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The relation between the clustering properties of luminous matter in the form of galaxies and the

underlying dark matter distribution is of fundamental importance for the interpretation of ongoing and

upcoming galaxy surveys. The so-called local bias model, where galaxy density is a function of local

matter density, is frequently discussed as a means to infer the matter power spectrum or correlation

function from the measured galaxy correlation. However, gravitational evolution generates a term

quadratic in the tidal tensor and thus nonlocal in the Eulerian density field, even if this term is absent

in the initial conditions (Lagrangian space). Because the term is quadratic, it contributes as a loop

correction to the power spectrum, so the standard linear bias picture still applies on very large scales;

however, it contributes at leading order to the bispectrum for which it is significant on all scales. Such a

term could also be present in Lagrangian space if halo formation were influenced by the tidal field. We

measure the corresponding coupling strengths from the matter-matter-halo bispectrum in numerical

simulations and find a nonvanishing coefficient for the tidal tensor term. We find no scale dependence

of the inferred bias parameters up to k� 0:1h Mpc�1 and that the tidal effect is increasing with halo mass.

While the local Lagrangian bias picture is a better description of our results than the local Eulerian bias

picture, our results suggest that there might be a tidal tensor bias already in the initial conditions. We also

find that the coefficients of the quadratic density term deviate quite strongly from the theoretical

predictions based on the spherical collapse model and a universal mass function. Both quadratic density

and tidal tensor bias terms must be included in the modeling of galaxy clustering of current and future

surveys if one wants to achieve the high precision cosmology promise of these data sets.

DOI: 10.1103/PhysRevD.86.083540 PACS numbers: 98.65.Dx, 95.35.+d, 98.80.Cq

I. INTRODUCTION

Large-scale structure (LSS), the large-scale distribution
of matter in the Universe, contains a wealth of information
about the history and composition of the Universe as well
as fundamental physics. For instance, LSS has the potential
to constrain neutrino masses or modifications of gravity,
which however requires percent level accuracy for the
theory and observations. Besides gravitational lensing,
which is sensitive to the total matter distribution, the posi-
tions of galaxies are the main observable and tool to infer the
underlying matter distribution. They have the advantage of
higher statistical power relative to weak lensing surveys.
Ongoing and upcoming LSS surveys such as BOSS,
BigBOSS, EUCLID, and DES will provide an unprece-
dented quality of galaxy clustering data, which needs to be
properly analyzed.

A crucial step in the analysis of galaxy surveys is to
connect the distribution of the tracer to the underlying
distribution of matter. The first step in this logical chain
is the realization that galaxies form preferentially in the

potential wells of collapsed dark matter halos, where the

hot gas can cool sufficiently fast [1,2]. This leads to the

question of how the clustering properties of dark matter

halos relate to the clustering of matter in general. The

answer to this question is usually phrased in terms of a

relation between the overdensities in these two fields and is

dubbed a halo biasing scheme. With the ever increasing

computing power it is in principle possible to generate

templates for the survey analysis for standard �CDM
and even modified gravity models using N-body simula-

tions. This approach becomes very expensive when it is to

be used in Markov-chain-Monte Carlo parameter inference

methods and does not provide insight into the underlying

clustering properties. We thus consider it important to

understand the properties of halo clustering by testing

theoretical prescriptions on simulations with the final

goal of devising analytical and thus easily evaluable mod-

els for the survey analysis.
The so-called local biasing model [3,4], where galaxy

and halo density is a function of local matter density, has
been the most popular model used in previous work. In the
simplest version one adds another contribution that scales
quadratically with density, the quadratic density bias term.*baldauf@physik.uzh.ch
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Recent work has argued, based on symmetry and analy-
ticity arguments, that there are additional terms not in-
cluded in the local bias model that appear in the power
spectrum and are formally at the same order as that of
quadratic bias [5]. One of these terms is quadratic in
density but nonlocal and can be written as the square of
the tidal tensor. The first goal of this paper is to provide
additional theoretical motivation for inclusion of this term
in the analysis of galaxy clustering.

The working horses in LSS analysis are the two-point
functions, the correlation function and the power spectrum.
Purely Gaussian, linear fields are completely characterized
by their two-point function. However, nonlinear phe-
nomena in galaxy and halo formation as well as nonlinear
gravitational clustering can generate the full hierarchy of
n-point functions. These higher-order statistics might be
difficult to measure in the sky due to nontrivial survey
windows and redshift space distortions, but they can be
easily extracted from N-body simulations. The simplest
statistic beyond the power spectrum is the bispectrum

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ Bðk1;k2;k3Þð2�Þ3�ðDÞðk1 þ k2 þ k3Þ;
(1)

which is well suited for the study of next-to-leading-order
effects in cosmic density fields [6–10]. While these con-
tribute only loop terms to the power spectrum they are the
leading-order terms for the bispectrum, which vanishes for
purely linear Gaussian fields.

The second aim of this study is to probe the halo
bispectrum for Gaussian initial conditions in the low-k
regime, in order to extract the two terms that lead to a
quadratic coupling between the number density of col-
lapsed objects and the long wavelength matter fluctuations,
quadratic density bias and quadratic tidal tensor bias. We
present a study of their scale and mass dependence using
N-body simulations and we compare the numerical results
to the theoretical expectations based on simple halo bias
models.

This paper is organized as follows. In Sec. II, we review
the standard formulation of the bias model and discuss
possible extensions. Section III describes the simulations,
the bispectrum measurement and data reduction as well as
the parameter estimation. The results are presented in
Sec. IV. Finally, in Sec. V we discuss our findings and
their implications as well as possible directions for future
investigation.

II. THE BIAS MODEL: LOCAL AND
NONLOCAL FORMS

A. Standard formulation: Local bias

The formation of galaxies and their host dark matter
halos is a complicated highly nonperturbative process. It is,
however, reasonable to assume that certain properties of
collapsed objects, for instance their number density, are

related to the coarse grained underlying matter density
field in the same region of space. Neglecting complications
arising from gas physics, the number density of collapsed
objects can be written as a functional of the underlying
matter density perturbation [4]

�hðx; �Þ ¼ F ½�ðx0; �Þ�: (2)

On large scales, this functional is commonly approximated
by a local and linear bias model �hðx; �Þ ¼ b1�ðx; �Þ
(plus generally a noise term which we will avoid in this
paper by only looking at cross correlations with mass). The
next step is to give up on linearity and to introduce the
second-order local bias model �hðx; �Þ ¼ b1�ðx; �Þ þ
b2�

2ðx; �Þ. This model has been well studied in the litera-
ture in combination with standard perturbation theory
(SPT) and leads to nontrivial renormalizations of the
leading-order bias parameter [11]. Measurements of the
quadratic bias parameters of this model in the two-point
function [12] and three-point function [10,13] have lead to
contradictory results, which raises doubts about the com-
pleteness of the model.

B. Tidal terms

The power series expansion of the functional presented
above is certainly overly simplified and one should con-
sider whether other terms could influence the number
density of collapsed objects. As proposed in Ref. [5], the
environmental dependence of halo formation could lead to
a dependence on the tidal field, as quantified by the tidal
tensor

sijðx; �Þ ¼ @i@j�ðx; �Þ � 1

3
�ðKÞ
ij �ðx; �Þ: (3)

Note that we absorbed the constants in the Poisson equa-
tion into the gravitational potential r2�ðx; �Þ ¼ �ðx; �Þ
and subtract out the trace from the tidal tensor because it
is degenerate with the density field. The corresponding
expression in Fourier space is given by

sijðk; �Þ ¼
�
kikj

k2
� 1

3
�ðKÞ
ij

�
�ðk; �Þ: (4)

The halo overdensity is a scalar quantity and can thus only
depend on scalars. The simplest scalar that can be
constructed from the tidal tensor is given by s2ðxÞ ¼
sijðxÞsijðxÞ which in Fourier space is expressed by the

convolution

s2ðk; �Þ ¼
Z d3k0

ð2�Þ3 S2ðk
0; k� k0Þ�ðk0; �Þ�ðk� k0; �Þ;

(5)

where we have implicitly defined the kernel

S2ðq1; q2Þ ¼ ðq1 � q2Þ2
q21q

2
2

� 1

3
: (6)
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Following Ref. [5], the halo density field up to second
order can be written as

�hðx; �Þ ¼ b1�ðx; �Þ þ b2½�2ðx; �Þ � h�2ðx; �Þi�
þ bs2½s2ðx; �Þ � hs2ðx; �Þi�; (7)

where we absorbed prefactors of 1=2 into the bias parame-
ters. We truncated the series at second order, since higher-
order terms influence the bispectrum only through loop
corrections, which are believed to be subdominant on large
scales. As can be easily verified from the above definitions

one has hs2ðx; �Þi ¼ 2=3hð1Þ�2ðx; �Þi.

C. Lagrangian bias

In the usual Lagrangian bias picture, the galaxy forma-
tion sites are identified in the primordial density field, and
it is assumed that the primordial halo density field at initial
time �i can be written as a power series in the primordial
matter fluctuations. For calculational convenience, the
expansion can be rewritten in terms of the linearly extrapo-
lated density field �ðq; �Þ ¼ Dð�Þ=Dð�iÞ�ðqÞ:

�hðqÞ ¼
X
l

bðLÞl ð�iÞ
l!

½�lðqÞ � h�lðqÞi�

¼ X
l

bðLÞl ð�Þ
l!

½�lðq; �Þ � h�lðq; �Þi�; (8)

where bðLÞl ð�Þ ¼ ðDð�iÞ=Dð�ÞÞlbðLÞl ð�iÞ and q is the

Lagrangian position. Here, we introduced the conformal
time ad� ¼ dt and the linear growth factor Dð�Þ, normal-
ized to unity at present time. We start the sum from l ¼ 1
because the l ¼ 0 term vanishes by requiring that the halo
field has a vanishing mean. In contrast to this, the Eulerian
bias model expands the halo density field at a certain point
in time in the nonlinear matter density field at the same
time. Motivation for a Lagrangian nature of halo bias
comes from the peak model [14–17], where the peaks of
the primordial density field are associated with the forma-
tion sites of protohalos.

It now remains to connect the Lagrangian density fields
to the observable Eulerian ones. The continuity equation
for halos requires

½1þ �hðx; �Þ�d3x ¼ ½1þ �hðqÞ�d3q; (9)

where

½1þ �ðx; �Þ�d3x ¼ d3q (10)

is the continuity equation for the underlying dark matter
field. Note that the Lagrangian density field we work with
is always the linear density field, because this was the
definition of the bias expansion in Eq. (8)—more general
expansions are possible in principle.

The Lagrangian and Eulerian positions are related by
xðq; �Þ ¼ qþ cðq; �Þ, thus up to third order in the density
field we have

�ðqÞ ¼ �ðx; �Þ ��iðq; �Þ@i�ðqÞ
þ 1

2
�iðq; �Þ�jðq; �Þ@i@j�ðqÞ: (11)

In contrast to Eulerian perturbation theory, where the
density is the central quantity, Lagrangian perturbation
theory (LPT) has the displacement field c as the central
dynamic quantity and the density fields are only derived
quantities (for the basics of LPT and its relation to SPT see
Appendix A). For simplicity, we will focus on the matter-
only Einstein-de Sitter universe for the theoretical calcu-
lations throughout this paper. Considering more realistic
�CDM growth rates in the PT expressions typically leads
to subpercent level changes in the final results and does not
change the qualitative behavior [18]. Using the Lagrangian
bias expansion (8) in (9) and expressing the Lagrangian
position field in terms of the Eulerian position, we have
(see also Ref. [19])

�hðx;�Þ ¼ ½1þbðLÞ1 ð�Þ�ð1Þ�ðx;�Þþ bðLÞ1 ð�Þ�2ðx;�Þ
þ 1

2
bðLÞ2 ð�Þ½ð1Þ�2ðx;�Þ� hð1Þ�2ðx;�Þi�

�bðLÞ1 ð�Þcðq;�Þ �r�ðx;�Þþ ð2Þ�ðx;�Þ: (12)

Reorganizing the terms in order to have the first-order bias
multiply the full second-order matter density field, we
obtain

�hðx; �Þ ¼ ½1þ bðLÞ1 ð�Þ�½ð1Þ�ðx; �Þ þ ð2Þ�ðx; �Þ�
þ

�
4

21
bðLÞ1 þ 1

2
bðLÞ2 ð�Þ

�

� ½ð1Þ�2ðx; �Þ � hð1Þ�2ðx; �Þi�
� 2

7
bðLÞ1 ð�Þ½s2ðx; �Þ � hs2ðx; �Þi�; (13)

where we used that the second-order mass density (in SPT
and LPT) can be written in configuration space as (see
e.g., Ref. [20])

ð2Þ�ðx;�Þ¼ 17

21
ð1Þ�2ðx;�Þ�cðx;�Þ �r�ðx;�Þþ2

7
s2ðx;�Þ:

(14)

We see that the functional form of the above result agrees
with Eq. (7), but complements it with a dynamical per-
spective. In particular, we see that even in the absence of a
tidal tensor bias in the initial conditions, such a term will be
generated by subsequent gravitational evolution. While our
result in Eq. (13) is consistent with the relations presented
in Ref. [19], we have reorganized terms in order to have the
first-order bias multiplying the second-order density field
equation (14) and to make the formal equivalence with the
phenomenological picture presented above more obvious.

Furthermore, there are no bðLÞ0 factors, because we fixed the

original Taylor series for �hðqÞ to have a vanishing mean.
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D. Coevolution of halos and dark matter

In this subsection, we will consider an (at first glance)
Eulerian approach to halo clustering and consider the
coevolution of the coupled halo-dark matter fluid (for a
similar approach in combination with resummed perturba-
tion theory see Ref. [21]). Assuming vanishing velocity
bias vh ¼ v and conservation of halo number, we can
write down a coupled system of differential equations for
the matter and halo fluid [22] , namely the continuity
equation for halos, the continuity equation for the matter
and the combined Euler and Poisson equations for matter

�0
hðk; �Þ þ �ðk; �Þ ¼ �

Z d3k0

ð2�Þ3 �ðk
0; k� k0Þ�ðk0; �Þ

� �hðk� k0; �Þ; (15)

�0ðk; �Þ þ �ðk; �Þ ¼ �
Z d3k0

ð2�Þ3 �ðk
0; k� k0Þ

� �ðk0; �Þ�ðk� k0; �Þ; (16)

�0ðk; �Þ þH ð�Þ�ðk; �Þ þ 3

2
�mð�ÞH 2ð�Þ�ðk; �Þ

¼ �
Z d3k0

ð2�Þ3 �ðk
0; k� k0Þ�ðk0; �Þ�ðk� k0; �Þ (17)

with

�ðq1; q2Þ ¼ ðq1 þ q2Þ � q1
q21

;

�ðq1; q2Þ ¼ 1

2
ðq1 þ q2Þ2 q1 � q2

q21q
2
2

:

(18)

Here we introduced the velocity divergence �ðxÞ¼
r �vðxÞ. The matter equations at first order are

solved by ð1Þ�ðk;�Þ¼�H ð�Þð1Þ�ðk;�Þ and ð1Þ�ðk;�Þ¼
Dð�Þð1Þ�0ðkÞ, where ð1Þ�0ðkÞ is the present day linear over-
density. The second-order solution for the matter yields

ð2Þ�ðk;�Þ¼
Z d3k0

ð2�Þ3F2ðk0;k�k0Þð1Þ�ðk0;�Þð1Þ�ðk�k0;�Þ;
(19)

ð2Þ�ðk; �Þ ¼ �H ð�Þ
Z d3k0

ð2�Þ3
�G2ðk0;k� k0Þð1Þ�ðk0; �Þð1Þ�ðk� k0; �Þ;

(20)

where the second-order SPT mode coupling kernels are
defined as [23]

F2ðq1; q2Þ ¼ 5

7
�ðq1; q2Þ þ 2

7
�ðq1; q2Þ; (21)

G2ðq1; q2Þ ¼ 3

7
�ðq1; q2Þ þ 4

7
�ðq1; q2Þ: (22)

The first-order equation for the halos can be solved using

the local bias ansatz ð1Þ�hðk; �Þ ¼ bðEÞ1 ð�Þð1Þ�ðk; �Þ, which
then gives the time evolution of the first-order bias as

bðEÞ1 ð�Þ � 1

bðEÞ1 ð�iÞ � 1
¼ Dð�iÞ

Dð�Þ : (23)

This relation is known as debiasing; i.e., at late times the
bias converges to unity and the halo and matter density
field agree [24].
Solving Eq. (15) at second order using the second-order

matter solutions, we obtain

ð2Þ�hðk;�Þ¼ ð2Þ�hðk;�iÞþbðEÞ1 ð�Þ
Z d3k0

ð2�Þ3F2ðk0;k�k0Þ
��ðk0;�Þ�ðk�k0;�Þ

þ 4

21
ðbðEÞ1 ð�Þ�1Þ

Z d3k0

ð2�Þ3�ðk
0;�Þ�ðk�k0;�Þ

�2

7
ðbðEÞ1 ð�Þ�1Þ

Z d3k0

ð2�Þ3S2ðk
0;k�k0Þ

��ðk0;�Þ�ðk�k0;�Þ; (24)

where we assumed Dð�iÞ � Dð�Þ. Here, we have isolated
the part proportional to the second-order matter field
in the first line. Thus, the dynamical evolution naturally
introduces a �2ðxÞ and a s2ðxÞ term, even in the absence
thereof at some initial time �i. Translating back to real
space, we see that this has the same functional form as
Eq. (7) and agrees with the Lagrangian bias picture. The

equivalence is even more obvious if we have ð2Þ�hðx; �iÞ ¼
bðLÞ2 ð�iÞð1Þ�2ðx; �iÞ=2 ¼ bðLÞ2 ð�Þð1Þ�2ðx; �Þ=2 in correspon-
dence to the Lagrangian bias picture discussed above (see
the next subsection for a relation between the parameters of
the models discussed here). We note in retrospect that,
while the calculation took an Eulerian form, the specifica-
tion that galaxies formed at an early time tracing the initial
density field (or at least the location where they will form is
determined this way) and then just follow gravity is ac-
tually the same one made in the Lagrangian calculation.

E. Relation between Eulerian and Lagrangian
bias parameters

As we have seen above, the Lagrangian bias model, the
coevolution model and the educated guess of Ref. [5] all
lead to the same functional form for the halo density field if
one identifies the parameters of the model as

b1 ¼ bðEÞ1 ð�Þ ¼ 1þ bðLÞ1 ð�Þ; (25)

b2 ¼ 1

2
bðEÞ2 ð�Þ ¼ 4

21
bðLÞ1 ð�Þ þ 1

2
bðLÞ2 ð�Þ: (26)

This identification agrees with the one of the spherical
collapse picture [25]. Note however that our results are
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not relying on the spherical collapse dynamics. For the
prefactor of the tidal field scalar we have

bs2 ¼ � 2

7
ðbðEÞ1 ð�Þ � 1Þ ¼ � 2

7
bðLÞ1 ð�Þ: (27)

In this model, there is no tidal field bias in Lagrangian
space, consistent with the spherical collapse model,
although in the ellipsoidal collapse model [26–29] such a
term would be allowed.

When comparing our measurements to theoretical
bias models, we consider the bias derived from the
Sheth-Tormen [30] mass function with parameters p ¼
0:15 and q ¼ 0:75 that were shown to be in good agree-
ment with first-order bias in N-body simulations [31],
although we checked that the predictions do not differ
much from those using the original values in Ref. [30].
The Lagrangian bias parameters are then given by the first
and second derivatives of the mass function nðMÞ with
respect to a long wavelength background fluctuation �l.
For universal mass functions these can be rewritten as
derivatives with respect to the peak height �ðM;�Þ ¼
�2
c=�

2ðM;�Þ:
bðLÞ1 ¼ 1

�n

@n

@�l

¼ � 1

�n

2�

�c

@n

@�
; (28)

bðLÞ2 ¼ 1

�n

@2n

@�2
l

¼ 4

�n

�2

�2
c

@2n

@�2
þ 2

�n

�

�2
c

@n

@�
; (29)

where �c ¼ 1:686 is the critical density for spherical
collapse. The derivatives of the Sheth-Tormen mass func-
tion read

1

n

@n

@�
¼ � q�� 1

2�
� p

�ð1þ ðq�ÞpÞ ; (30)

1

n

@2n

@�2
¼ p2 þ �pq

�2ð1þ ðq�ÞpÞ þ
ðq�Þ2 � 2q�� 1

4�2
: (31)

The mass dependence of the bias function is presented in
Fig. 4 and discussed in Sec. IV.

F. Bispectra

The leading-order contribution to the bispectrum arises
from quadratic terms in the fields. Higher-order couplings
enter only through loop corrections, which gain impor-
tance for high k. This is equivalent to the situation in the
power spectrum, where linear terms in the field are domi-
nant on large scales and loop corrections from quadratic
and higher-order terms gain importance for high k.

The tree-level matter bispectrum in SPT is given by

Bmmmðk1; k2; k3Þ ¼ 2Pðk1ÞPðk2ÞF2ðk1; k2Þ þ 2cyc; (32)

where cyc symbolizes the two cyclic permutations of the k
vectors in the power spectrum and mode coupling kernel.
From an observational point of view the halo auto bispec-
trum Bhhh is probably the most appealing statistic.

Unfortunately it is suffering from shot noise, which might
deviate from its fiducial Poisson form 1= �n [32]. Besides the
halo auto power spectrum, there are two halo-matter cross
bispectra Bmhh and Bmmh, where either one or two matter
fields are correlated with two or one halo fields, respec-
tively. One further needs to state whether the cross bispec-
tra are symmetrized over the k modes or not.
Our focus is not on observability but on understanding

the clustering properties of dark matter halos in N-body
simulations and devising a theoretical framework that can
later be used to analyze real data. Thus, we will consider
the unsymmetrized matter-matter-halo cross bispectrum
defined as

BðunsymÞ
mmh ðk1; k2; k3Þð2�Þ3�ðDÞðk1 þ k2 þ k3Þ
¼ h�ðk1Þ�ðk2Þ�hðk3Þi; (33)

where the halo density field is always on the k3 mode. This
particular configuration might not be the one with the
highest signal to noise ratio but it has a couple of quite
useful properties for our study: (a) The cross bispectrum
does not suffer from a spurious shot noise contamination
and is thus a clean probe of the clustering of halos and
(b) the functional simplicity of the second-order bias con-
tributions in terms of k1, k2 and the cosine of the enclosed
angle 	 where the b2 and bs2 contributions are basically
orthogonal (see below). The latter should allow for a clear
distinction between the standard second-order bias picture
or its possible extensions discussed above.
As noted above, all of the models under consideration

share the same functional form (7) for the second-order halo
density field. Only the standard quadratic bias model has
bs2 ¼ 0. Therefore, we can write down the bispectrum as

B
ðunsymÞ
mmh ðk1; k2; k3Þ � b1Bmmmðk1; k2; k3Þ
¼ 2Pðk1ÞPðk2Þ

�
b2 þ bs2

�
	2 � 1

3

��
: (34)

Note that we use a parametrization where the factors of 1=2
are absorbed into the bias parameters for simplicity.Wewill
restore these prefactors only at the very end, when we are
comparing our bias measurements to the theoretical bias
functions. A nonvanishing bs2 in the above equation would
be clear evidence for a dynamical biasing picture. After
dividing by the two matter power spectra, the remaining
quantity is a function of the angle 	 only, which simplifies
the combination of information from several scalesk1 and k2.

III. SIMULATIONS AND
BISPECTRUM ESTIMATION

A. The simulations

We are studying the cosmic density field in a suite of 11
dark matter only simulations with box size of L ¼
1600 h�1Mpc, which are an extension of the simulations
described in Ref. [33]. The �CDM model is based on
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best-fit parameters inferred from the WMAP 5-year data
release [34]. Thus, we adopt a mass density parameter
�m ¼ 0:279, a baryon density parameter �b ¼ 0:0462, a
Hubble constant h ¼ 0:7, a spectral index ns ¼ 0:96, and
a normalization of the curvature perturbations of �2

R ¼
2:21� 10�9 at the pivot point k ¼ 0:02 Mpc�1. This nor-
malization leads to a present day fluctuation amplitude of
�8 � 0:81. The initial conditions are set up a redshift
zi ¼ 99. The gravitational evolution of the Np ¼ 10243

particles is integrated using the publicly available
GADGET2 code [35]. The simulation size, particle number

and matter density parameter yield a particle mass of 3�
1011 h�1M�. Dark matter halos are identified using a
friends-of-friends halo finder with a linking length of
0.2 times the mean interparticle spacing. Only halos
exceeding 20 particles are considered for our analysis,
corresponding to a minimum halo mass of approximately
6� 1012 h�1M�. We consider four mass bins, each span-
ning a factor of 3 in mass. For the estimation of the
statistics, particles are interpolated on a Nc ¼ 512 grid
using the cloud-in-cell algorithm and the gridded density
field is corrected for the window of the grid. The matter-
matter-halo and matter bispectrum are measured for low k
modes k < 0:12 hMpc�1 in the simulation output at red-
shift z ¼ 0. The bispectrum measurement scales as the
sixth power of the number of grid cells per dimension,
which makes it computationally very expensive to extract
the full bispectrum information at higher k. It would still
be interesting to extend the measurement to higher k in
the future to determine the scale of breakdown of the tree-
level calculation.

B. Bispectrum estimation and data reduction

The bispectrum modes must satisfy the triangle condi-
tion k1 þ k2 þ k3 ¼ 0; thus, the shape of the bispectrum is
fully specified by two lengths and one angle, which we
choose as k1,k2 and 	 ¼ k1 � k2=k1k2. Since �ðxÞ is
a real valued field, the Fourier modes have to satisfy
�	ðkÞ ¼ �ð�kÞ. Consequently, the imaginary part of the
bispectrum cancels when we add �ðk1Þ�ðk2Þ�ðk3Þ and
�ð�k1Þ�ð�k2Þ�ð�k3Þ. We consider bins that are logarith-
mically spaced in k1 and k2 and linearly in 	. We add all
the bispectrum amplitudes that fall into the bin centered at
ðk1; k2; 	Þ.

As a first step in our analysis we subtract out the b1
contribution proportional to the matter bispectrum and
divide by the power spectrum measured in the same simu-
lation and k bins to cancel part of the cosmic variance:

M̂ðk1; k2; 	Þ ¼ B̂
ðunsymÞ
mmh ðk1; k2; 	Þ � b̂1B̂mmmðk1; k2; 	Þ

2P̂mmðk1ÞP̂mmðk2Þ
:

(35)

Comparing to Eq. (34), the resulting statistic should be a
function of 	 only. The hat is used to mark quantities

estimated from the simulations. This quantity is distinct
from the usual definition of the reduced bispectrum since
the power spectra in the denominator do not depend on k3
and can thus be controlled by limiting k1 and k2. The first-

order bias parameter b̂1 is estimated from the halo-matter
cross power spectrum on large scales 0:015 hMpc�1 <
k< 0:03 hMpc�1, where the linear bias model Phm ¼
b1Pmm is believed to be accurate. We show the k depen-

dence of P̂hmðkÞ=P̂mmðkÞ and the inferred bias parameters
in Fig. 4. Note that the resulting statistic depends only on
the magnitude of the k1 and k2 modes, so that we can
ensure the validity of the perturbative expansion by limit-
ing these modes accordingly.
When showing the reduced data as a function of 	 only,

we reduce them as follows:


2
M ¼ X

k1;k2

�
M̂ðk1; k2; 	Þ � �Mð	Þ

�Mðk1; k2; 	Þ
�
2
; (36)

�Mð	Þ ¼ X
k1;k2

M̂ðk1; k2; 	Þ
�M2ðk1; k2; 	Þ

�X
k1;k2

1

�M2ðk1; k2; 	Þ
��1

;

(37)

� �Mð	Þ ¼
�X
k1;k2

1

�M2ðk1; k2; 	Þ
��1=2

(38)

for each 	.
The cosmic variance of the bispectrum estimates could

in principle be measured from the standard deviation be-
tween our simulation boxes. Given the small number of
boxes this approach is bound to give a very noisy estimate.
Sincewe are using the error for the weighting of the modes,
we would like to avoid a spurious upweighting of modes
which by chance have a low simulation to simulation
variance. For this purpose we prefer a smooth error esti-
mate. As shown in Ref. [36], the variance of the bispectrum
is given by

�B2
mmhðk1; k2; 	Þ ¼ s123

ð2�Þ3Vf

V123

Pmmðk1ÞPmmðk2Þ

�
�
Phhðk3Þ þ 1

�nh

�
; (39)

where Vf ¼ ð2�Þ3=L3 is the volume of the fundamental
cell, �nh is the number density of the tracer and s123 takes on
values of 1, 2 and 6 for general, isosceles and equilateral
triangles, respectively. The norm volume is given by

V123 ¼ 8�2k31k
3
2ðd lnkÞ2d	 (40)

for our bins, which are logarithmically spaced in k1 and k2
and linearly spaced in 	. The above just quantifies the
diagonals of the covariance matrix between the different
triangle shapes and scales, but the correlations between
different triangles are believed to be small [36]. When
calculating the error on the reduced bispectrum, we focus
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on the error contribution from the matter-matter-halo bis-
pectrum described above and thus have

�Mðk1; k2; 	Þ � �Bmmhðk1; k2; 	Þ
2Pmmðk1ÞPmmðk2Þ : (41)

This procedure could be clearly improved by modeling or
measuring the full covariance matrix.

C. Bias estimation

We can now estimate b2 and bs2 minimizing


2 ¼ X
k1;k2

X
	

�
M̂ðk1; k2; 	Þ � b2L0ð	Þ � bs2L2ð	Þ

�Mðk1; k2; 	Þ
�
2
;

(42)

where L0ð	Þ ¼ 1 and L2ð	Þ ¼ ð	2 � 1=3Þ are the zeroth-
and second-order Legendre polynomials, which form an
orthogonal set on ½�1; 1�. The k sums are performed over

kmin < k1 < kmax, kmin < k2 < �k1 such that ð1� �Þk1 <
k3 < ð1þ �Þk1 and we use � ¼ 3=4 for definiteness.
Defining the cosine

haðk1;k2;	Þ;bðk1;k2;	Þi :¼ X
k1;k2

X
	

aðk1;k2;	Þbðk1;k2;	Þ
�M2ðk1;k2;	Þ ;

(43)

we obtain for the best-fit parameters

b̂2 ¼ hL2; L2ihL0; M̂i
�

� hL0; L2ihL2; M̂i
�

; (44)

b̂s2 ¼ �hL0; L2ihL0; M̂i
�

þ hL0; L0ihL2; M̂i
�

; (45)

where� ¼ hL0; L0ihL2; L2i � hL0; L2i2. Note that from
2

minimization one obtains an equivalent expression for the
cosine of the reduced data:

FIG. 1 (color online). Matter (black points) and halo-matter-matter (red points) bispectra as a function of triangle shape for
configuration k1 ¼ 0:052 hMpc�1, k2 ¼ 0:06 hMpc�1. The black solid line shows the tree-level prediction for the matter bispectrum,
the red solid line has b1 only and dashed and dashed-dotted lines are adding b2 and bs2 . The list of bias parameters behind the
theoretical cross bispectra in the legend indicates the parameters that were considered for the corresponding curve. The error bars are
estimated from the box-to-box variance of the bispectrum measurement. Note that this is only a small fraction of the total bispectrum
information that our simulations contain, and the log scale also deemphasizes what are actually significant differences between the fit
with and without s2 (these will be highlighted later).

EVIDENCE FOR QUADRATIC TIDAL TENSOR BIAS FROM . . . PHYSICAL REVIEW D 86, 083540 (2012)

083540-7



ha; bi	 :¼ X
	

að	Þbð	Þ
� �M2ð	Þ ; (46)

where for að	Þ, bð	Þ we have hað	Þ;Mðk1; k2; 	Þi ¼
hað	Þ; �Mð	Þi	 and hað	Þ; bð	Þi ¼ hað	Þ; bð	Þi	.

The bias parameter b1 is estimated from the halo-
matter cross power spectrum on large scales and low k,
where loop corrections are believed to be unimportant.
Furthermore there is no shot noise contamination in the
cross power spectrum. We use b1 measured from the halo-
matter cross power spectrum and use it for the bispectrum
calculation, because it has a small statistical error. There is
a correlation between the b1 used for the matter bispectrum
subtraction and the inferred b2 and bs2 parameters. The
matter bispectrum and the residual considered for our
reduced bispectrum should in principle not be degenerate,
since the matter bispectrum has additional L1ð	Þ terms and
since the coefficients of the three Legendre polynomials in
the matter bispectrum depend on the ratio k2=k1. However,
applying our fitting method to the matter bispectrum we
obtain b2 and bs2 constraints of order unity. Thus an error
of �b1 in the first-order bias leads to a shift of roughly

��b1 for both b2 and bs2 . The statistical errors on the
second-order bias coefficients are roughly a factor of 5
larger than the statistical error on the corresponding first-
order bias, such that this effect is not very important from
the statistical point of view. We would only need to worry
about it if the first-order bias coefficients in the power
spectrum and bispectrum differ. While this may at first
glance seem impossible (and it probably is), the higher-
order loop terms renormalize b1 [11] and to our knowledge
it has not been explicitly shown that the renormalization
works the sameway in bispectrum as in power spectrum. In
this paper, we will assume that the two are the same.
The errors on the estimated parameters are calculated

from the expected deviation in the 
2. For a n-component
parameter vector a the 
2 in the vicinity of the best-fit
parameter set â can be described as


2ðaÞ ¼ 
2ðâÞ þ 1

2

X
i;j

ðai � âiÞ @2
2

@ai@aj
ðaj � âjÞ; (47)

where �
2 ¼ j
2ðaÞ � 
2ðâÞj ¼ 1 corresponds to one
sigma errors on the parameters. Thus

FIG. 2 (color online). Convergence of the measured b2 (upper panels) and bs2 (lower panels) parameters with increasing maximum k
mode for the four mass bins. The horizontal red and blue lines show the constraints obtained for our fiducial kmax ¼ 0:07 hMpc�1. The
pivot data point is highlighted by the gray shaded region.
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�b2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=hL0; L0i

q
; �bs2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=hL2; L2i

q
: (48)

We compared these errors with the standard deviation of
the bias constraints obtained from the single realizations
and found good agreement.

IV. RESULTS

Figure 1 shows the matter bispectrum and matter-matter-
halo bispectra for our four mass bins for one configuration
of k1 ¼ 0:052 hMpc�1, k2 ¼ 0:06 hMpc�1 as a function
of the opening angle 	. The matter bispectrum is in quite
good agreement with the theoretical prediction in Eq. (32).
There is some small tension for positive 	, but this should
not be a problem for our study since our bias constraints
are not relying on this theoretical modeling since we are
subtracting out the matter bispectrum measured from the
simulations.

We also plot the matter-matter-halo cross bispectrum
and the theoretical model of Eq. (7). To visualize the effect
of the contributions of the bias parameters, we plot the

model with vanishing b2 and bs2 , with vanishing bs2 and
the full model. The nonvanishing bias parameters for the
theory lines were chosen according to our best-fit model
discussed below.While the k values were chosen quite high
to reduce the errors, there is still too much scatter in the
data points to decide whether the model with and without
bs2 gives a better description of the data. This motivated the
careful combination of all the information available by
weighting the modes accordingly, as described above.
Our main reason to study lowest order nonlinear biasing

in the bispectrumwas that these terms are the leading-order
terms on large scales. As one includes higher momenta,
loop corrections gain importance and need to be modeled
accordingly. To assess the importance of higher-order cor-
rections and to show the convergence of our fitting proce-
dure, we perform our parameter estimation as a function of
the maximum wave number and show the results in Fig. 2.
The error bars clearly shrink as we go to higher k and the
inferred bias parameters are almost always consistent with
our fiducial result shown by the horizontal lines. In these
plots we also show the scale up to which we have a

FIG. 3 (color online). Residual shape dependence of the halo bispectrum for our reduced bispectrum defined in Eq. (35). The blue
data points with error bars show the result of the combined reduced bispectrum defined in Eq. (37) including all the configurations up
to kmax ¼ 0:07 hMpc�1. The horizontal dashed line shows the model including b2 only, and the solid blue line shows the model
including both b2 and bs2 .
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complete measurement of all the modes by the vertical
dashed line and highlight the kmax that we use for the
primary reported parameter values by the vertical shaded
region.

Figure 3 shows our reduced bispectrum �Mð	Þ defined in
Eq. (37) as a function of opening angle	 and the combined
errors according to Eq. (38). We overplot the b2-only
model and the model including both b2 and bs2 . These
plots show clear evidence for the presence of the tidal
term except for the lowest mass bin, for which the
b2-only model gives an acceptable description of the
angular dependence.

In Table I, we give the best-fit values of the first- and
second-order bias parameters for our four halo mass
bins obtained considering all the modes up to kmax ¼
0:07 hMpc�1. Figure 4 shows the bias parameters as a
function of mass together with the corresponding
predictions of the spherical collapse model. Note that we

are plotting 2b̂2, which corresponds to the second-order

Eulerian bias [see Eq. (26)]. The b̂1 measurements from the
halo-matter cross power spectrum are in good agreement

with the theoretical predictions. The measured b̂s2 are
slightly lower than the theoretical predictions for the two
central mass bins, but the trend with mass is well repro-

duced by the theory. The b̂2 measurements are less well
reproduced by the theoretical bias function, especially
mass bins II and III which are well below the theory. The
theoretical predictions for b1 and bs2 are given by first
derivatives of the mass function and do not reproduce the
data perfectly. Thus one would naturally expect some
corrections for the second derivatives. The disagreement
could also be an indication for a failure of the spherical
collapse picture at second order. Specifically, the fact that
the predicted bs2 disagrees with the measurements suggests

that Lagrangian bðLÞ
s2

is not zero, as predicted by the ellip-

soidal collapse model [26–29].
The right panel of Fig. 4 shows the ratio of halo-matter

and matter-matter power spectra used for the inference of

the first-order bias. We are fitting for b̂1 on large scales to
avoid the regime where the nonlinear corrections become
important. These corrections are affecting the highest mass
bin quite strongly already starting at k � 0:05 hMpc�1. The
corrections are stronger for higher mass objects, in accor-
dancewith the general mass dependence of the second-order
bias parameters derived here, but a full discussion of all the
terms entering at one-loop level must also include the third-
order terms, which is beyond the scope of this paper.
As in the power spectrum analysis, the bispectrum is

increasingly affected by loop corrections as one increases
the maximum momentum in the problem. The relevant
quantity here is the largest external momentum involved

TABLE I. Best-fit bias parameters, their errors and mean
mass for our four mass bins. The bias parameters are compared
to the theoretical bias functions in Fig. 4. The first-order bias b1
is extracted from the halo-matter cross power spectrum and
the second-order bias parameters are inferred from the cross
bispectrum.

b1 �b1 b2 �b2 bs2 �bs2 M½h�1M��
I 1.142 0.002 �0:37 0.01 �0:07 0.03 9:68� 1012

II 1.409 0.002 �0:42 0.01 �0:21 0.04 2:90� 1013

III 1.954 0.004 �0:12 0.02 �0:38 0.06 8:58� 1013

IV 2.889 0.010 1:25 0.03 �0:63 0.11 2:48� 1014

FIG. 4 (color online). Left panel: Mass dependence of the bias parameters and theoretical predictions. The points with error bars are
our best-fit parameters for b̂1, 2b̂2 and b̂s2 . The numerical values of the data points are given in Table I. The curves show the
corresponding theoretical bias functions as calculated using the relations in Sec. II E. The measurements for b̂1 are in good agreement
with the theory; there is a clear deviation for the b̂s2 and b̂2 measurement for the two central mass bins. Right panel: Ratio of the
simulation halo matter and matter power spectra P̂hmðkÞ=P̂mmðkÞ and first-order bias parameters inferred using the data points
highlighted by the shaded region.
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and thus one should make sure that all the k’s are in the
perturbative regime and can be well described by the order
of perturbation theory considered. Our study focuses on the
large scale bispectrum, where a tree-level treatment should
be sufficiently accurate and we have shown that the con-
straints are both stable and consistent as we increase kmax

up to 0:1 hMpc�1. Extensions of the perturbative treatment
further into the nonlinear regime might be possible based
on clipping techniques [37].

V. DISCUSSION AND OUTLOOK

In this paper, we presented a dynamical motivation for
the second-order tidal tensor bias term proposed in
Ref. [5], showing that it is naturally generated by gravity
even if absent in the initial conditions. We performed a
measurement of this bias for dark matter halos in simula-
tions, showing clear evidence for the tidal tensor bias,
increasing with the halo mass. Our results are consistent
with the picture in which a significant part of the tidal tensor
bias is generated by the gravitational evolution, but we also
find some evidence that it is present already in the initial
conditions. While the functional form of the additional
terms agrees with the discussion in Ref. [5] the dynamical
derivation can supplement it by a prediction of the time
dependence and gives at least qualitative understanding
about the mass dependence of the bias parameters.

Our analysis also includes second-order density bias b2,
which we find to disagree with the theoretical predictions
at a quantitative level, even if it qualitatively follows the
predictions that it should be negative at low mass and
increase with halo mass. The disagreement calls for a
reinvestigation and improvement of the theoretical bias
function or measurement of the second-order bias parame-
ters in the initial conditions, where the Lagrangian bias
parameters are postulated to describe the density field of
the protohalos. The deviation between the theoretical and
measured b2 parameters does not necessarily mean that the
Lagrangian picture is wrong, but rather that the bias func-
tions derived from the spherical collapse model and the
mass function might not be sufficiently accurate.

Because these two terms are quadratic, they contribute a
loop correction to the power spectrum, so the standard
linear bias picture still applies on very large scales, even
if they contribute at the leading order to the bispectrum. If
we want to understand the halo power spectrum on smaller
scales, then the loop corrections caused by these quadratic
terms become important. However, a consistent calculation
of the halo correlation function or power spectrum at one-
loop level requires a model of the halo density field up to
third order, including all the nonlocal terms [5]. This gives
rise to several other terms that contribute to the power
spectrum at the same order, each with a prefactor that
may depend on the halo mass. A clean extraction of these
nonlinear bias coefficients from the power spectrum alone
is very difficult and instead higher-order correlations are

needed to separate these terms. This paper is a first step in
extracting the quadratic coupling terms from the bispec-
trum. The next step in this program is to extract the cubic-
order terms from the trispectrum: such an analysis will be
presented elsewhere. For this reason a discussion of the
implications on the two-point function based on our results
for the quadratic couplings cannot be complete. Still,
there are some obvious implications of our results. One
is that the nonlocal tidal tensor bias contributions must be
included in the analysis of galaxy power spectrum and
ignoring them may lead to incorrect conclusions. This
effect is specially relevant for the broadband power but
will also have an effect on the position of the baryonic
acoustic oscillations (BAO), just like the quadratic density
term does if b2 � 0 [38,39]. Our calculation in Appendix B
shows that this effect is subdominant, with about a factor of
4 lower prefactor in front of bs2 relative to the b2 term,
suggesting it will not strongly affect the measurement of
the true BAO scale.
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APPENDIX A: MATTER DENSITY IN LPT UP TO
SECOND ORDER

In the above derivation of the final halo density field
arising from a local bias in Lagrangian space we used the
Lagrangian displacement field and the second-order matter
density in SPT. In Ref. [40], it is shown that after expand-
ing the exponential damping prefactor, the one-loop power
spectra in LPTand SPTare identical. This Appendix shows
that this equivalence is true also in terms of the fields if one
expands the LPT expressions up to the desired order in the
density field. Without these expansions, LPTwas shown to
contain a nontrivial resummation of SPT terms.
For nth order displacement field one has [40]

ðnÞcðk;�Þ ¼ � i

n!

Z d3p1

ð2�Þ3 . . .
Z d3pn

ð2�Þ3
ðnÞLðp1; . . . ;pnÞ

��ðp1;�Þ . . .�ðpn;�Þð2�Þ3�ðDÞ
�
k�X

pi

�
;

(A1)
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with the kernels

ð1ÞLðpÞ ¼ p

p2
;

ð2ÞLðp1;p2Þ ¼ 3

7

p1 þ p2

jp1 þ p2j2
�
1�

�
p1 � p2

p1p2

�
2
�
:

(A2)

The density field in k space can be obtained upon Fourier
transforming the Eulerian field in configuration space and
using the Jacobian mapping ½1þ �ðx; �Þ�d3x ¼ d3q:

�ðk; �Þ ¼
Z

d3q exp½ik � q�fexp½ik � cðq; �Þ� � 1g:
(A3)

We can now expand the exponential up to second order in
the displacement field

�ðk; �Þ �
Z

d3q exp½ik � q�
�
ik � cðq; �Þ

� 1

2
ðk � cðq; �ÞÞ2

�
(A4)

¼ ik � ð1Þcðk; �Þ þ ik � ð2Þcðk; �Þ

þ 1

2

Z d3k0

ð2�Þ3
k � k0
ðk0Þ2

k � ðk� k0Þ
jk� k0j2

� ð1Þ�ðk0; �Þð1Þ�ðk� k0; �Þ (A5)

¼ ð1Þ�ðk; �Þ þ
Z d3k0

ð2�Þ3
� F2ðk0; k� k0Þð1Þ�ðk0; �Þð1Þ�ðk� k0; �Þ:

(A6)

Thus, expanding the exponential we see that LPT and SPT
agree at second order in the density field.

APPENDIX B: ON SHIFTS IN THE BAO

As shown recently in Ref. [39] and discussed before in
Ref. [41], second-order bias terms lead to a distinct shift in
the position of the BAO feature. In this Appendix, we
generalize their calculation to account also for the shift
due to the tidal tensor bias.

Let us start by generalizing the mode coupling kernel
to biased tracers. The structure of the quadratic and
tidal tensor terms in the second-order halo density field
in Eq. (14) suggests the following functional form:

F2;hðq1; q2Þ ¼ b1F2ðq1; q2Þ þ b2 þ bs2S2ðq1; q2Þ: (B1)

With this definition, the second-order halo density field can
be written as

ð2Þ�hðkÞ ¼
Z d3q1

ð2�Þ3
Z d3q2

ð2�Þ3
�F2;hðq1;q2Þð1Þ�ðq1Þð1Þ�ðq2Þ�ðDÞðk� q1 � q2Þ;

(B2)

and the mode coupling power spectrum is given by

Phh;22ðkÞ ¼
Z d3q1

ð2�Þ3
Z d3q2

ð2�Þ3 F
2
2;hðq1; q2ÞPðq1Þ

� Pðq2Þ�ðDÞðk� q1 � q2Þ: (B3)

When considering the full one-loop halo power spectrum,
there is also a contribution from the coupling between
linear and cubic halo density field, the term corresponding
to the propagatorP13ðkÞ in the matter power spectrum. This
term does not contribute to the shift of the BAO and can
thus be neglected for our arguments here, except for a
cancellation to be discussed below.
For the BAO shift, we are interested in the effect of long

wavelength modes (q � �) on the correlation function
around the BAO scale, where 1=� is a cutoff wavelength
exceeding the scales of interest. Thus, we need to consider
the high-k limit of the above integral, corresponding to
q1 � k and q2 � k:

Phh;22ðkÞ �k
�
�
569

735
b21 þ

52

21
b1b2 þ 4b22

� 272

315
b1bs2 þ

16

45
b2
s2

�
PðkÞ�2

l þ k2PðkÞ�2
v;l

þ
�
47

105
b21 þ

4

3
b1b2 þ 16

45
b1bs2

�
kP0ðkÞ�2

l

þ 1

10
b21k

2P00ðkÞ�2
l ; (B4)

where �2
l ¼

R
�
0

d3q
ð2�Þ3 PðqÞ is the variance of the long wave-

length modes and �2
v;l ¼

R
�
0

d3q
ð2�Þ3 PðqÞ=3q2 is the velocity

dispersion of the long wavelength displacement field. The
k2PðkÞ�2

v;l term is canceled by the propagator Phh;13 in

the high-k regime and can thus be neglected in the fol-
lowing. Using the following two Fourier transform (FT)
relations between the correlation function and power spec-
trum, FT½kP0ðkÞ� ¼ �r�0ðrÞ � 3�ðrÞ and FT½k2P00ðkÞ� ¼
r2�00ðrÞ þ 8r�0ðrÞ þ 12�ðrÞ, we obtain for the correlation
function in the presence of a long wavelength mode

�hh;sðrÞ � b21�ðrÞ þ
�
356

147
b21 þ

80

21
b1b2 � 32

63
b1bs2

þ 4b22 þ
16

45
b2
s2

�
�ðrÞ�2

l þ
�
131

105
b21 þ

4

3
b1b2

þ 16

45
b1bs2

�
r�0ðrÞ�2

l þ
1

10
b21r

2�00ðrÞ: (B5)

Here we have added in the linear correlation function of the
halos, b21�ðrÞ.
Finally, we have for the shift term proportional to r�0ðrÞ:

131

105
b21�

2
l

�
1þ 140

131

b2
b1

þ 112

393

bs2

b1

�
r�0ðrÞ: (B6)

Let us discuss the relevance of the shift terms based on the
mass dependence of the bias parameters depicted in Fig. 4.
For halos with M< 1014 h�1M� the bs2 effect has the
same sign as the b2 effect, whereas they cancel partially
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for higher mass objects. On the other hand bs2 is para-
metrically smaller than b2 for most of the considered mass
range and even if the bias parameters were of the same
magnitude, the prefactors in Eq. (B6) lead to a factor of 4

stronger contribution from the quadratic bias term. Thus,
we conclude that the tidal tensor term only leads to a small
shift correction on top of the already small correction due
to quadratic bias.
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