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ABSTRACT The question of whether proteins originate
from random sequences of amino acids is addressed. A
statistical analysis is performed in terms of blocked and
random walk values formed by binary hydrophobic assign-
ments of the amino acids along the protein chains. Theoretical
expectations of these variables from random distributions of
hydrophobicities are compared with those obtained from
functional proteins. The results, which are based upon pro-
teins in the SWISS-PROT data base, convincingly show that
the amino acid sequences in proteins differ from what is
expected from random sequences in a statistically significant
way. By performing Fourier transforms on the random walks,
one obtains additional evidence for nonrandomness of the
distributions. We have also analyzed results from a synthetic
model containing only two amino acid types, hydrophobic and
hydrophilic. With reasonable criteria on good folding prop-
erties in terms of thermodynamical and kinetic behavior,
sequences that fold well are isolated. Performing the same
statistical analysis on the sequences that fold well indicates
similar deviations from randomness as for the functional
proteins. The deviations from randomness can be interpreted
as originating from anticorrelations in terms of an Ising spin
model for the hydrophobicities. Our results, which differ from
some previous investigations using other methods, might have
impact on how permissive with respect to sequence specificity
the protein folding process is—only sequences with nonran-
dom hydrophobicity distributions fold well. Other distribu-
tions give rise to energy landscapes with poor folding prop-
erties and hence did not survive the evolution.

Section 1: Introduction

Hydrophobicity is widely believed to play a central role in the
formation of three-dimensional protein structures. To under-
stand the statistical distribution of hydrophobicity along proteins
is therefore of utmost interest. This question has been addressed
previously. In ref. 1, the authors used binary hydrophobicity
assignments, zero or one, and simultaneously studied the distri-
bution of clumps of both zeros and ones by using the so-called run
test. For the majority of the proteins examined, it was found that
the results could not be distinguished from those corresponding
to completely random sequences. The same type of statistical test
has also been applied to sequences stemming from a simplified
protein model (2). Here, randomly selected sequences were
compared with sequences that had been specially designed to
have good folding properties. The statistical analysis did not
reveal any difference between these two groups. These findings
seem to indicate that the folding requirements on proteins are
fairly permissive with little sequence specificity. A slightly differ-
ent approach to analyze the same problem was pursued in ref. 3,
where by mapping the binary chains onto the trajectories of a
randomwalk, deviations from random distributions are reported.
Also, recent work on simplified models suggest nonrandom-

ness (4, 5). In these studies a large number of randomly

selected sequences were investigated, and it was found that
only a small fraction of them folded easily into a thermody-
namically stable state.
In this work we study the statistical distribution of hydropho-

bicity by usingmethods different from the run test in ref. 1. Along
the same lines as in ref. 3, rather than analyzing raw sequences of
hydrophobicity, we focus on the corresponding random walk
representation. In this way, the analysis is more sensitive to
long-range correlations along the sequence.Our analysis has been
carried out using two differentmethods, which differ substantially
from what is used in ref. 3, although the starting point is similar.
First, we form block variables, and study how the behavior of
these depends on the block size. When applied to the SWISS-
PROT data base (6) of functional proteins, this method yields
clear evidence for nonrandomness. In addition, we have per-
formed a Fourier analysis based on the random walk represen-
tation. In this analysis we find nonrandom behavior at the
wavelength corresponding to a-helix structure, as onemight have
expected, but also at large wavelengths.
In our analysis, we have divided the sequences into groups

corresponding to different fractions of hydrophobic residues. This
division is important, because the results for different groups
deviate in different directions from those for random sequences.
For sequences with a typical fraction of hydrophobic residues, we
find that the nonrandomness can be interpreted as anticorrela-
tions. This interpretation emerges from a simple Ising model of
antiferromagnetic interactions among the residues.
Given the impact our results might have on the issue of how

permissive with respect to sequence specificity the protein
folding process is, we have carried out the same analysis for a
toy model (7, 8), for which unbiased samples of folding and
nonfolding sequences can be obtained. This model, hereafter
denoted the AB model, consists of chains of two kinds of
‘‘amino acids’’ interacting with Lennard–Jones potentials. We
have examined the behavior of 300 randomly selected chains
of length 20 in this model (9). Of these, only'10% were found
to have reasonable folding properties. Analyzing these se-
quences with the same methods as being used for the func-
tional proteins, we obtain results that are qualitatively very
similar to those for proteins with a typical fraction of hydro-
phobic residues. In particular, we again find deviations from
random behavior that correspond to anticorrelations. One
should keep in mind that the toy model chains are quite short
and highly simplified as compared with functional proteins.
Nevertheless, it is appealing to attempt an explanation for the
observed similarity in behavior as originating from the fact that
those amino acid sequences exhibiting this type of hydropho-
bicity distribution are the ones that fold well. Other distribu-
tions give rise to energy landscapes with poor folding proper-
ties and hence did not survive the evolution.
All our analysis concerns comparisons between distribu-

tions. The ultimate challenge is to decide whether a given
sequence is nonrandom or not. This issue, which is beyond the

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

*e mail: irback@thep.lu.se.
†e mail: carsten@thep.lu.se.
‡e mail: frank@thep.lu.se.

9533



scope of the paper, may be feasible when combining different
cuts on the measures developed here.
This paper is organized as follows. In Section 2, we develop

our two methods for analyzing binary hydrophobicity se-
quences. In Section 3 and 4, these methods are applied to real
and toy model proteins, respectively. Section 4 also contains
the interpretation of deviations from randomness in terms of
anticorrelations. Finally, a brief summary and outlook can be
found in Section 5.

Section 2: Methods

In this section we describe the variables and statistical methods
employed. Two different, but not completely unrelated, ap-
proaches are used—the blocking and Fourier transform methods.
These will be described in some detail below.
Throughout the paper we consider sequences of N residues

and denote by si the hydrophobicity of residue i. We use a
binary hydrophobicity scale: si 5 1 if residue i is hydrophobic
and si 5 21 otherwise. The analysis can easily be extended to
an arbitrary number of allowed hydrophobicity values, and we
do not expect our results to be affected by using such multi-
valued hydrophobicity assignments.
Hydrophobicities si represent local properties of a chain. As

in Ref. 3, to capture some long-range correlation properties,
we consider a random walk representation:

rn 5 O
i51

n

si, [1]

for i 5 1, . . . , N and where r0 5 0.
The Blocking Method. Analyzing the behavior of block

variables is a widely used and fruitful technique in statistical
mechanics, and our application will turn out to be no excep-
tion. For a block size s, we define the following variables:

si
~s! 5 O

j51

s

s~i 2 1!s 1 j 5 ris 2 r~i 2 1!s; i 5 1, . . . , Nys, [2]

where it is assumed that N is a multiple of s. The scaling
behavior of si

(s) with increasing s is determined by the corre-
lations between si and sj. If the values for si are independent
random numbers drawn from the same distribution, the cor-
relations between different si and sj vanish, and the variance
of si

(s) scales linearly with s.
We need to be able to compare real proteins with a random

distribution of hydrophobic residues. For this reason, we
average over all sequences with a fixed length and composition.
These averages are denoted by ^z&N,N1

, where N is the total
number of residues, and N1 is the number of hydrophobic
residues.
To study the fluctuations of the block variables we introduce

the following normalized variables:

ci
~s! 5

1
K Ssi

~s! 2
s
N O
j51

Nys

sj
~s!D 2; i 5 1, . . . , Nys, [3]

where

K 5
4N1~N 2 N1!

N~N 2 1!
~1 2 syN!. [4]

The constant K is chosen such that ^ci
(s)&N,N1

5 s for all N and
N1. The fact that K depends on s implies that the variance of
si
(s) is not linear in s, which is due to the fact that the average
is taken at fixed composition. At fixed s, this deviation from
linearity disappears in the limit N 3 `. If all the residues are
of the same type, K vanishes. Such sequences are uninteresting
in the present analysis and have therefore been excluded.
An important quantity is the (normalized) mean-square

fluctuation of the block variables, defined by the following:

c~s! 5
1
K
s
N O
i51

Nys Ssi
~s! 2

s
N O
j51

Nys

sj
~s!D 2 5

s
N O
i51

Nys

ci
~s!. [5]

Obviously, one has
^c~s!&N,N1 5 s, [6]

and c(1) 5 1 is independent of configuration si. It is also
important to know the variance of c(s). The complete expression
for this quantity is lengthy and can be found in Appendix A.
However, in the N3 ` limit, it takes the following simple form:

^c~s!2&N,N1 2 ^c~s!&N,N1

2 ,
2s2~s 2 1!

N
. [7]

When studying proteins from the data base, we average over
sequences with different length and composition. For a general
quantity, this requires some assumption about the probability
of different values of N and N1 to compare with random
sequences. This problem is absent for c(s), since it is defined
such that ^c(s)&N,N1

is independent of N and N1. The variance
of c(s), on the other hand, does depend upon N and N1.
However, for an interval N1 , N , N2, with both N1 and N2
large and (N2 2 N1) not too large, it is still possible to use Eq.
7 for estimating the variance.
The Fourier TransformMethod.Themost direct way to detect

periodicity in the distribution of hydrophobic residues is to use
Fourier analysis. It is well known that the Fourier component
corresponding to a period of 3.6 residues tends to be strong for
sequences that form a helices (10). Also, sequences that form b
sheets tend to exhibit a periodicity in the hydrophobicity of'2.3
residues. In this paper, we compare the full power spectrum for
proteins with that for random sequences.
As a starting point for our Fourier analysis, we take the random

walk representation rn. Since we want to compare with random
sequences and since any permutation of the residues leaves the
end point rN unchanged, it is here convenient to introduce the
following modified random walk (see Appendix B):

r0 5 r0 5 0 [8]

rn 5 O
i51

n Ssi 2
2N1 2 N
N D 5 rn 2 n

2N1 2 N
N

;

n 5 1, . . . , N, [9]

which is defined such that r0 5 rN 5 0. With these boundary
conditions, we consider the following sine transform:

fk 5 O
n51

N21

rn sin
pkn
N
; k 5 1, . . . , N 2 1, [10]

where the kth component corresponds to a wavelength of 2Nyk
residues.
It is easy to see that the average of ƒk over all sequences with

a fixed length and composition vanishes, and for the squared
amplitude we find:

^fk
2&N,N1 5

2N1~N 2 N1!

N 2 1
1

S2 sin pk
2ND

2 , [11]

which shows that this quantity behaves as k22 for small k. In
Appendix B, we also give the fourth moment of the ƒk distri-
bution.
In our calculations we have used the following normalized

squared amplitude:

f̃k
2 5

fk
2

^fk
2&N,N1

, [12]

which has an average ^ƒ̃k2&N,N1
5 1, independent of N and N1.

By measuring ƒ̃k2, one can, of course, only study the relative
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strength of the different components. In fact, it can easily be
shown that:

O
k51

N21

f̃k
2 5 N 2 1, [13]

independent of configuration si.

Section 3: Real Proteins

Our analysis has been carried out using the SWISS-PROT data
base, release 31 (Oct. 25, 1996, ref. 6). Some proteins were
removed from this data base due to uncertainties (see Appendix
C for details). Also, we limit the analysis to proteins with N$ 50
after the endpoints have been removed according to a prescrip-
tion to be dealt with below. To each residue we assigned a binary
hydrophobicity value, which was taken to be11 for Leu, Ile, Val,
Phe, Met, and Trp and 21 for the others. This choice was done
by picking the residues with strongest hydrophobic interactions
down to a preset level. Alternative definitions, with 4 to 11 (this
is the choice of ref. 1) of the residues classified as hydrophobic,
have also been tested, with qualitatively similar results.
Estimates of statistical errors on the measurements have

been obtained by dividing the data into 20 groups and treating
the corresponding averages as independent measurements. All
statistical errors quoted are in s error units.
Before starting our final analysis of hydrophobicity corre-

lations, we need to deal with two important observations. (i)
The data originating from the ends of the sequences display a
different behavior than the data from the rest of the sequences.
(ii) Sequences with different fractions of hydrophobic residues
tend to behave in different ways. As a result, important effects
can easily be missed if averages are computed over the full data
set, as will be seen below.
The Interior Versus the Ends.We begin by examining whether

the behavior of the block variable depends upon the position of
the block along the sequence. This analysis is carried out for block
sizes s 5 2, 3, 4, 6, and 12. To obtain a sequence that can be
divided into blocks for each of these sizes, we disregard up to
eleven residues at the ends. In this way we form a sequence of
length N9 5 nz12, where n is the largest integer, such that nz12#
N,N is the length of the original sequence.
We study the block fluctuation ci

(s) as a function of the
relative position j of the block center, j being 0 at the N
terminus and 1 at the C terminus. The interval in j from 0 to
1 is divided into 50 bins and average values were computed for
each of these bins, using all sequences in the data base with
.50 residues. In Fig. 1, we show the result for block size s 5
4. The results for other values of s are similar. The horizontal
line in the figure represents random sequences; if the distri-
bution of hydrophobic residues were random, the average of
ci
(s) would be s, independent of i.
From Fig. 1, it is clear that the block fluctuations are roughly

constant over a wide range in j. However, it is also evident that
the fluctuations tend to increase in strength at the ends, in
particular at the N terminus. One also notices that the devi-
ations from the random value tend to cancel if one averages
over all positions.
This shows that it is important to distinguish between the ends

and the interior of the sequences when studying hydrophobicity
correlations. In what follows, we focus on the interior by ignoring
15% of the residues at each of the two ends, and analyze
sequences containing the remaining 70% of the residues.
The Fraction of Hydrophobic Residues. Our main focus in

this paper is on the distribution of hydrophobic residues along
the sequence and to what extent this distribution has random
characteristics. One may also ask whether the total number of
hydrophobic residues in a sequence follows a random pattern.
This question can be addressed by studying the quantity:

X 5
N1 2 Np

ÎNp~1 2 p!
, [14]

where N1 is the number of hydrophobic residues, N is the total
number of residues, and p is the average of N1yN over all
sequences. IfN hydrophobicity values are drawn randomly and
independently with probability p for the value 1 and (12 p) for
21, the distribution of X becomes approximately Gaussian
with zero mean and unit variance for large N.
We have calculated X for the sequences in the data base, after

eliminating 30% of the residues, as discussed above. The average
fraction of hydrophobic residues was found to be P' 0.291. The
distribution of X obtained is shown in Fig. 2, from which we see
that the tails are larger than for the random distribution.
When studying correlations in hydrophobicity, we have

divided the sequences into groups corresponding to different
regions in X. This division need not have a simple interpre-
tation in terms of standard groups of proteins, but it turns out
to be useful. Indeed, we will find below that sequences with
different X tend to display different types of correlations.
Results.We now turn to the results of our block and Fourier

analyses. As discussed in the previous two subsections, we have
chosen to consider the interior of the sequences and to study
different regions in X.
First we consider the mean-square fluctuation of the block

variables, c(s). In Fig. 3, results are shown corresponding to
three different regions in X: uXu , 0.5, uXu . 3, and all X. The
straight line represents random sequences. We see that the
results for large X lie above this line, while the results for small
X show the opposite behavior. The same pattern is observed
when using alternative hydrophobicity assignments. Notice
that c(s) cannot increase slower than linearly with s if the
correlation between si and sj is translationally invariant and
nonnegative. Therefore, these results suggest that there exists
negative hydrophobicity correlations for small X.
We have also tested how these results depend on the length of

the sequences by computing averages of c(s) corresponding to
different intervals in N, where N is the length of the sequence
before the elimination of residues at the ends. In Fig. 4, we show

FIG. 1. Average values of ci
(4) against the relative positions of the

blocks along the sequence, j.

FIG. 2. The distribution of X for the sequences in the data base.
The curve is the Gaussian with zero mean and unit variance.
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results obtained for uXu , 0.5 and three different intervals in N.
It is clear from Fig. 4 that the size dependence is fairly weak.
Another interesting feature is that the deviation from the result
for random sequences grows with sequence length. Notice that
the variance of c(s) scales as N21/2 for random sequences.
Next we compare the behavior of the Fourier components for

small and large uXu. In Fig. 5, we have plotted the normalized
squared amplitude ƒ̃k2 against kyN for uXu , 0.5 and uXu . 3. Let
us first consider the region of small and medium wavelength.
Here the results for the two intervals in uXu are similar. As one
might have expected, there is a peak around the wavelength
corresponding to a-helix structure, 2Nyk 5 3.6. Away from this
peak, the results are very close to those for random sequences.
At large wavelength, on the other hand, the results show a

clear uXu dependence, and they differ from the results for
random sequences for both small and large uXu. As can be seen
from the figures, these components are suppressed for small uXu
and strong for large uXu.
Tests on Nonredundant Sets. A general problem in the

statistical analysis of proteins is the presence of homologies,
since these may shift away distributions from an ideal set of
independent samples.
To test for effects due to homologies, we redid the analysis

above using a set of 486 selected sequences (ref. 11; the March
1996 edition was used) from the Protein Data Bank (12). This
set was obtained by allowing for a maximum of 25% sequence
similarity for aligned subsequences of .80 residues (13).
Within this set of minimally redundant sequences, 185 with uXu
, 0.5 and 5 with uXu . 3.0 qualified for analysis. The results for
uXu , 0.5 are within statistics identical to those described above.
For uXu . 3.0, the results are not in conflict with the results

above but quantitative comparisons are not meaningful due to
the extremely small sample size.
The fact that our results survive when limiting ourselves to

nonredundant proteins, implying a substantial cut in number
of proteins involved in the analysis, makes the evidence of
nonrandomness even stronger.

Section 4: A Simplified Synthetic Model

In this section we carry through the same hydrophobicity
analysis as above for a simple toy model for proteins (7, 8) with
binary amino acids—the AB model. Due to its simplicity and
the relatively small sizes involved, the folding properties of this
model have been studied to quite some detail (5, 9). The
question we want to address here is whether the sequences,
which have good folding properties in the AB model, deviate
from the nonfolding ones in a way qualitatively similar to what
was found for the small uXu functional proteins above. As will
be shown below this is indeed the case.
The ABModel. In this model, there are two kinds of residues

with si 5 61 (A and B) respectively. These are linked by rigid
bonds to form linear chains in two dimensions. The interac-
tions between the residues are given by si-dependent Lennard–
Jones potentials such that (11) is strongly attractive, (2)
weakly attractive, and (12) repulsive. In ref. 5, the thermo-
dynamics of this system at low temperature was studied using
the hybrid Monte Carlo method. Fluctuations in the shape for
a given chain were studied by measuring the mean-square
distance d2 between pairs of configurations; the probability
distribution of d2, for fixed temperature and sequence, de-
scribes the magnitude of the thermodynamically relevant
fluctuations. It is suggestive to interpret a low average d2 as a
signal for good folding and stability properties. Recently an
attempt to understand the systematics of how low d2 values
relate to the si sequence was pursued (9). In this work 300
randomly selected sequences with 14 A and 6 B residues were
studied, using an improved Monte Carlo method (5, 14). The
sequences were classified as having good folding properties if
the average d2 was ,0.3, or if the probability of d2 , 0.1 was
.0.35. This yielded a total of 37 good folders ('10%).
Results. Using the 37 good folding sequences, we have

repeated the analysis of the previous section. This set of
sequences is fairly small, but it has the advantage that it is has
been generated in a bias-free way. Statistical errors given in
this section have been obtained by taking the results for
different sequences as independent measurements.
In Fig. 6, we show the mean-square fluctuation of the block

variables, c(s). The average of c(s) over 37 random sequences has
an approximately Gaussian distribution, with mean s and a
standard deviation s that can be obtained by using the results of
Appendix A. In the figure, we have indicated the position of the
s6 s band.We see that the data points lie clearly below this band.
Our results for the squared Fourier amplitude are shown in

Fig. 7. Although the statistical errors on this quantity are large,

FIG. 3. Mean-square fluctuation of the block variables, c(s), as a
function of block size s for uXu , 0.5 (1; 10,154 qualifying proteins),
uXu . 3 (3; 4928 qualifying proteins), and all X (L; 36,765 qualifying
proteins). The averages have been computed over sequences that
contained.50 residues before the elimination of residues at the ends.
The straight line is the result for random sequences.

FIG. 4. Mean-square fluctuation of the block variables, c(s), against
block size s for uXu , 0.5 and 50 , N # 150 (1; 2457 qualifying
proteins), 150,N# 250 (3; 2228 qualifying proteins), and 250,N#
350 (L; 1642). The straight line is the result for random sequences.

FIG. 5. Normalized squared amplitude ƒ̃k2 against kyN for (a) uXu ,
0.5 and (b) uXu . 3. The sets of sequences considered are the same as
in Fig. 3.
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there are clear deviations from the result for random se-
quences at large wavelength. We see that components corre-
sponding to large wavelengths are suppressed.
These results show that good folding sequences in the AB

model tend to exhibit small block fluctuations and weak Fourier
components at large wavelength. Qualitatively, the results are
very similar to those obtained in the previous section for small uXu.
Interpretation of the Results. In this paper, we have com-

pared various results with those for random sequences. Ran-
dom sequences correspond to a situation in which there is
(essentially) no correlation between si and sj for iÞ j. A simple
but instructive way to introduce nonzero correlations into the
system is to consider the one-dimensional Ising model. In this
model there are N ‘‘spins’’ si that take the values61, and each
configuration is given a statistical weight as follows:

P } exp SKO
i51

N21

sisi11D [15]

As in our previous calculations, we consider configurations
with a fixed number of positive spins, i.e., the magnetization
M 5 (i51

N si 5 2N1 2 N is held fixed. Also, as before, free
boundary conditions are assumed.
The properties of this system are determined by the param-

eter K. Neighboring spins tend to point in the same direction
if K . 0 (ferromagnet), and in opposite directions if K , 0
(antiferromagnet). For K5 0, we recover the (random) system
studied previously.
To illustrate the behavior of the system for nonzero K, we

show in Fig. 8 results obtained at K 5 60.25. As in our AB
calculations, we have taken n 5 20 and N1 5 14. At K 5 0.25,

we see that block fluctuations are large and that Fourier
components with large wavelength are strong, while the behavior
is the opposite at K5 20.25. This means that the results for this
antiferromagnetic system are similar to those obtained for good
folding sequences in the AB model and for protein sequences
with small uXu. On the other hand, the results for the ferromag-
netic system resemble those for proteins with large uXu.

Section 5: Summary

We have demonstrated that the statistical distribution of hydro-
phobic residues along chains of functional proteins are nonran-
dom. This result is in contrast with what was concluded in ref. 1.
An important reason for this difference is probably that the
blocking and Fourier analysis methods are able to capture
long-range correlations more efficiently than the method of ref.
1. In ref. 3, on the other hand, a method more similar to ours was
used and deviations from random behavior were observed, but
the deviations may seem to differ in nature from what we have
found.However, it is important to note that these authors focused
on hydrophilicity rather than hydrophobicity, as they used a
binary classification in which five strongly hydrophilic residues
formed one group. Also, the interpretation of the results of ref.
3 is somewhat unclear, as no distinction was made between the
interior and the ends of the sequences.When limiting the data set
to nonredundant protein chains the results from the analysis are
unaffected. Hence we consider our evidence for nonrandomness
as being quite robust.
We have also applied our analysis method to a toy model

data base (AB model), where chains with good folding prop-
erties were distinguished from the rest. The hydrophobicity
distributions of the good folding sequences differ from random
ones in qualitatively the same way as for the low-uXu functional
protein analysis. It is tempting to interpret this similarity as
indicating that only those proteins with good folding properties
have survived the evolution.
The deviation from randomness in the AB model case can

be understood as originating from anticorrelations among the
residues. The effects of correlations and anticorrelations on
the observables considered were illustrated by using the simple
one-dimensional Ising model.
Our analysis has been a statistical one in the sense that

distributions are being compared. Given our encouraging
result, it might be possible to reach the ultimate goal of being
able to classify individual sequences in terms of belonging to
one category or the other. This might be feasable by consid-
ering suitable cuts in the block and Fourier quantities. Very
likely, one then needs to augment the method with additional
discriminative variables and an automated procedure like
artificial neural networks for setting the cuts.
Our analysis has been confined to binary hydrophobicity

assignments. The results presented are insensitive to minor
modifications of these assignments. We do not expect the
results to change significantly if instead of binary assignments
multivalued ones are used.

FIG. 6. Mean-square fluctuation of the block variables, c(s), against
block size s for good folding sequences in the AB model. Also shown
are the mean s (full line) and the s6 s band (bounded by dotted lines)
for random sequences.

FIG. 7. Normalized squared amplitude ƒ̃k2 against kyN for good
folding sequences in the ABmodel. The full line and dots are as in Fig.
6. The standard deviation for random sequences can be obtained by
using the results of Appendix B.

FIG. 8. (a) Mean-square fluctuation of the block variable, c(s), and
(b) normalized squared amplitude ƒ̃k2 for the Ising model with K 5
20.25 (1) and K 5 0.25 (3). The lines correspond to K 5 0.
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Appendix A: Variance of c(s)

Here we give the variance of c(s) (see Eq. 5). The average of
c(s) over all sequences with fixed composition, N1 and N2 5
N 2 N1, is given by:

^C~s!&N,N1 5
1
K O
i, j51

s

cij , [A1]

where cij is the connected correlation between si and sj, for
which one finds the following:

ci j 5 ^sisj&N,N1 2 ^si&N,N1^sj&N,N1 5

5
4N1N2

N2

2
4N1N2

N2~N 2 1!

if i 5 j

if i 5y j
.

[A2]

Using this, one obtains ^c(s)& 5 s (Eq. 6). The off-diagonal
correlation, cij with i Þ j, has to be negative, since (i51

N (j51
N cij

5 0, but vanishes in the limit N 3 `.
The variance can be computed in a similar way. In addition

to cij, one then needs the correlation between four values for
si. One finds the following:

^C~s!2&N,N1 2 ^C~s!&N,N1

2 5 2s2

~s 2 1!N21K22G~s, N, N1! , [A3]
where

G~s, N, N1! 5 1 1 2~s 2 2!
~N1 2 N2!2 2 N
N~N 2 1!

2 ~2s 2 3!

zS~N1 2N2!42 6N~N1 2N2!21 3N21 8~N1 2N2!22 6N
N~N2 1!~N2 2!~N2 3! D

1
1
2

~s 2 1!zS ~4N 2 6!~N1 2 N2!4

N~N 2 1!2~N 2 2!~N 2 3!

1
2 6N~N1 2 N2!2 1 3N2 1 8~N1 2 N2!2 2 6N

~N 2 1!~N 2 2!~N 2 3!

1
2~N1 2 N2!2 2 N

~N 2 1!2 D . [A4]

In the limit N3 ` for fixed s, this expression simplifies to Eq. 7.

Appendix B: Fourier Transforms of Random
Walk Representations

Here Fourier transform moments of random walk representa-
tions are listed. The expressions are more general than what is
required for binary hydrophobicity assignments. To do this we
first list the following basic quantities for sequences of length N.
(i) Moment of order k, mk:

mk 5
1
NOi51
N

si
k .

(ii) Cumulant of order k, ck:
c2 5 m2 2 m1

2

c4 5 m4 2 4m3m1 2 3m2
2 1 12m2m1

2 2 6m1
4 .

(iii) Random walk, rn:

r0 5 0

rn 5 O
i51

n

si 2 nm1; i 5 1, . . . , N ~rN 5 0! .

(iv) Sine transform of rn, ƒk:

fk 5 O
n21

N21

rn sin
pkn
N
; k 5 1, . . . , N 2 1.

Averaging over all sequences with fixed composition—i.e., all
permutations of si, one obtains the following:

^rn& 5 0 [B1]

^rn
2& 5

N 2c2
N 2 1

z
n
N S1 2

n
ND [B2]

^fk& 5 0 [B3]

^fk
2& 5

N 2c2
2~N 2 1!

z
1

S2 sin pk
2ND

2 [B4]

^fk
4& 5

3N4

4~N2 1!~N2 2! Fc222
1
2N

~c41 6c2
2!

2 d2k,N
1

24~N2 3! Sc41
1
N

~c41 6c2
2!DG z

1

S2 sin pk
2ND

4 [B5]

For the binary scale si 5 61, one has c2 5 4N1(N 2 N1)yN2,
and Eq. B4 becomes Eq. 11.

Appendix C: Removal of Uncertain Sequences

In our analysis we have removed ‘‘uncertain sequences’’ from
the SWISS-PROT database by ignoring all entries contain-
ing the following feature keys in their feature key table: (i)
UNSURE, indicates that there are uncertainties in the
sequence; (ii) NON_CONS, indicates that two residues in a
sequence are not consecutive and that there are a number of
unsequenced residues in between; and (iii) NON_TER, the
residue at an extremity of the sequence is not the terminal
residue. This reduces the size of the SWISS-PROT data base
from 43,470 to 38,050 protein entries.
Furthermore, when analyzing the interior parts of protein

sequences, sequences containing the following letters within
the interior were removed: (i) B, denoting aspartic acid or
asparagine; (ii) Z, denoting glutamine or glutamic acid; and
(iii) X, denoting any amino acid.
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