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Facioscapulohumeral muscular dystrophy (FSHD) is an
autosomal dominant myopathy, clinically characterized
by asymmetric weakness of muscles in the face,
shoulder girdle and upper arm. Deletion of an integral
number of 3.3 kb repeated units within a highly
polymorphic EcoRl fragment at chromosome 4¢35,
generating a relatively short EcoRl fragment (<35 kb),
has been shown to cause FSHD1. Probe p13E-11 detects
these short fragments in FSHD1 patients, and has
therefore been used for diagnostic DNA analysis.
However, the reliability of this analysis has been
hampered by cross-hybridization of pi13E-11 to
chromosome 10qg26-linked EcoRl fragments of com-
parable size, which also contain a variable number of 3.3
kb repeated units. Recently, a Binl restriction site was
identified within each of the repeated units derived from
chromosome 10g26, which enables differentiation of the
two polymorphic p13E-11 loci in most cases without
haplotype analysis. Remarkably, applying the differential
analysis to screen DNA of 160 Dutch cases referred to us
for FSHD1 diagnosis, we obtained evidence for
subtelomeric exchange of 3.3 kb repeated units between
chromosomes 435 and 10g26 in affected and
unaffected individuals. Subsequently, analysis of S0
unrelated control samples indicated such exchange
between chromosomes 4¢35 and 10¢26 in at least 20%
of the population. These subtelomeric rearrangements
have generated a novel interchromosomal polymorph-
ism, which has implications for the specificity and
sensitivity of the differential restriction analysis for
diagnostic purposes. Moreover, the high frequency of

PR

the interchromosomal exchanges of 3.3 kb repeated
units suggests that they probably do not contain (part of)
the FSHD1 gene, and supports position effect
variegation as the most likely mechanism for FSHD1.

INTRODUCTION

Facioscapulohumeral muscular dystrophy (FSHD) is clinically
characterized by progressive weakness of the facial, shoulder-
oirdle and upper arm muscles, and in some cases, also the
abdominal, foot extensor and pelvic girdle muscles (1,2). The
autosomal dominant inherited myopathy shows a variable
phenotypic expression with a high penetrance ot 95% at the age
of 20, and an estimated prevalence of 1 in 20 000 (1,3).

Linkage analysis assigned the major FSHD locus (FSHD1) to
chromosome 4q35 (4,5) distal to D4S139 (6-8). However,
genetic heterogeneity was demonstrated for a small number of
FSHD families, not linked to 49335 (9—-12). In patients, the FSHD 1
locus on chromosome 4q35 is characterized by a DNA
rearrangement within a highly polymorphic EcoRI fragment
detectable using probe pl3E-11 (D4F104S1) (13). In patients,
these FSHD 1-associated rearrangements generate EcoRI frag-
ments which are shorter than 35 kb (13—17), while the size of the
4q35-linked EcoRI fragments in unaffected individuals varies
from 35 to 300 kb (13). Analysis of the p13E-11 EcoRI fragments
of four unrelated FSHD1 patients and controls revealed that the
polymorphic fragment contains a variable number of 3.3 kb
repeated units (D474 ), a critical number of which is deleted in
patients (18).

As short EcoRI fragments (<35 kb) linked to 4q35 are
associated with FSHDI1, probe pl3E-11 has been used for
diagnostic DNA analysis (17). However, a straightforward
analysis 18 hampered by cross-hybridization of pli13E-11 to
another polymorphic locus which has recently been assigned to
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chromosome 10q26 (12,19). This locus is similarly characterized
by EcoRI fragments containing a variable number of 3.3 kb
repeated units. The size of these chromosome 10 fragments can
be up to 300 kb, but also less than 35 kb in 10% of the population
(12,17). Hence, short EcoRI fragments derived from 10g26 may
incorrectly be interpreted as chromosome 4q35 deletion trag-
ments, Haplotype analysis in FSHD families using chromosome
4935 and 10g26 markers had to be performed to determine the
chromosomal origin of a short (<35 kb) p13E-11 fragment (17).
However, due to the presence of small families and isolated cases,
only about 50% of short p1 3E-11 fragments could unambiguously
be assigned to chromosome 4q35, and subsequently used for
diagnostic purposes (17).

Recently, comparative sequence analysis of 3.3 kb repeated
units derived from chromosomes 4q35 and 10q26 revealed the
specific presence of a Blnl site within each repeated unit from
chromosome 10q26. As this restriction site 1s not present in the
repeated units from chromosome 4q35, differential restriction
analysis using Binl enabled direct differentiation of the chromo-
somal EcoRI fragments without haplotype analysis (19). By
double digestion of genomic DNA with EcoRI and Binl (or
Avrll), the pl3E-11 EcoRI fragments from 4q35 are reduced in
size by 3 kb, while the EcoRI fragments derived from chromo-
some 10g26 are fragmented completely. This differential restric-
tion analysis enabled presymptomatic and prenatal diagnosis to
be performed with an improved efficiency and reliability.

Here, we report the screening of 160 independent Dutch
familial or isolated cases referred to us for FSHDI1 diagnhosis,
using the differential restriction analysis. In most cases an
unequivocal diagnosis was achieved. Remarkably, a few
individuals appeared to be ‘monosomic’ or ‘trisomic’ for the
4q35-linked p13E-11 fragment. Further analysis of these cases
suggested the occurrence of subtelomeric exchanges of 3.3 kb
tandemly repeated units between chromosomes 4935 and 10q26,
generating hybrid EcoRI fragments. As interchromosomal
exchanges would have implications for the specificity and
sensitivity of the diagnostic DNA testing, the frequency of such
events 1n the population was determined by screening 50
unrelated control DNA samples.

RESULTS

Diagnostic application of differential restriction
analysis

EcoRI and EcoRI/Binl digested DNA of FSHD patients and
family members was analyzed by conventional agarose gel
electrophoresis and subsequent Southern blot hybridization using
probe pl3E-11. To illustrate the potency of the differential
restriction analysis for diagnostic purposes, the results of family
87 (17) are shown in Figure 1. After EcoRI digestion only, probe
pl13E-11 detected a fragment of approximately 30 kb in affected
as well as in some unaffected individuals. Haplotype analysis
using chromosome 4q35 and 10q26 markers revealed that the
30 kb p13E-11 EcoRI fragment does not cosegregate with either
the chromosome 4q35 or 10g26 haplotype (17) (Fig. 1).
However, recently, differential restriction analysis using EcoRI
and Binl indicated heterogeneity of the 30 kb EcoRI fragments.
In the affected individuals, the 30 kb EcoRI fragment was reduced
n size by 3 kb indicating a chromosome 4 origin (Fig. 1,
haplotype “A’), whereas in the unaffected individuals the 30 kb

EcoRl fragment was completely fragmented, revealing a
chromosome 10 origin. The chromosomal origin of the 30 kb
EcoRI fragments as suggested by the differential restriction
analysis, was confirmed by haplotype analysis performed previ-
ously (17). Accordingly, an unequivocal diagnosis was achieved
in this family.

In total, 160 independent Dutch familial or i1solated FSHD
index cases were screened using the differential restriction
analysis. In 46 of 160 cases long (>33 kb) EcoRI fragments were
observed only. Almost all of these 46 cases were clinically
unclear, and refeirred for exclusion of FSHDI. So far, no
unambiguously diagnosed FSHD patient without short EcoRI
fragment was observed, which might carry a mutation in the
FSHD1 gene itself, or be linked to a second FSHD locus. In 114
of 160 cases, EcoRI digestion revealed a short (<35 kb) pl13E-11
fragment. By double digestion with EcoRI and Blnl, this short
fragment was found to originate from chromosome 4 in 102 of
114 cases, indicating a high probability of FSHD!. Short EcoRI
fragments completely fragmented by Binl digestion, were
detected in 12 of 114 individuals. Accordingly, these tragments
were assumed to originate from chromosome 10q26, suggesting
a lowered probability of FSHD!. However, at least thice
4q35-linked familial and three isolated cases carrying such shott,
apparently chromosome 10q26 derived, EcoRI fragments, were
clinically unambiguously diagnosed with FSHD (GWP). Al-
though differential restriction analysis and clinical diagnosis
implied that these cases either contain a mutation in the FSHDI
gene itself or are linked (o 4 second FSHD locus, further analysis
suggested another explanation (see below).

Subtelomeric exchange of repeated units

In applying the differential restriction analysis we observed
several FSHD index cases and unaffected spouses which
appeared to be either ‘monosomic’ or ‘trisomic’ for the p13E-I|
fragment on chromosome 4q35. To demonstrate such aberrant
Binl restriction patterns, a very interesting family (family 28, Fig.
2a) was selected. In this tamily, a 25 kb EcoRI fragment was
detected which cosegregates with FSHD1 and which was reduced
in size by 3 kb after Binl digestion (Fig. 2b). Therefore, a clear
diagnosis was achieved. Remarkably, the father (individual 28.1)
who 1S asymptomatic, also carries a second short Blnl-resistant
EcoRI fragment (22 kb). As the father is transmitting both his
chromosomes 4 and both his chromosomes 10 whereas the 22 kb
fragment is not inherited by any of his children (Fig. 2a), he is
considered somatic mosaic for this 22 kb fragment. In addition,
the father strikingly showed two other Binl-resistant, 4q35-like
fragments. In his offspring, three Blnl-resistant EcoRI fragments
were also detected 1n sons 28.4 and 28.5, while one Blnl-resistant
LcoRI fragment only was observed in the youngest son 28.6.
Moreover, the unaffected mother (individual 28.2) also shows
one Binl-resistant EcoRI fragment only. Pulsed-field gel electro-
phoresis was performed (Fig. 2b), which confirmed the apparent
‘mono- and trisomy’ observed by conventional gel electrophore-
sis. We hypothesized that an exchange of 3.3 kb repeated units
between chromosomes 4q35 and 10926 might have occurred,
generating hybrid p13E-11 fragments (Fig. 3). In cases 28.1, 28.4
and 28.5, one of the chromosome 10q26 fragments contain
repeated units without Blnl sites, probably derived from chromo-
some 4q35. In cases 28.2 and 28.6 one of the chromosome 4435
fragments contains 10q26-like repeated units including Blxl sites.
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Figure 3. Model to explain the aberrant Binl restriction m'ﬁt erms observed after
ditterential restriction analysis, which sugeest some cases to be ‘monosomic’
or ‘trisomic’ for the chromosome 4¢35 EcoRI fragment. On top, the
subtelomernic regions of chromosomes 435 (filled bars) mm 10g26 (open bars)
and potential subtelomenc exchanges are daﬁ:pmmi Below, normal and hvbnd
and long or short EcoRI fragments denved from chromosome 4g35 or 10gl6,
are shown. As the origin of the telomeric regions of the hybrid fragments might
be either chromosome 435 or 10g26, they are indicated by grey bars. Note that
short, 4g35-linked, hybrid EcoRI fragments containing Blnl-sensitive repeated
units are also diagnostce for FSHD 1, but might lead to misdiagnosis when based
on differential restriction analysis only.

Binl suggesting a chromosome 10¢26 origin, should
maiyzed by pulsed-tield gel M@mﬂph@ resis and haplotype
analysis to confirm the chromosomal origin of the short tfragment,
nd to prevent misdiagnosis.
The molecular mechanism behind the subtelomeric exchanges
between chromosomes 4g35 and [0g26 remains to be elucidated.
Chromosomal rearrangements occur more often in (subjtelomer-

ic reglons than 1n other parts of the genome. Translocations of

chromosome ends have recently been reported as the cause for
idiopathic mental retardation ayndmm (21), o-thalassemia
mental retardation syndmmﬁ (22), Wolt—Hirschhorn syndrome
(23). MH er—Dieker syndrome (24) and cri-du-chat syndrome
(25). However, 1in this paper we report an interchromosomai

polymorphism without phenotype, which 1s to our knowledge a

remarkable novelty in human genetics. Owing to high homology
between the chromosome 4g35 and 10g26 subtelomeric regions,
it 1s plausible that there 1s an mterchromosomal “cross-talk
during meiosis. Two types of chromosomal rearrangements
might have generated the *
translocations including the particular telomeres, or gene conver-
sions limited to the repeated units only. As the respective
telomeric regions of chromosomes 4q and 10g contamn non-
unique

addition, in most cases analyzed the pl3E-11 EcoRI tragments

> exchange of 3.3 kb repeated units: either

sequences only, it will be difficult to determine whether
the telomeres are involved in the interchromosomal exchanges. In
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revealed Binl restr ”%‘ﬁ:ﬁ{m patierns as expected; either completely
émgim nted, or r in size by 3 kb. Therefore, probably
) [ras >peated units have been exchanged, suggest-
ing that in case of %ﬁ%ﬂmﬁ,m translocations iﬁhf‘i p%‘m;m'm;jﬂ
breakpomnt might even be pm;ﬁﬂmm (ot I units.
Hmwww In rare cases the %“ COl mmd lo m

Fi,mil%
recurrent event

—

reduced in size by more m“‘ﬁ
vh that hybrid p13E-11 EcoRI frag
of Blnl-resistant and Bln Efm sensitive repe M@d u ,m mw
whether the hybrid ZcoRI fragments are due to a
of interchromosomal exchange in the population, or part of a
polymorphism which i1s due to one unique interchromosomal
exchange event in evolution, remains to be elucidated.
independent of the mol ecular mec chanism, the interchromoso-
mal exchanges of repeated units have implications for the
etiology of FSHD 1; a short 4g35-tinked EcoRlI tragment will give
FSHDI, trrespective of origin of the repeated units. A de novo
mﬁhmg@ generating a short 4g35-linked fragment containing
Blnl-sensitive mpmmd units from ﬁ;“:hmmmum 1O “‘:{3’6 will cause
FSHD! 1n the same way as a chromosome 4q35 intra-fragment
deletion. However. '&,m *f:r@ﬁu@m}f’ of SUCh an event 1s bound to be
low given the low percentage ( «z:f% ; of short chromosome
10g26-hinked LcoRI fragments (12,17). Interchromosomal e
changes of the 3.3 kb repeated units b tweeﬂ chromosomes 4@135
and 10q26 with a rather hwh frequency (20%) suggest that 1t 1s
unlikely that the FSHDI1 gene (partially) resides within the
repeated untts at chromosome 4g35. Moreover, an ltalian family
was reported recently, in which an abnormal chromosome 4, a
derivative of an unbalanced translocation of 4g35 with an
acrocentric chromosome, segregates through three generations in
phenotypically normal individuals (26). The resulting monosomy
of the 4g35 region n unaffected ndividuals supports the
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