregon (Figure 4) (see 
Montgomery et al. [1997] for location map). We selected this 
study area because erosion rates are well-documented for 

small and large spatial scales. Also, at this site, high-resolution 

topographic data accurately reveal the morphologic signature 

of diffusive processes. The OCR is a humid, forested, moun- 

tainous landscape. Its central and southern regions are under- 

lain by a thick section of Eocene turbidites mapped as the Tyee 

Formation [Baldwin, 1956; Snavely et al., 1964; Lovell, 1969; 

Chan and Dott, 1983; Heller et al., 1985]. The Tyee (or some- 
times referred to as the Flournoy Formation) has been com- 
pressed into a series of low-amplitude, north-northeast striking 

folds that rarely exhibit dip angles greater than 20 ø [Baldwin, 

1956]. The Oregon Coast Range is situated above a subduction 

zone and has experienced uplift over the last 20-30 Myr [Orr 

et al., 1992]. 

The topography of the Oregon Coast Range is variable, but 

significant portions are characterized by steep, highly dissected 

terrain with distinct ridge and valley topography (Figure 4) 

[Dietrich and Dunne, 1978; Montgomery, 1991; Montgomery and 

Dietrich, 1992]. Thin soils typically mantle ridges, and thick 

colluvial deposits fill unchanneled valleys at the uppermost 

extent of the channel network. Debris flows originating in 

unchanneled valleys may control the dissection of low-order 

channel networks, as fluvial erosion is infrequent in these areas 

[Dietrich and Dunne, 1978; Swanson et al., 1982; Reneau and 

Dietrich, 1990; Seidl and Dietrich, 1992]. Diffusive processes 

along sideslopes, ridges, and noses transport sediment to un- 

channeled valleys, where it accumulates until it is removed by 

landsliding. The probability of landsliding increases with soil 

depth; thus the rate of sediment supply from adjacent hill- 

slopes controls the timescale of cyclic sediment accumulation 

and evacuation in hollows [Reneau et al., 1989]. In some lo- 

cales, inactive deep-seated landslides dominate the topogra- 

phy, having transformed ridge/valley sequences into low- 

gradient, relatively undissected hillslopes. These massive 

landslides commonly have a downslope orientation coincident 

with the downdip direction of the local bedrock, and appear to 

be concentrated in areas with high dip magnitudes of the 

underlying bedrock [Roering et al., 1996]. The transport law we 

propose here applies to purely slope-dependent transport pro- 

cesses on divergent and planar hillslopes, but does not encom- 

pass debris flow processes or deep-seated landsliding. 

The uniformity of highly dissected topography in the Oregon 

Coast Range suggests that locally, erosion rates may be spa- 

tially uniform. Using data from studies of long-term hillslope 

erosion and short-term, basinwide sediment yield, Reneau and 

Dietrich [1991] argued that denudation rates (approximately 

0.06-0.1 mm/yr) in the central Oregon Coast Range do not 
vary significantly with spatial scale, such that the landscape 

may be in approximate equilibrium. These denudation rates 
are also consistent with rates of exfoliation in colluvial bedrock 

hollows [Reneau and Dietrich, 1991]. Subsequent studies have 

estimated rock uplift rates as ranging from 0.03 to 0.23 mm/yr 

in the central Oregon Coast Range [Kelsey and Bockheim, 

1994; Kelsey et al., 1994]. By dating strath terraces along many 

Oregon Coast Range rivers, Personius [1995] estimated similar 

uplift rates of 0.1-0.2 mm/yr. More recently, cosmogenic ra- 

dionuclides have been applied to estimate long-term rates of 

erosion and soil production, which are 0.1 _+ 0.03 mm/yr in a 

small basin within our study site [Heimsath et al., 1996]. The 

similarity in estimated rates of erosion and uplift suggests 

approximate equilibrium conditions. However, variability in 

tectonic and climatic processes may affect rates of channel 

incision, thereby altering the boundary conditions that drive 

hillslope erosion. Fernandes and Dietrich [1997] studied the 

time required for diffusion-dominated hillslopes to establish 



858 ROERING ET AL.: EVIDENCE FOR NONLINEAR, DIFFUSIVE SEDIMENT TRANSPORT 

- • Gradient 
•[ ti t ' '" • -1.0 

_ .._• -0.7 

• %,.•\,'--•.•. '/,;• •,!Itf •'" ••\,,••"t•;•t• • • - 0.5 
• * •., ••- :'• -o.2 

- ' - •• .- o.• 

o 5o •oo • MR1 
It 

• •' '" Cu•a•re 
• • -0.12 

' O.lO o 

o.os 

0.06 

0.04 

• • • 0.02 • 0.00 

-0.02 

-0.04 

-0.06 

-0.08 

Plate 1. Topographic maps with the spatial distribution of (a) gradient and (b) cu•ature for the watershed 
(MR1) outlined in Figure 4. The contour inte•al is 2 m. The valley network drains to the north. Positive 
cu•ature indicates convergent topography, whereas negative cu•ature corresponds to divergent terrain. 
Low-gradient ridges and noses are highly divergent, and hillslopes become steeper and more planar down- 
slope. 



ROERING ET AL.: EVIDENCE FOR NONLINEAR, DIFFUSIVE SEDIMENT TRANSPORT 859 

(_) 

gradient o (+) 

(C) nonlinear model (eqn. 8) • 
• •' I sløpe thresh' I (B) linear n•)ld•l(•itt)h 

(A) linear model (eqn. 1) 

Figure 5. Theoretical relationships between curvature and gradient generated by three generalized diffusive 
sediment transport laws (assuming a constant erosion rate Co). (line a) A linear diffusion law gives hillslopes 
with constant curvature; (line b) a linear diffusion law coupled with a slope threshold St, such that steeper 
slope angles are instantaneously reduced, generates hillslopes with constant curvature below the threshold and 
planar hillslopes for slopes at the threshold; and (curve c) a nonlinear diffusion law (equation (8)) generates 
hillslopes with curvature that approaches zero with increasing gradient. Curvature becomes zero when 
gradient equals the critical value Sc. 

approximate equilibrium following a change in the channel 

incision rate. According to their analysis, hillslopes similar to 

those in our study area would require 150,000 years to reach 
approximate equilibrium after a doubling of the channel inci- 

sion rate (exact equilibrium is approached asymptotically). By 
contrast, the OCR has been uplifting for the last 20 million 

years [Orr et al., 1992]. 

These observations suggest that portions of the Oregon 

Coast Range may approximate an equilibrium landscape, such 

that over time the terrain erodes at approximately the same 

rate and rock uplift balances denudation. In other words, the 

topography of the region may be considered relatively time- 

independent (see Howard [1988] for discussion). Despite these 
observations supporting equilibrium, we observe local features, 

such as ancient deep-seated landslides, that may indicate local 
erosional disequilibrium. In performing the analyses described 
below, we focus on five small watersheds with well-defined 

divides and relatively uniform ridge and valley morphology 

because these areas may be more likely to approximate an 

equilibrium landscape. 

3.2. High-Resolution Topographic Data: Airborne Laser 
Altimetry 

In our study area, high-resolution topographic data were 

obtained using airborne laser altimetry (Airborne Laser Map- 
ping, Inc.), which can accurately characterize fine-scale topo- 
graphic features over large areas [e.g., Garvin, 1994; Ritchie et 

al., 1994; Armstrong et al., 1996; Ridgway et al., 1997]. Topo- 

graphic data points were collected with an average spacing of 

2.3 m and a vertical resolution of approximately 0.2-0.3 m. In 

addition to depicting fundamental geomorphic features, such 

as ridges and unchanneled valleys, and anthropogenic features, 

such as logging roads and landings, the topographic data pro- 

vide a detailed description of meter-scale irregularities on hill- 

slopes (see Figure 4). The expression of small-scale roughness 
presumably reflects data errors in distinguishing vegetation 

from the ground surface, as well as the stochastic nature of tree 

throw pits and local lithologic variability. 

4. Characterizing Sediment Transport 
Laws With Topographic Derivatives 

4.1. Method 

We used plots of hillslope curvature as a function of gradient 

(e.g., Figures 5 and 6) to test diffusive transport laws against 
the hillslope morphology of our study site. Most landscape 

evolution models employ one of three general relationships for 

how sediment flux varies with slope. Each of these three gen- 
eral transport laws generates a distinct relationship between 

hillslope gradient and curvature for equilibrium hillslopes (Fig- 
ure 5). First, the linear diffusive transport law (equation (1)) 
implies that on equilibrium hillslopes, curvature does not vary 

with gradient (see equation (3)). Second, some studies have 
suggested that hillslopes denude by linear diffusion unless a 

threshold angle St is attained [e.g.,Ahnert, 1976;Avouac, 1993; 

Tucker and Slingerland, 1994; Arrowsmith et al., 1996]. Upon 
reaching the threshold angle, hillslopes experience an imme- 

diate downslope redistribution of sediment (i.e., landslide). 
Equilibrium hillslopes modeled with such a transport law 
would exhibit constant curvature for gradients below the 

threshold and be planar (zero curvature) for gradients at or 
near the threshold. Thus plots of curvature versus gradient 

would approximate a step function at the threshold slope angle 

(see Figure 5). Finally, nonlinear transport laws (e.g., equation 

(8)) imply that hillslope curvature should be roughly constant 
at low gradients, converging continuously toward zero with 

increasing gradient (see Figure 5). Curvature equals zero for 
gradients equal to the critical value S c. Using the relationship 
between hillslope gradient and curvature, we can assess the 

validity of the three generalized sediment transport laws. 

Traditionally, hillslope profiles have been used to analyze 



860 ROERING ET AL.: EVIDENCE FOR NONLINEAR, DIFFUSIVE SEDIMENT TRANSPORT 

0.00 

-0.02 

-0.04 

-0.06 

-0.08 

-0 10 

gradient 

0 0 0.2 0 4 0.6 0 8 1.0 1.2 

• I • I • I • I. •.. I • I 

A) MR'I .t. • 

.' ' 

ß ..._..(•__--•. '- I" ß 

ß . ,•.' ß ., ß .• ;. ß b;.a'...:;':':,' ..- 
6'6. . 

ß 

ß . . 
ß . . 

' I ' I ' I ' I ' I ' 

oo 

gradient 

0.2 0 4 0.6 0.8 1 0 1 2 

I I : I :. I ,.: ].,., _.I 
ß ,; •'.,,.:: ß 

ß . •?'L•., •. 
..: 

ß . .,. , .:,?:::.. • 

ß 

; ; '; ß 

ß .' •:.,'O:.' "' 

ß .. :.. o...:: .; 
ß . ß ß ½I ß ... .ø o 

ß ß 

ß 

ß 

B) MR2 

0.00 ß 

-0.02 

- 

-0 04 - 

-0.06 - 

- 

-0.08 - 

-0.10 

I I I I I I •. I •. I 

ß ..,•.,.. • %;... 
:. ?,•::.•:.?.:.. 

.". 
. 

ß . . ß , 

. 

, I l 

D) MR4 

0 00 

-0.02 

-0.04 

-0.06 

-0.08 

-0.10 

i I , I 

E) MRS 

: I i I i I i I I l 

F) Individual • 

hillslopes M.• 

slope 

Figure 6. (a-e) Plot of gradient against curvature for our study basins (MR1-MR5) and (f) moving 
downslope along individual hillslopes in MR1-MR4. Open diamonds indicate binned' average values of 
curvature. Low-gradient terrain tends to be convex (highly negative curvature), whereas steep terrain tends to 
be nearly planar (near zero curvature). The relationship is consistent with our nonlinear transport law (see 
Figure 5), such that curvature decreases continuously with gradient and approaches zero for steep slopes. 

the morphologic expression of sediment transport laws [e.g., 
Davis, 1892; Penck, 1953; King, 1963; Kirkby, 1971; Howard, 

1994a, b], as we show in Figure 2. Profiles are a simple and 
appealing method for describing slope morphology, but they 
cannot account for planform (i.e., contour) curvature. In our 
study site, as well as in many soil-mantled landscapes, hillslope 
segments with negligible planform curvature are rare, con- 
founding our ability to characterize hillslope morphology with 
profiles. Alternatively, plots of gradient against curvature (cal- 
culated in both the x and y directions) allow us to directly 
compare hillslope form to models of hillslope erosion. Using 
this approach, we can test these models across large areas, 
rather than restricting our analysis to selected hillslope pro- 
files. 

We estimated topographic gradient and curvature by fitting 
two-dimensional, second-degree polynomials to patches of lo- 
cal topographic data points (300-500 m 2) at evenly spaced 
intervals throughout the study basins. We used a weighted least 
squares routine (which gives greater weight to points near the 
center of each patch) and calculated gradient and curvature 

from the coefficients of the best fit equations. Our analysis is 
based on laser altimetry-derived topographic data that cap- 
tures meter-scale variability in the topography. Topographic 
data obtained from digital elevation models with a large grid 
spacing (e.g., 30 m or larger) will not accurately depict small- 
scale variations in hillslope morphology that are indicative of 
most diffusive processes. 

4.2. Results 

Plate 1 depicts a small catchment (MR1, which is approxi- 
mately 52,000 m 2) with characteristic ridges and valleys in our 
study site near Coos Bay, Oregon. The spatial distribution of 
gradient (IVzl) and curvature (calculated as the Laplacian 
operator V2z) delineates the structure of ridges and valleys. 
Ridges (which are narrow, divergent hilltops that extend over 
long distances) and noses (which are divergent hillslopes with 
unchanneled valleys on either side) tend to have divergent 
(highly negative V2z) axes and high gradient, nearly planar 
(near zero V2z) sideslopes. Noses alternate with convergent 
(highly positive V2z) unchanneled valleys. Curvature appears 
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to decrease gradually as one moves in the downslope direction 
from hilltops. 

To quantify hillslope morphology and assess the sediment 
transport laws discussed above, we plotted gradient against 
curvature for hillslopes (which we defined as areas with V2z < 
0) in the five small basins depicted in Figure 4. Low-gradient 
portions of hillslopes tend to be highly divergent, whereas 
steep sideslopes typically have near zero values of curvature. In 
each of our study basins, we observe a gradual trend toward 
zero curvature with increasing gradient (Figures 6a-6e), which 
indicates that the topography is consistent with our nonlinear 

diffusive transport law (equation (8)). Moving downslope 
along individual hillslopes in these basins, we also observe the 
trend of decreasing convexity with increasing gradient (Figure 

6f). More generally, we observe that (1) curvature is not con- 
stant and (2) an abrupt threshold slope angle does not separate 
low-gradient, divergent slopes from steep, planar slopes. Thus 
the morphologic signature depicted in Figure 6 is fundamen- 
tally inconsistent with both the linear diffusion law and the 
linear diffusion/slope threshold law. 

5. Model Calibration: Divergence 
of Sediment Flux 

5.1. Method 

Our calibration procedure finds the values of K and S c that 
are most consistent with the topographic form of our study 

area and its measured long-term erosion rate. We calculate 

erosion rate E as the divergence of sediment transport, E -- 

V ß F/s. Substituting (8), we obtain the following expression that 
relates the rate of landscape erosion to model parameters (K 
and So) and derivatives of the local topographic field: 

-g [ V2z E = iOr/Ps 1 -- (Ivz /Sc) 2 

[(0z)0z (oz,oz ,ozoz 2 +2[¾oxoxoy + - tlzlc)5 (9) 

From (9) and assumed values for K and S•, we can calculate 
the local erosion rates of individual points on the landscape 

from their topographic derivatives. If the landscape is in steady 
state, then each point on the landscape should be eroding at 

the same rate. Our calibration procedure searches for the 

values of K and S• that make these modeled erosion rates as 

uniform as possible across the landscape, and as consistent as 

possible with independently derived estimates of the long-term 
average erosion rate Co. We limited our analysis to divergent 

or nearly planar hillslopes (i.e., V2z < 0) because our sedi- 
ment transport model (equation (8)) does not address mass- 
wasting processes associated with convergent topography. 

The calibrated or best fit parameters are those that minimize 

the difference between modeled erosion rates (equation (9)) 
and the assumed long-term erosion rate Co. For the calibra- 

tion we used a constant landscape erosion rate Co of 0.1 _+ 0.03 

mm/yr [Heimsath et al., 1996] and Pr/Ps = 2.0 _+ 0.2 [Reneau 
and Dietrich, 1991]. We plot the root mean square error 

(RMSE) between Co and modeled erosion rates for a range of 
values of K and S•, and choose the parameters that give the 
lowest value of RMSE: 

RMSE = - (Co -- E,) 2 
/l = 

1/2 

(•0) 

where n is the number of points in the landscape for which we 
model the erosion rate and E i is the modeled erosion rate at 

the ith point in the landscape (calculated with equation (9)). 
The vertical resolution of topographic data may affect our 

results. To estimate how uncertainty in the elevation (i.e., z) 
values affects our calibrated parameters, we performed a 

Monte Carlo simulation. Specifically, we randomly varied the 
elevation values within their range of uncertainty and recali- 

brated the model parameters from this "synthetic" data set. By 

performing many iterations of this process, we estimated the 

probability distribution and standard error of the calibrated 

model parameters. 

5.2. Results 

We performed the calibration on five small basins in our 

study area (see Figure 4). For catchment MR1 we plotted 
RMSE (normalized by Co) as a function of K and S• and 
found the minimum value of RMSE/Co (approximately 0.4) 
when K = 0.0032 _+ 0.0009 m2/yr and Sc- 1.25 _+ 0.10 
(Figure 7). Calibrated parameters for all five study basins are 
shown in Table 1. Values for K range from 0.0031 to 0.0045 

m2/yr with an average of 0.0036 m2/yr, and S• ranges from 1.2 
to 1.35 with an average value of 1.27. Thus the variability of the 

parameter estimates between our five small basins is consistent 
with our estimate of the parameter uncertainty within each 
individual basin. 

The shape of the surface defining RMSE/Co in Figure 7, 

which dips steeply in either direction parallel to the K axis and 

dips less steeply parallel to the S• axis, indicates that the model 

calibration is more sensitive to variability in K than in S•. 

Diffusivity K is linearly related to the spatially constant land- 

scape erosion rate, such that any adjustments in Co give pro- 

portional changes in K. 

Recalibrating the model parameters in our Monte Carlo 

simulation, we observed that our results are relatively insensi- 

tive to uncertainty in the topographic data. For example, our 

calculations show that the standard error in K due to topo- 

graphic uncertainty is approximately 0.0001 m2/yr and for S• it 
is approximately 0.02. Thus topographic uncertainty is a small 

part of the total uncertainty in estimates of K and So. 

6. Model Calibration: Area Slope 

6.1. Method 

We can also calibrate the model parameters by modeling 

sediment fluxes using (8) and comparing them to the sediment 
fluxes required to maintain a spatially uniform erosion rate. 

This method tests our proposed model more directly, although 
it does not define the estimated parameters as precisely as the 
divergence method. In an equilibrium landscape the volumet- 

ric sediment flux per unit length across each point is 

Or a 

qs=Co (11) 
psb 

where a/b is drainage area per unit contour length. We plot 
mass flux (equation (11)) as a function of hillslope gradient 
and estimate K and S• by fitting theoretical flux curves (equa- 

tion (8)) to the data points. 
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Figure 7. Contour plot of RMSE/Co as a function of K and S c for basin MR1. The surface defines the misfit, 
according to equation (10), between modeled erosion rates and the spatially constant rate (0.1 mm/yr) for 
different parameter values. The lowest value of RMSE/Co, as shown by the gray lines, corresponds to the best 
fit parameters (K = 0.0032 m2/yr, and Sc = 1.25). Contours with extremely high values of RMSE/C o were 
omitted for clarity. 

Analogous to Gilbert's [1909] conceptual model of a one- 

dimensional hillslope, (11) states that mass flux must increase 
with drainage area on equilibrium hillslopes. If sediment trans- 

port varies primarily with gradient (as we hypothesize for di- 
vergent and planar hillslopes), points with higher a/b should 
also have steeper hillslope gradients. To restrict this analysis to 

hillslopes, we limited our calculations to points of the land- 
scape with negative curvature. Generally, these points have a/b 

values below a particular threshold, such that higher values 

tend to be associated with convergent topography (e.g., hol- 
lows and channels) [Tarboton et al., 1991; Dietrich et al., 1992; 
Montgomery and Foufoula-Georgiou, 1993]. To calculate a/b, 

we used a grid-based analysis and applied a multidirection, 

weighted-area algorithm that uses the grid node spacing as b 

(similar to Costa-Cabral and Burges [1994] and Tarboton 

Table 1. Calibrated Parameters Using Divergence 

Calibration Method in Study Basins 

Site K, m2/yr Sc 

MR1 0.0032 1.25 

MR2 0.0031 1.20 

MR3 0.0045 1.35 

MR4 0.0032 1.35 

MR5 0.0039 1.22 

Average 0.0036 _+ 0.0016 1.27 _+ 0.16 

[1997]). In this calculation the total area draining out of each 
grid cell is divided between its downslope neighbors (both 
adjacent and diagonal) in proportion to the local gradient. This 
algorithm produces a spatial distribution of a/b that avoids 

obvious grid artifacts that would be created if the maximum fall 

line were used to calculate drainage area. 

6.2. Results 

On hillslopes in catchment MR1, a/b increases with gradi- 

ent, which is consistent with the equilibrium assumption, such 

that points with larger drainage areas must transmit higher 

mass fluxes (Figure 8). However, for convergent parts of the 
landscape, a/b varies inversely with gradient; these points are 

part of the valley network and thus are not included in the 
model calibration. In catchment MR1 we observe that flux 

(calculated with equation (11) for points in the landscape with 
negative curvature) increases nearly linearly with gradient for 
low slopes and increases rapidly on steeper slopes (Figure 9). 
To calibrate the model parameters, we fit two model flux 

curves (equation (8)) to the data, such that over 98% of the 
data points are enclosed by the two curves. These curves define 

a range of model parameters; K varies between 0.0015 and 

0.0045 m2/yr, and S c varies between 1.0 and 1.4. These param- 
eters define the bounds of values consistent with our study 

basin and are similar to parameter values estimated with the 

divergence method (K = 0.0032 m2/yr, and Sc = 1.25). For 
very low gradients (<0.2), mass flux estimates exceed those pre- 
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Figure 8. Semilog plot showing the relationship between drainage area per unit contour length (a/b) and 
gradient for basin MR1 (see Plate 1). Black dots represent terrain with divergent curvature (which we classify 
as hillslopes), and gray dots represent convergent terrain. Values are calculated from gridded topography with 
a 4 m spacing, thus the smallest possible value of a/b equals 4 m. 

dicted by the model because cells in our simulation have a finite 

size (4 x 4 m) and smaller drainage areas cannot be computed. 

7. Modeling Hillslope Morphology 

To analyze how our proposed transport law influences hill- 

slope morphology, we calculated how erosion rate affects gra- 
dient and curvature along an equilibrium model hillslope. Spe- 
cifically, we solved (9) in one dimension assuming a constant 
erosion rate Co and using the calibrated value of Sc = 1.25. 

We used this simple, one-dimensional analysis because two- 

dimensional hillslope evolution modeling requires the specifi- 
cation and calibration of transport laws for valley-forming pro- 

cesses such as debris flows and fluvial erosion (those endeavors 
exceed the scope of this contribution). Figure 10 depicts gra- 
dient (Figure 10a) and curvature (Figure 10b) as a function of 
distance from the divide (L) for a range of prCo/Ps K. Figure 
10 shows that for slope gradients greater than roughly 0.5 So, 
large increases in erosion rate can be accommodated by small 
increases in hillslope gradient. For example, 25 m downslope 
of the divide, only a 25% increase in gradient (from 0.75 to 
0.97) is required to accommodate a doubling of the erosion 

rate (from prCo/Ps K equals 0.05 to 0.10 m-l). With increasing 
distance from the divide, hillslope gradient becomes increas- 

ingly uniform, and both slope and curvature become increas- 

ingly insensitive to changes in erosion rate. Using calibrated 

values of K and S•, we plotted model curves against the hill- 

slope profile depicted in Figure 2 (which had negligible plan- 
form curvature) to demonstrate that nonlinear diffusive trans- 

port is more appropriate for representing the observed 
hillslope morphology than linear diffusion. 

For very low values of PrCo/Ps K (<0.01 m-X), the modeled 
hillslope has relatively constant curvature and approximates a 
hillslope modeled with linear diffusion. In other words, when 

erosion rates are low relative to diffusivity, hillslope gradients 
will not approach the critical slope S• except on very long 
hillslopes. With increasing erosion rate (or decreasing diffusiv- 
ity), the point along the hillslope at which curvature deviates 

from a constant value moves closer to the divide. For extremely 
high values of PrCo/Ps K, slope angles increase rapidly downhill 
of the divide and approach a threshold value such that lower 

sections of the hillslope are steep and nearly planar. More 
generally, with increasing erosion rate, decreasing diffusivity, 
and increasing hillslope length, more of the hillslope will be 
close to the critical angle. 

8. Observed and Modeled Hillslope Morphology 

To explore how nonlinear diffusion may affect hillslope mor- 
phology, we plotted the frequency distribution of hillslope gra- 
dient in our study catchments, and compared it to the slope 
dependence of sediment flux (as estimated from equation (8)). 
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Figure 9. Relationship between sediment flux and gradient in basin MR1. Data points indicate flux com- 
puted with equation (11), which is calculated for parcels of the landscape with divergent curvature. Two model 
curves, which are computed with equation (8), are plotted around the data points, such that over 98% of the 
data points are enclosed by the two curves. The dashed curve has K = 0.0015 m2/yr, and S c = 1.4; the solid 
gray curve has K = 0.0045 m2/yr, and Sc - 1.0. Flux does not approach zero (or fit within the model curves) 
because a finite grid cell size limits the smallest possible value of a/b. 

In our study basins, ridges and noses typically bisect steep 

sideslopes; on these sideslopes, angles approach and some- 

times exceed 45 ø . The scale of the highly convex region is of the 

order of 10 m, and the average hillslope length is approxi- 

mately 35 m; thus a large fraction of the hillslope area lies 

outside the highly convex region and instead is steep and 

nearly planar. We plotted our calibrated sediment transport 

law (K = 0.0032 m2/yr, and Sc = 1.25) and the frequency 
distribution of gradient for hillslopes in MR1-MR5 (Figure 
11a). In our study basins, hillslope gradients tend to cluster 
near values for which sediment flux is a highly nonlinear func- 

tion of slope (for example, in MR1, mean hillslope gradient is 
0.80, and 50% of the terrain has gradients between 0.74 and 

0.92). Sediment flux increases rapidly with gradient near the 

critical slope; this feedback results in a limit to slope steepness. 
To test the observed clustering of gradients near the non- 

linearity in mass flux, we compared the gradient distributions 

for MR1-MR5 (see Figure 11a) with the gradient distribution 
for an equilibrium, one-dimensional, model hillslope (Figure 
11b). This simple, one-dimensional analysis captures how our 
transport law influences the distribution of hillslope gradient 

and curvature. We modeled the equilibrium hillslope with the 
following parameters: K = 0.0032 m2/yr, S c = 1.25, Co = 
0.1 mm/yr, 9,-/9s = 2.0, and hillslope length is equal to 35 m. 

Hillslope gradients for the study basins and model hillslope are 

similarly clustered between 0.7 and 1.0, although the model 

hillslope has more area with lower gradients, between 0 and 

0.6. This discrepancy arises because our theoretical hillslope 

must have zero slope at the divide, whereas divides in our study 

basins are typically inclined along their axes; thus slopes in the 

study basins tend to be steeper. In addition, some hillslopes in 

our study basins have significant planform curvature, which 

further diminishes the area with low gradient (i.e., ridges). We 
also compared the cumulative distribution of curvature for 

MR1-MR5 and the theoretical hillslope (Figure 12). These 
distributions illustrate that the majority of hillslope area has 
curvature between 0 and -0.04. 

9. Modeling Erosion Rates: Linear and 
Nonlinear Diffusive Transport Laws 

To evaluate how our proposed transport law compares with 
linear diffusion for modeling erosion rates at our study site, we 

calculated the frequency distribution of erosion rate using both 

laws. In both cases, we calculated erosion rates at evenly 

spaced points on divergent terrain in basin MR1. For the 

nonlinear case we used (9) (with the calibrated parameters 
K = 0.0032 m2/yr, and S c = 1.25) and plotted the frequency 
distribution of the calculated erosion rates (Figure 13). For the 
linear model we used (10) to calibrate (1) and found the value 
of Knn that minimizes the misfit between modeled erosion 

rates and the spatially constant value Co = 0.1 mm/yr. We 

used the best fit Knn (approximately 0.0053 m2/yr) to model 
erosion rates with (1) and (2a) and plotted the frequency 
distribution of calculated erosion rates (Figure 13). 

From this analysis we observe that neither transport law 



ROERING ET AL.: EVIDENCE FOR NONLINEAR, DIFFUSIVE SEDIMENT TRANSPORT 865 

0.10 

0.08- 

• 0.06 
'F ' 

c• c• 0.04- 

0.02- 

0.00 

0.10 

O.O& 

0.06- 
•-. 

E 
v 

0.04- 

0.02- 

0.00 

I I I I 

A) Gradient 

•0.05• - 
i i i 

I I 

ature 

ß 

---0.015 

0 1'0 2'0 3•0 4'0 50 
L (m) 

Figure 10. Contour plot of hillslope (a) gradient and (b) 
curvature as a function of the ratio of erosion rate to diffusivity 
(Co/K) and hillslope length L for an equilibrium hillslope 
modeled in one dimension with equation (9) (Sc = 1.25). 

generates a uniform erosion rate. In fact, both models indicate 
that local erosion rates vary between 0 and over 0.16 mm/yr. 

Despite this variability, our nonlinear model produces a cluster 
of values around the assumed constant erosion rate of 0.1 

mm/yr. The linear model generates more low erosion rates 

because erosion is proportional to curvature and our study site 
is dominated by nearly planar hillslopes. For the nonlinear 
model, over 70% of the study site has a modeled erosion rate 

between 0.05 and 0.15 mm/yr, whereas for the linear model, 
less than 40% of the terrain has a modeled erosion rate in that 

range. This result suggests that the proposed nonlinear trans- 

port law would better preserve the current topography than 
would the linear law. In other words, denudation modeled by 

the linear model would substantially alter hillslope morphol- 
ogy, rounding sideslopes and producing a wider distribution of 
gradient. The nonlinear model is more consistent with steady 
state erosion given the observed hillslope morphology. 

10. Discussion 

Our analysis yields a nonlinear diffusive transport law that is 

consistent with the tendency of hillslopes in our study area to 

become more planar as they steepen. Our transport law be- 
haves similarly to those proposed by Kirkby [1984, 1985], 
Anderson [1994], and Howard [1994a, b, 1997] in that flux 

increases continuously with gradient and increases rapidly as 

gradients approach a critical value. Although these models 

have sometimes been termed "landslide" laws, we refer to (8) 
as a nonlinear diffusive transport law because our proposed 

model does not encompass large landslides or debris flows and 

does not require them to produce the observed nonlinear slope 

dependence of sediment flux. Transport laws that attempt to 
represent debris flows should include a mechanism to account 
for the area dependency of pore pressure development, such 
that convergent areas experience more frequent soil saturation 

and thus have a higher probability of generating a shallow 

landslide [Tucker and Bras, 1998]. Our proposed transport law 
differs from those discussed above because it suggests that 

purely diffusive processes, such as biogenic activity, generate a 
nonlinear relationship between hillslope gradient and sedi- 

ment flux. Kirkby [1984, 1985], Anderson [1994], and Howard 

[1994a, b, 1997] suggest that a process transition occurs on 

steeper slopes, such that slope failure processes become more 
prevalent and cause a rapid increase in flux with gradient. 
Because the critical gradient term S c imposes a condition of 

chronic soil instability in our model, we suggest that it may 

effectively encompass small soil slips and slumps that do not 
travel far, although these processes are not explicitly included 
in the theoretical formulation. 

Sediment transport rates predicted with our proposed model 

are similar to those obtained by field studies. Reneau and 

Dietrich [1991] estimated colluvial transport rates by defining 

sideslope pathways of sediment transport into hollows and 
measuring the amount of colluvium deposited above dated 

organic material. The average colluvial transport rate for nine 

sites in the southern Oregon Coast Range is 0.0032 ___ 0.0023 

m2/yr. Most of the sideslopes in their study area have a rela- 
tively uniform slope angle, and the average value was mea- 
sured for each site. To test (8) against the transport rates 
measured by Reneau and Dietrich [1991], we calculated sedi- 

ment flux (or colluvial transport rate) using our calibrated 

model and the average gradient of sideslopes in their study 

(approximately 0.7). Our model predicts a colluvial transport 
rate of approximately 0.0036 m2/yr, which is similar to their 
average value of 0.0032 m2/yr. Using their average colluvial 
transport rate and the average sideslope gradient, we calcu- 
lated an average linear diffusivity K•i n which is approximately 

0.0048 m2/yr. This value is very similar to the calibrated value 
of Kli n (0.0053 m2/yr) that we estimated using the equilibrium 
assumption and topographic data. Estimated values of K•i n are 
larger than estimates of K because of the nonlinearity in our 

proposed flux relationship (equation (8)). For a given diffusiv- 
ity our proposed transport law predicts higher sediment fluxes 
for gradients near the critical value than does the linear diffu- 

sion law. We suggest that steep, soil-mantled landscapes may 

be appropriately modeled with a nonlinear diffusive transport 

law because (1) the topography of our study site is consistent 
with a nonlinear diffusive transport law and (2) our calibrated 
model generates rates of mass flux similar to those measured in 
the field. 

Our topographic analyses (Figures 6 and 9) and erosion rate 



866 ROERING ET AL.: EVIDENCE FOR NONLINEAR, DIFFUSIVE SEDIMENT TRANSPORT 

•>' 0.012 
x• 0.009 

• 0.006 

0.003 

0.000 

0.018 A) Study basins 
0.015 • --, sediment flux 

• fraction of area-MR1 

• fraction of area-MR2 

• fraction of area-MR3 

fraction of area-MR4 

•------- fraction of area-MR5 

0.018 ' • ' • ' 

B) Theoretical hillslope 

0 015 .-,-. -,-- sediment flux 

fraction of area 
_ 

0.012 - 

0.009 - 

0.006 - 

J i 

j f 

J i 

0.003 - 

0.000 

/ 

I 

! 

/ 

/ 

/ 

I 

I 

t 

I 

/ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

gradient 

Figure 11. Calibrated relationship between flux and gradient (shown by dashed curve, with K - 0.0032 
m2/yr, and S c = 1.25) and the frequency distribution of hillslope gradients (shown with solid curves) for (a) 
our study basins and (b) a one-dimensional, equilibrium hillslope modeled with equation (8) (K = 0.0032 
m2/yr, and Sc = 1.25). Gradient distributions reveal a clustering between 0.7 and 1.0. 

calculations (Figure 13) suggest that the morphology of our 
study basins is consistent with an approximate equilibrium 
landscape eroding by nonlinear diffusive processes. Although 

hillslope convexity tends to decrease with gradient (as our 
model predicts), we observe significant variance in this trend, 
which may indicate that some locales are eroding faster or 
slower than our assumed constant value Co. Similarly, we 

observe a tendency for modeled erosion rates to cluster around 

our assumed constant value (Co = 0.1 mm/yr), but portions of 
basin MR1 have modeled erosion rates that are not within 50% 

of Co. These observations suggest that local deviations from 

equilibrium may exist in our study basins. These deviations 

may reflect hillslope response to changing boundary conditions 
or the influence of variable rock properties. 

Through our model calibration, we estimated the critical 

gradient to be approximately 1.25 (or 51ø). This value exceeds 
the internal friction angle of most soils, suggesting that cohe- 
sion from roots or other sources contributes shear strength to 

soils in our study area. We suggest that S c may effectively 

represent the total shear strength of the soil, although the 
model formulation does not explicitly account for shear 

strength from sources other than granular friction. Our esti- 

mate of S c is somewhat scale-dependent because slopes may 

be even steeper locally (e.g., within a pit/mound feature). 
Nonetheless, field measurements of slope angle generally 

agree with calculations from the digital topographic data, and 
rarely did we observe slope angles exceeding 450-50 ø in the 
field. 

Our analysis assumes that soil depth does not affect the rate 

of sediment transport on hillslopes. Ahnert [1967, 1976] hy- 

pothesized that sediment flux may vary nonlinearly with soil 
depth, such that equilibrium hillslopes may be planar with soil 
depth increasing downslope. He suggested that shear stresses 

generated at the base of a soil column may cause the soil to 
deform or flow [e.g., Fleming and Johnson, 1975]. In our study 
area we observe an easily distinguishable boundary between 

colluvium, which is typically coarse-grained and rich in organic 

material, and weathered bedrock or saprolite. On ridges, 
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Figure 12. Plot of cumulative percentage of divergent terrain 
for our study basins and for a one-dimensional, equilibrium 
hillslope modeled with equation (8). The majority of curvature 
values for both the study site and the theoretical hillslope are 
between -0.04 and 0.0. 

noses, and sideslopes, soil depth ranges between about 0.2 and 

1.0 m and does not covary with curvature, slope angle, or 
distance downslope (K. M. Schmidt, manuscript in prepara- 
tion, 1998; A.M. Heimsath et al., manuscript in preparation, 
1998), suggesting that sediment flux does not vary systemati- 
cally with soil depth. The stochastic nature of diffusive pro- 
cesses, such as tree throw and mammal burrowing, leads to 
large variability in local soil depth. We argue that soil depth 
may not affect sediment flux in our study area because the soils 

are coarse; frictional resistance would prevent significant 
shearing or flowing. Instead, soils are transported by periodic 
disturbances, which overcome the frictional resistance of the 

colluvium and the shear strength provided by root cohesion. 
Our proposed model applies only to the transport of soil, 

thus diffusive transport rates are limited by soil production 
rates if bedrock slopes emerge. Our topographic analysis and 
model calibration procedures assume that rates of soil produc- 
tion are sufficient to maintain soil-mantled hillslopes, and this 

assumption is consistent with our field observations. If erosion 

rates exceed rates of soil production, hillslopes may be stripped 
of their soil mantle, and different erosional processes may 
become dominant, such as rock fall, rock toppling, and other 
forms of bedrock landsliding [e.g., Howard and Selby, 1994]. 
Heimsath et al. [1997] suggest that biogenic processes control 
the rate of soil production, which decreases exponentially with 
soil depth. Climatic and biogenic variability, whether natural or 
anthropogenic, may influence the soil production function de- 

fined by Heimsath e! al. [1997], although these relationships 
have been unexplored. 

Previous field and experimental studies have reported re- 
sults that are consistent with a nonlinear diffusion transport 
law. Strahler [1950, p. 673] analyzed hillslopes in southern 
California and found a uniformity of slope angle that he at- 
tributed to "a prevailing condition of form-equilibrium." Li- 
thology, climate, soil, vegetation, and channel location were 

used to distinguish slopes in different stages of development. 
In his analysis, Strahler [1950] noted that hillslopes with chan- 
nels actively incising at their base tended to exhibit the steepest 
slope angles, which tended to cluster around a value similar to 

the angle of repose. Furthermore, gentler slopes were associ- 
ated with creep processes and were distinct from those con- 

trolled by a limiting slope angle. Several hillslope profiles from 
Strahler [1950] showed distinctly convex hilltops with increas- 
ingly planar slopes downhill, such that creep and landsliding 
may combine to generate the observed hillslope morphology. 

Experimental studies of rainsplash are consistent with our 
nonlinear model. For a given rainfall rate, measurements of 

rainsplash creep, which is defined as sediment transport by 
raindrop impact, demonstrate a nonlinear increase in creep 
rate with increasing gradient [Moeyersons, 1975]. In addition, 
Moeyersons [1975] reported that flux rates are linearly related 
to rainfall rate. This finding is consistent with our proposed 
theoretical model in that power is linearly related to sediment 

flux, if we consider rainfall rate as a measure of the power 
responsible for mobilizing and transporting sediment (see 
equation (8)). In an experimental study of sediment transport 
by rainsplash, Mosley [1973] quantified flux as a function of 

gradient, although he did not report results for slopes greater 

0.12 
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'- 0.04 
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P• Nonlinear (equation 8) 
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Figure 13. Frequency distribution of modeled erosion rates in basin MR1 for calibrated linear (shown by 
thin dashed curve, equation (1)) and nonlinear (thick gray curve, equation (8)) transport laws. Both transport 
laws were calibrated assuming a constant erosion rate of 0.1 mm/yr (equation (10)). For the nonlinear 
transport law, K equals 0.0032 m2/yr, and Sc = 1.25, whereas for the linear diffusion law, Kun = 0.0053 m2/yr. 
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than 25 ø because "rolling and sliding of grains" became prev- 

alent. Such behavior may be consistent with our proposed 

transport law in that rapid increases in flux occur on steep 

slopes. 

Diffusion models depend on measures of topographic cur- 

vature, which depend on the resolution of the underlying to- 

pographic data. Many studies that use linear diffusion (equa- 

tion (1)) to explore large-scale landscape evolution are based 
on topographic data with coarse resolution (30-1000 m) and 
assume that "scaled-up" transport laws can appropriately rep- 

resent geomorphic processes at scales larger than their scale of 

occurrence, as discussed by Anderson and Humphrey [1989] 
and Koons [1989]. In the Oregon Coast Range, diffusive pro- 
cesses operate over length scales of only a few meters or less, 
as is typical of soil-mantled landscapes. The analyses reported 

here are possible because of the availability of high-resolution 

topographic data. 

Alternative approaches have been proposed for simulating 

rapid increases in flux at high gradients. For example, Martin 

and Church [1997] used historical landslide data to define 
different diffusivities for high and low gradient hillslopes. The 

high-gradient diffusivity represents "rapid, episodic mass 

movements." Also, many models of landscape evolution and 

fault scarp evolution couple a linear diffusion law and a thresh- 

old slope angle, such that higher angles are instantaneously 

reduced to the threshold value [e.g., Ahnert, 1976; Avouac, 
1993; Tucker and Slingerland, 1994; Arrowsmith et al., 1996]. As 

opposed to these coupled models, nonlinear transport laws 

predict that a rapid (but continuous) increase in sediment 
transport can be used to approximate the development of 

threshold slopes [Howard, 1997]. Our topographic analysis (see 

Figure 6) demonstrates that a continuous transport function 
may be more appropriate than slope thresholds for modeling 

the erosion of steep, soil-mantled hillslopes. 

Previous studies propose that hillslope gradient is influenced 
by rates of valley incision and may reflect threshold hillslope 

processes. Through their analysis of river incision rates and 

digital topographic data along a swath of terrain in the north- 

western Himalayas, Burbank et al. [1996] conclude that the 

average angle of hillslopes is steep and independent of erosion 

rate, such that landsliding allows for hillslopes to adjust effi- 

ciently to river downcutting. Schmidt and Montgomery [1995] 
suggest that bedrock landsliding results from a combination of 

slope and local relief, such that the maximum hillslope angle 

varies with the elevation difference between ridges and valley 

bottoms. Howard [1997] provided insight on threshold- 

controlled erosional regimes through a landscape evolution 

model. In exploring relationships between erosion rate, relief, 

and drainage density, he states "in steep terrain, erosion rates 

may be sufficiently high that slope gradient is generally close to 

failure conditions... slope gradient then becomes essentially 

independent of erosion rate or location on the slope" [Howard, 

1997, p. 215]. In our study basins, hillslope gradients are suf- 

ficiently close to the critical value to generate the behavior that 
Howard [1997] describes. The mean gradient for these hill- 

slopes is approximately 0.80 (or 65% of the critical slope), and 
over 80% of gradients exceed 0.6. Slight increases in slope 

angle should generate large increases in mass flux, and slope 

angles may be limited by this feedback; for a given channel 

spacing, local relief therefore may be largely independent of 
erosion rate. 

Our analysis suggests that rates of uplift or erosion may not 
be easily discerned from hillslope steepness [e.g., Kelsey et al., 

1994; Summerfield and Nulton, 1994; Aalto and Dunne, 1996; 

Granger et al., 1996]. Near the critical slope, large changes in 
erosion rates are associated with only slight changes in hill- 

slope gradient, so the topographic signature of tectonic forcing 

will be small. Although changes in erosion rate have only a 

small effect on average gradient, they will cause proportional 

changes in hillslope curvature near hilltops and divides (see 
Figure 10). Thus the topographic signature of tectonic forcing 
may more clearly be found in hilltop curvature rather than in 

sideslope gradient. If the diffusivity K can be estimated inde- 

pendently, hilltop curvature can be used as a quantitative mea- 

sure of erosion rate. Because slopes become more planar with 

distance from the divide, curvature can be more precisely es- 

timated (and will be more clearly related to erosion rate) close 
to divides and hilltops. 

11. Conclusion 

In steep, soil-mantled landscapes, the interaction between 

diffusive processes and shallow landsliding is reflected in al- 

ternating sequences of ridges and unchanneled valleys. Hill- 

slope sediment transport processes influence not only the evo- 

lution of hillslope morphology, but also the rates of hollow 

infilling and evacuation by debris flows, the rates of sediment 
flux into channel networks, and the distribution of soil on 

hillslopes. We modeled diffusive sediment transport and its 

implications for hillslope morphology. Our conclusions from 

this analysis are as follows: 

1. Diffusive sediment transport has traditionally been 

modeled as a linear function of gradient (equation (1)). Our 
theoretical analysis shows that diffusive processes should pro- 

duce a nonlinear relationship between sediment flux and slope 

(equation (8)). This analysis yields a nonlinear diffusive trans- 
port law in which sediment flux increases nearly linearly for 

shallow gradients, but increases rapidly as gradient approaches 

a critical slope angle (Figure 3). 
2. At our study site, hillslopes tend to become increasingly 

planar with increasing gradient, consistent with our proposed 

nonlinear transport law (Plate 1 and Figure 6). Hillslope mor- 
phology at our study site is inconsistent with linear diffusion. 

3. We calibrated our nonlinear transport law using high- 

resolution topographic data for our study site (Figure 4). This 
calibration assumes that the local terrain used in our analysis is 

in approximate erosional steady state. Our calibrated param- 

eters yield sediment transport rates that are consistent with 

field estimates obtained by measuring colluvial deposition 

rates in hollows. Topographic modeling of erosion rates shows 

a clustering around the estimated constant value. However, 

modeled erosion rates for 30% of our study area differ by more 

than 50% of the assumed constant value, suggesting that the 

equilibrium assumption may only be approximately met. 

4. With increasing erosion rate, decreasing diffusivity, and 

increasing hillslope length, our proposed model predicts that 

hillslopes should become steeper and increasingly planar. 

5. In our study site, hillslope gradients tend to cluster near 

values for which sediment flux is a highly nonlinear function of 

gradient (0.7-0.9), such that slope angles may be limited by 
large increases in mass flux at high gradients. Because slight 

variations in hillslope gradient may correspond to a large vari- 

ations in erosion rate, slope angle will not be a sensitive indi- 
cator of tectonic forcing. The signature of tectonic forcing will 

be more reliably manifested in the topographic curvature of 

hilltops and divides. 
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