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ABSTRACT

Context. In recent years it has been claimed that the length of stellar activity cycles is determined by the stellar rotation rate. It has
been observed that the cycle period increases with rotation period along two distinct sequences, known as the active and inactive se-
quences. In this picture the Sun occupies a solitary position between the two sequences. Whether the Sun might undergo a transitional
evolutionary stage is currently under debate.
Aims. Our goal is to measure cyclic variations of the stellar light curve amplitude and the rotation period using four years of Kepler
data. Periodic changes in the light curve amplitude or the stellar rotation period are associated with an underlying activity cycle.
Methods. Using a recent sample of active stars we compute the rotation period and the variability amplitude for each individual
Kepler quarter and search for periodic variations of both time series. To test for periodicity in each stellar time series we consider
Lomb-Scargle periodograms and use a selection based on a false alarm probability (FAP).
Results. We detect amplitude periodicities in 3203 stars between 0.5 < Pcyc < 6 yr covering rotation periods between 1 < Prot <

40 days. Given our sample size of 23 601 stars and our selection criteria that the FAP is less than 5%, this number is almost three
times higher than that expected from pure noise. We do not detect periodicities in the rotation period beyond those expected from
noise. Our measurements reveal that the cycle period shows a weak dependence on rotation rate, slightly increasing for longer rotation
periods. We further show that the shape of the variability deviates from a pure sine curve, consistent with observations of the solar
cycle. The cycle shape does not show a statistically significant dependence on effective temperature.
Conclusions. We detect activity cycles in more than 13% of our final sample with a FAP of 5% (calculated by randomly shuffling the
measured 90-day variability measurements for each star). Our measurements do not support the existence of distinct sequences in the
Prot − Pcyc plane, although there is some evidence for the inactive sequence for rotation periods between 5–25 days. Unfortunately,
the total observing time is too short to draw sound conclusions on activity cycles with similar lengths to that of the solar cycle.
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1. Introduction

The origin of the 11-year solar activity cycle is one of the most
important questions in solar and stellar physics. Over the course
of one cycle the Sun undergoes phases of strong and weak activ-
ity. During the active phase of the solar cycle, dark sunspots ap-
pear on the solar surface. These spots have lifetimes lasting from
days to a few months (Petrovay & van Driel-Gesztelyi 1997),
decaying into smaller magnetic concentrations which are bright
(called faculae). Individual faculae have short lives, as the mag-
netic flux associated with them is buffeted by turbulent convec-
tive motions; however, since magnetic flux is conserved, the fac-
ulae reform and the lifetime of extended patches of faculae have
much longer lifetimes. The magnetic cycle of the Sun is thus
accompanied by brightness variations. This variability, which is
an evolving combination of dark and bright features on the ro-
tating surface of the Sun, is weak during times of minimum ac-
tivity and strong during times of maximum activity. Although
these activity phenomena act on different timescales, they can
all be detected in the total solar irradiance (TSI) data (see, e.g.,
Domingo et al. 2009).

⋆ A table containing all cycle periods and time series is only
available in electronic form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A52

On stars other than the Sun, cyclic activity has also been ob-
served through (long-term) brightness changes caused by epochs
of increased occurrence of active regions on the surface or in
the low stellar atmosphere. The magnetic field of the active re-
gions transports energy into the chromosphere, which leads to
increased chromospheric emission, most evident in the cores
of the Ca ii H&K lines. The strength of this enhancement in
the emission is usually described by the Mount Wilson S-index
(Vaughan et al. 1978) or the related quantity R′

HK
(Linsky et al.

1979). A long-term study of chromospheric activity of main-
sequence stars in the solar neighborhood was initiated at the
Mount Wilson observatory in the late 1960s. Wilson (1978) pre-
sented Ca ii H&K flux measurements with the first evidence of
cyclic variations. Vaughan & Preston (1980) found that FGKM
stars exhibit different levels of chromospheric activity with a de-
ficiency of stars of intermediate activity. These authors explained
the dearth of intermediate active stars in terms of an activity de-
cline with age. In contrast, Noyes et al. (1984a) found a tight
correlation between R′

HK
activity and the Rossby number Ro =

Prot/τc (defined as rotation period Prot divided by the convective
overturn time τc), but could not detect evidence of the – nowa-
days called – Vaughan-Preston gap. Noyes et al. (1984b) de-
tected cyclic variations of the chromospheric activity levels in 13
main-sequence stars providing the relation Pcyc ∝ P1.25

rot between
the cycle period and the rotation period. Baliunas et al. (1995)
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investigated stars of spectral type G0-K5 and found that these
can be roughly separated by their mean S-index: fast rotators
are assumed to be young objects with high S-indices, whereas
older stars rotate more slowly and show lower values of the S-
index, again providing evidence for the Vaughan-Preston gap.
Baliunas et al. (1996) tried to understand cyclic activity in terms
of stellar dynamo theory, proving a relation between the ra-
tio of the cycle and rotation period and the dynamo number
D according Pcyc/Prot ∝ D0.74. Brandenburg et al. (1998) and
Saar & Brandenburg (1999) studied the relation between mag-
netic dynamo cycle period, rotation period, activity level, and
stellar age. These authors were the first to claim the existence
of the active (A) and inactive (I) sequences, two almost paral-
lel branches separated by a factor of six in Pcyc following the

relation Pcyc/Prot ∝ Ro0.5. Additionally, for fast rotators with
Prot < 3 d these authors found evidence for a third branch with
opposite slope Pcyc/Prot ∝ Ro−0.4. Böhm-Vitense (2007) con-
firmed that chromospherically active stars follow the A- and I-
sequences in the Prot − Pcyc plane. Slow rotators exhibit shorter
cycle periods populating the I-sequence, whereas stars rotating
faster than the Sun exhibit long cycle periods located on the A-
sequence. Some A-sequence stars exhibit secondary cycle pe-
riods located on the I-branch. The Sun is located in between
the two branches. In contrast, do Nascimento et al. (2015) found
that the Sun does not have a solitary position between the two
branches, but lies on a newly proposed solar-analog sequence.

All the cycle period measurements above are based on
cyclic Ca ii H&K emission, but long-term brightness varia-
tions also indicate cyclic activity (see, e.g., Baliunas & Vaughan
1985, which nicely links solar activity to photometric and chro-
mospheric activity on stars other than the Sun). Oláh et al.
(2000) and Oláh & Strassmeier (2002) investigated activity cy-
cles from long-term V-band photometry. Messina & Guinan
(2002) found evidence of cyclic activity in six solar-analog
stars also using long-term V-band observations. In a subse-
quent paper, Messina & Guinan (2003) found that the mean ro-
tation period also changes over the course of the activity cycle.
Lockwood et al. (2007) provided parallel measurements of pho-
tometric and chromospheric variability, but unfortunately did not
determine any cycle periods. Oláh et al. (2009) found a positive
correlation between rotational and cycle periods for 20 active
stars using time-frequency analysis. A similar approach was ap-
plied to Kepler light curves of very fast rotators (Prot ≤ 1 d) by
Vida et al. (2014). These authors found hints of cyclic activity
on timescales of 300–900 days analyzing cyclic changes of the
mean rotation period. Using CoRoT data Ferreira Lopes et al.
(2015) detected cyclic variability in 16 FGK type stars. These au-
thors found evidence of a possible third sequence, parallel to the
previously identified active and inactive sequences, but shifted
by a factor of 1/4 towards shorter cycle periods. Lehtinen et al.
(2016) found evidence of activity cycles in 18 solar-type stars
using decades-long photometric observations. The cycle periods
follow the sequences defined by Saar & Brandenburg (1999),
bridging chromospherically and photometrically derived activ-
ity cycles. In recent years, activity cycles have also been detected
from asteroseismology through periodic shifts in the mode fre-
quencies (García et al. 2010; Salabert et al. 2016).

The primary Kepler mission provides continuous, high-
precision photometry of thousands of stars over four years of
observation. Owing to the presence or absence of active re-
gions on the visible hemisphere (e.g., spots, plage) the stellar
flux gradually changes. Such long-term changes are observed
in the TSI data, showing significant changes over the course of
the 11-year cycle. In addition, the preferred latitude of active

region occurrence changes. Owing to differential rotation equa-
torial spots have a shorter rotation period than higher latitude
spots. Our main goal is to detect cyclic changes of the light curve
amplitude and the stellar rotation period, which we interpret as
an indication of a photometric activity cycle. The largest sam-
ple with accurately determined rotation periods is provided by
McQuillan et al. (2014, hereafter McQ14). This huge sample of
34 030 active stars forms the basis of our activity cycle survey.

2. Data and method

2.1. Motivation from the Sun

As mentioned in the introduction, the brightness of the Sun (as
measured by the TSI) varies due to the passage of dark sunspots
and bright plage regions across the solar disk. The top panel of
Fig. 1 shows the TSI time series from Shapiro et al. (2016) pro-
duced with the SATIRE-S model (Yeo et al. 2014). It is readily
seen that at times of activity maxima (1979, 1989, 2000, 2014)
the TSI varies rapidly, while there are only small variations dur-
ing times of activity minima (1976, 1986, 1996 and 2008).

To quantify the time-dependent variability in a manner which
we can easily extend to the Kepler data, we begin by rebinning
the TSI data from a 1-min cadence to a 1-day cadence. We then
break the data into N = 73 segments of 90-day length, and fol-
lowing Basri et al. (2011), we define the variability range Rvar

for that 90-day period as the difference between the 5th and 95th
percentiles of the TSI measurements in the 90-day segment. This
activity measure is similar to the magnetic index S ph defined by
Mathur et al. (2014). For each of the N = 73 segments we thus
obtain a measurement of the variability Rvar(n), n = 1, . . . ,N.
Using the midpoints of each 90-day time segment we create a
time series Rvar(t), shown in the lower panel of Fig. 1. Com-
puting the Lomb-Scargle periodogram of the time series Rvar(t)
reveals a peak at Pcyc, var = 10.98 ± 0.26 yr, which is compatible
with other estimates of the solar cycle length. This shows that
this method is capable of detecting the correct cycle period from
the variability of a star’s light curve.

2.2. Kepler data

Most Kepler data is released in segments of ∼90 days (known
as quarters) with exceptions for the quarters Q0 (∼10 days), Q1
(∼33 days), and Q17 (∼32 days). There is an ongoing debate re-
garding how to remove instrumental effects from the time series.
The data studied in this paper rely on the PDC-MAP pipeline us-
ing the following versions1: Version 2.1 for Q0-Q4 & Q9-Q11;
Version 3.0 for Q5-Q8 & Q12-Q14; and Version 5.0 for Q15-
Q17. For each star we create a time sequence t(n), n = 0, . . . , 17,
consisting of the midpoints of the time segments covered by the
quarters Qn when a star was observed.

The upper panel of Fig. 2 shows the light curve of the
Kepler star KIC 2714077. Each light curve is normalized and
centered around zero by dividing the flux by its median value
and subtracting unity. This normalization is necessary because
the Kepler spacecraft rolls between consecutive quarters, so the
stars fall on different CCDs accompanied by offsets of the PDC-
MAP flux between the quarters. Because the stellar variability
we are interested in is that due to the rotation of spots and fac-
ulae across the disk, we further fit and subtract a second-order
polynomial from the data in each quarter. This will substantially

1 The version number can be found in the primary headers of the FITS
files using the FILEVER keyword.

A52, page 2 of 8



T. Reinhold et al.: Evidence for photometric activity cycles in 3203 Kepler stars

Fig. 1. Upper panel: measured total solar irradiance, binned in 1-day
intervals, covering more than 40 yr of observations. The approximately
11-year solar cycle can be seen as the Sun’s brightness changes from
almost constant during activity minima to highly variable during activ-
ity maxima. Lower panel: variability range of the TSI data, Rvar, as a
function of time. We define Rvar as the difference between the 5th and
95th percentiles of the 1-day binned intensity in each 90-day period in
time. The red curve shows a sine fit to the Rvar time series with a period
Pcyc, var = 10.98 ± 0.26 yr.

reduce the influence of possible longer term instrumental issues,
while only slightly affecting modulation comparable to or faster
than the rotation period of the star. We then use the Rvar defined
in the same way as for the Sun as a measure of the variability.
The red triangles in the upper panel of Fig. 2 indicate the 5th
and 95th percentiles of the relative flux in each quarter. The dif-
ference between the 5th and 95th percentiles equals Rvar, which
is shown as time series Rvar(t) in the middle panel of Fig. 2.
The time series Rvar(t) shows strong periodicity with a period
of Pcyc, var = 3.51 yr, shown as red sine fit to the data.

In addition to measuring Rvar, for each star we also measure
the stellar rotation period in each quarter using the Lomb-Scargle
periodogram resulting in a time series Prot(t), which is shown for
the same stars in the lower panel of Fig. 2. The quarterly mea-
sured rotation periods scatter around the mean rotation period
Prot = 13.88 d. In contrast to Rvar the time series Prot(t) does not
show strong periodicity. The Lomb-Scargle periodogram finds a
peak at a period of less than one year, which is visualized by the
red sine fit to the data. As we show in the following, strong peri-
odicity of the variability range and random scatter of the rotation
period time series is quite common for many stars in our sample.

Fig. 2. Upper panel: Kepler light curve of the star KIC 2714077. Verti-
cal red lines indicate the quarters Q1-Q17. Red triangles at the bottom
and the top show the 5th and 95th percentile of the intensity, respec-
tively. For each quarter we measure the intensity difference between
the upper and the lower triangle, which equals Rvar. Middle panel: time
series of the variability range Rvar(t) of the same star, defined as the
difference between the 5th and 95th percentiles in each quarter. Lower
panel: time series of the rotation periods Prot(t) of the same star. The red
curve in the middle and lower panels show the best sine fit to the Rvar(t)
and Prot(t) time series, respectively.

Owing to the limited quarter length we set upper limits on
the detectable rotation periods: 10 days for Q0, 30 days for Q1
and Q17, and 45 days for the other quarters. All period mea-
surements deviating by more than 30% from the median pe-
riod of all quarters were discarded. The Rvar measurements of
these quarters were also discarded because instrumental artifacts
might dominate the photometry. To achieve meaningful variabil-
ity and rotation period time series we require measurements in at
least N = 12 quarters. These conditions shrink the initial McQ14
sample to 23 601 stars. We suspect that there might be more can-
didates with detectable activity cycle that have been missed, due
to our constraints.

2.3. Analysis of the time series

For each star we have three time series, t(n), Rvar(n), and Prot(n)
of length N, which is the number of quarters where a rotation
period could be measured. The Lomb-Scargle periodogram is a
straightforward way to look for periodicities in unevenly sam-
pled data. We compute the Lomb-Scargle periodogram of the
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Fig. 3. Time series Rvar(t) of the quarterly measured variability ranges of four Kepler stars. The time series in panels a)–c) pass our selection
criterion that randomly permuting the time series Rvar of this star yields a higher peak in the Lomb-Scargle periodogram in less than 5% of all
tested cases (FAP < 5%), whereas panel d) shows a time series with (FAP > 5%). The red curve shows the best sine fit to the data, and the dashed
black line indicates the mean variability of the star. The Rvar(t) time series shown in panels a)–d) exhibit false alarm probabilities FAP = 1.0%,
FAP = 0.5%, FAP = 0.3%, and FAP = 17.9%, respectively.

time series Rvar and Prot (using the time series t) to test for
periodicity. We call these periods associated with the highest
peaks in the Lomb-Scargle periodograms Pcyc, var and Pcyc, rot,
respectively.

Because we are simply taking the highest peak in the Lomb-
Scargle periodogram, Pcyc, var and Pcyc, rot will be defined for
every star. To define a subset of the stars where the inferred peri-
odicity is more likely to be real, we introduce a false alarm prob-
ability (FAP) threshold. We calculate the FAP by considering
1000 random permutations of Rvar and Prot. For each permutation
we have three time series t, RPermutation

var , and PPermutation
rot . We then

create Lomb-Scargle periodograms for these new sequences and
again concentrate on the highest peaks. We define the FAP for
Rvar as the number of cases where a higher peak appears in the
Lomb-Scargle periodogram of RPermutation

var than the peak found
for Rvar divided by the number of permutations considered.

We define the periodic sample by selecting those stars for
which the FAP was less then 5%. The samples are defined inde-
pendently for Pcyc, var and Pcyc, rot. The time series Rvar(t) of three
representative stars from the periodic sample are shown in pan-
els (a)–(c) in Fig. 3. For comparison panel (d) shows a star with
FAP > 5%. We discuss the issue of false positives in the results
section.

2.4. Method sensitivity

To test the sensitivity of the method to different cycle periods, we
created a set of 1000 synthetic time series R

syn
var (t). We randomly

selected N data points, 12 ≤ N ≤ 18, from the time series t(n).
The time series R

syn
var (t) are pure sine functions with input periods

Pcyc, in uniformly distributed between 0.5 yr < Pcyc, in < 10 yr.

The amplitudes are uniformly distributed random numbers, com-
parable to the sine fit amplitudes of the periodic sample. We add
noise to the time series R

syn
var (t), which we define as the standard

deviation of the difference between Rvar(t) and the best sine fit
from the periodic sample. The noise distribution is Gaussian.
Because the quantity Rvar describes a relative flux difference, the
sine amplitude and the noise are linearly correlated. For simplic-
ity, the phase and the offset of the sine curves are set to zero. We
analyze the set of synthetic light curves using the Lomb-Scargle
periodogram, and compare the returned cycle periods Pcyc, out to
the input periods Pcyc, in in Fig. 4. This Monte Carlo test reveals
that we can trust cycle periods of up to six years.

The uncertainties of the derived cycle periods have been es-
timated in the same way. For different cycle period bins between
0.5–10 years we created a set of 1000 synthetic light curves
for each bin, and applied the above analysis. In Fig. 4 the red
crosses show the median value of Pcyc, out and the error bars
show the median absolute difference between Pcyc, in and Pcyc, out.
We omit error bars for Pcyc, in > 7 yr because the uncertain-
ties become huge. The associated periods and uncertainties up
to Pcyc, in < 7 yr are given in Table 1.

3. Results

3.1. Cycle periods

The cycle period distribution of Pcyc, var for all stars satisfying
FAP < 5% is shown in black in the left panel of Fig. 5, and the
distribution of Pcyc, rot for all stars satisfying FAP < 5% is shown
in black in the right panel of Fig. 5. Assuming the time series
Rvar(t) and Prot(t) do not contain any periodic signals, 1180 stars
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Fig. 4. Monte Carlo test using a set of 1000 simulated light curves show-
ing the input periods Pcyc, in and the returned periods Pcyc, out. The black
lines show different Pcyc, out: Pcyc, in period ratios: the dotted line shows
the 1:1 period ratio, and the upper and lower dashed line show the 2:1
and 1:2 period ratio, respectively. The cycle period uncertainties (shown
as red error bars) were estimated from ten different sets of 1000 simu-
lated light curves for each input period bin between 0.5–10 yr. The red
crosses show the median value of Pcyc, out and the error bars show the
median absolute difference between Pcyc, in and Pcyc, out. We omit error
bars for Pcyc, in > 7 yr because the uncertainties become huge.

Table 1. Intervals of the input periods Pcyc, in, median values of the out-
put cycle periods Pcyc, out, and the associated absolute and relative un-
certainties of Pcyc, out as shown in Fig. 4.

Pcyc, in 〈Pcyc, out〉 〈∆Pcyc, out〉 〈∆Pcyc, out/Pcyc, out〉

(yr) (yr) (yr) (%)

[0.5, 1.0] 0.80 0.01 1.2
[1.0, 2.0] 1.48 0.03 2.0
[2.0, 3.0] 2.50 0.09 3.6
[3.0, 4.0] 3.54 0.17 4.9
[4.0, 5.0] 4.49 0.27 6.1
[5.0, 6.0] 5.44 0.59 11.2
[6.0, 7.0] 6.38 1.58 26.2

would be obtained after applying a limit of FAP < 5% to a total
sample of 23 601 stars. For the cycle periods Pcyc, var of the vari-
ability amplitude Rvar(t) we detect 3203 cycles. This number is
significantly higher than the expected number of false-positive
detections.

To test whether the different number of detections might be
an artifact of the method, we performed a Monte Carlo simula-
tion where we replaced the time series Rvar(t) of each star with
a random permutation of that star’s time series. We then applied
exactly the same analysis as was applied to the original time se-
ries (see Sect. 2.3).

This randomization process is repeated 500 times for the
whole sample. Comparing the peak height of the initially ran-
domized time series to the peak heights of the remaining ones
yields the false alarm probability FAPMC for each star. We
repeated this process 500 times, and found that on average
1122 stars satisfied our selection criterion. This is consistent

Fig. 5. Left panel: distribution of cycle periods Pcyc, var derived from all
time series Rvar which satisfied our selection criterion FAP < 5%. The
black distribution shows all cases where random permutations of time
series Rvar yielded a higher peak in the Lomb-Scargle periodogram than
the original time series in less than 5% of all cases. The red curve shows
the results from a Monte Carlo experiment where the analysis was per-
formed on random permutations of each Rvar time series for the whole
sample. Error bars are based on the Monte Carlo simulations and show
one standard deviation. Right panel: distribution of Pcyc, rot, the cycle
period determined from variations in the determined rotation periods
Prot, satisfying the selection criterion of FAP < 5%. Again the black
histogram shows the cycle period distribution of the 5% strongest pe-
riodicity data, and the red curve shows the period distribution obtained
from the Monte Carlo experiments.

with the expectation from the condition FAPMC < 5% applied
to 23 601 stars.

The averaged cycle period distribution from the Monte Carlo
experiment is shown in red in Fig. 5, with error bars showing
the standard deviation of different realizations. It is obvious that
the distributions of Pcyc, var of the original and the randomized
data are very different. The distribution of the real data has a
maximum of around three years, whereas the randomized sample
mostly contains short cycles between one and two years.

In the right panel the distribution of Pcyc, rot reveals a com-
pletely different picture. The distributions of the real data and
the randomized sample are largely consistent, and the total num-
ber of detections is almost identical. This shows that we cannot
distinguish whether a cyclic change of the rotation period might
indicate an activity cycle or if this change occurs just by chance.
We conclude that we cannot use the quantity Pcyc, rot to search for
activity cycles. Thus, we concentrate on Pcyc, var in the following.

Figure 6 shows the dependence of Pcyc, var on the stellar ro-
tation period Prot for all 3203 stars of the periodic sample. The
number of stars in each bin on the abscissa is given in black
above the color bins.

We turn now to the issue of the cycle period’s dependence
on rotation period. Our observations only allow activity periods
of less than six years to be detected. From Fig. 6 it is obvious
that most cycle periods have a length between 2–4 years (com-
pare Fig. 5), slightly clumping at rotation periods between 10–
20 days. Up to rotation periods of 25 days the cycle period
slightly increases with rotation period. For stars rotating even
more slowly the cycle period behavior is hard to determine from
the data. Using unit weights for all data points a linear fit yields
Pcyc, var = 0.04 Prot+2.40 yr, i.e., a weak dependence of the cycle
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Fig. 6. Distribution of periodic stars with FAP < 5% in the Prot − Pcyc, var plane; the gray area indicates the limits of our detection reliabil-
ity. The different black symbols represent cycle period measurements from other authors: circles: Ferreira Lopes et al. (2015), upside down
triangle: Egeland et al. (2015), normal triangle: Salabert et al. (2016), square: Moutou et al. (2016), star: Flores et al. (2016), and diamond:
Boro Saikia et al. (2016). The solid black lines show the active (A), inactive (I), and short-cycle (S) sequences as defined by Ferreira Lopes et al.
(2015). The numbers above the color bins denote the total number of stars in each column.

Fig. 7. Distribution of the cycle periods in the Prot − Pcyc, var plane ex-
pected from noise (determined using Monte Carlo experiments).

on rotation period. This result is confirmed by the small Pearson
correlation coefficient r = 0.20 between the two quantities.

Some previous authors have reported a correlation between
the rotation period of a star and the period of its activity cycle,
with periods preferentially lying on active and inactive branches
(shown in Fig. 6), and with some stars having detectable peri-
odicities of their activity cycles lying on both branches. Clearly
our detection scheme cannot find multiple activity periodicities,
and we find that most of our detections are concentrated along
the inactive branch; however, the distributions are broad.

For comparison photometric cycle measurements of 16 Co-
RoT stars (Ferreira Lopes et al. 2015) are shown as black circles
in Fig. 6. The upside down triangle, normal triangle, square, star,
and diamond show measurements from Egeland et al. (2015),

Fig. 8. Phase-folded Rvar(t) curves of all 3203 stars with strong peri-
odicity. Error bars show the standard error of the Rvar(t) distribution in
each phase bin.

Salabert et al. (2016), Moutou et al. (2016), Flores et al. (2016),
and Boro Saikia et al. (2016), respectively. Egeland et al. (2015)
have also detected a longer activity cycle of ∼12 yr for the same
star (HD 30495).

To check that the data are not due to a hidden selection bias,
we prepared the same figure beginning from the Monte Carlo
simulations discussed above. The result is shown in Fig. 7. As
expected from pure noise, most cycle period detections lie in the
range of 1–2 yr because the periodogram interprets the noise as
short cycles. Furthermore, the sample shows a flat distribution,
i.e., no dependence on rotation. The associated Pearson correla-
tion coefficient equals r = 0.01, on average, showing that Pcyc, var

and Prot are uncorrelated.
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Fig. 9. Phase-folded Rvar(t) curves of all periodic stars split up into different temperature bins as indicated on the top of each panel.

3.2. Cycle shapes

So far we have focused on the cycle periods, but have not con-
sidered the shape of the variability. Figure 8 shows a phase-
folded curve of the variability range Rvar averaged over all stars
of the periodic sample. All Rvar time series are phase-folded
with the measured cycle period and shifted so that they all lie
in phase. The mean variability level is subtracted, and the curves
are normalized by their amplitudes. The average over all curves
is shown in black and the red curve shows a sine fit. The er-
ror bars show the standard error in each phase bin. It is clear
that the shape of the variability shows some deviation from a
pure sine curve. At maximum activity the observed variability
curve is more spiky than a sine curve. At minimum activity the
variability is rather flat. Applying the same analysis to the Rvar

time series of the TSI data (compare Fig. 1) we also find a flat
shape at minimum activity, but a large scatter at maximum ac-
tivity. To quantify the deviation of the data from the sine curve
we compute the reduced chi-square and the associated p-value
to be χ2

red
= 16.9 and p = 0.002, indicating a high statistical

significance for the deviation from a sinusoidal shape.

Figure 9 shows the same curve as Fig. 8 for different tem-
perature bins. In each bin the stars have roughly the same cycle
period distribution. The coolest stars are nicely represented by a
sine curve. Neither the spiky top nor the flat bottom are visible.
The shape of the curve gradually changes towards hotter stars.
The top becomes more spiky and the bottom flattens out. To
quantify the temperature dependence we calculate the difference
between each of the six possible pairs of the average curves (a)–
(d) in Fig. 9. We do not find a statistically significant difference
between the pairs that would indicate a temperature dependence
of the cycle period. The slightly different cycle shape in panel (a)

might be explained by the smaller number of stars in this tem-
perature bin.

4. Summary

We detected periodicity of the variability amplitude Rvar in 3203
stars of the McQ14 sample, which we interpreted as an in-
dication of an underlying activity cycle. To account for ran-
dom detections, the original sample was compared to a ran-
domized sample. It was found that the number of activity
cycle detections was three times higher than expected from
pure noise. We did not detect cyclic changes in the rotation
period beyond those expected from noise. The Prot − Pcyc

plane revealed that the cycle period Pcyc, var shows weak de-
pendence on the rotation period, slightly increasing with rota-
tion period. In contrast to previous studies (Noyes et al. 1984b;
Baliunas et al. 1996; Saar & Brandenburg 1999; Böhm-Vitense
2007; Ferreira Lopes et al. 2015; Lehtinen et al. 2016) we did
not find evidence of a tight functional dependence between
the cycle and the rotation period. Our measurements show
a large scatter around the inactive branch. Previous studies
(Saar & Brandenburg 1999; Böhm-Vitense 2007) have shown
stars with multiple periodicities on the A- and I-branches. These
studies were based on chromospheric activity indices, which will
have different sensitivities to spots and plages than the photo-
spheric variability detected using Kepler data. Hence it is possi-
ble that our finding of a strong I-branch and little evidence of the
A- and S-branches might indicate that the I-branch has a stronger
signature in the photosphere than the A- or S-branches. In good
agreement with the solar cycle the average shape of all activity
cycles was found to deviate from a pure sine curve. We could
not detect a statistically significant temperature dependence of
the activity cycle shape.
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