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(Unité Mixte de Recherche du CNRS et de l’Ecole Normale Supérieure,
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We provide a nontrivial test of supersymmetry in the random-field Ising model at five spatial
dimensions, by means of extensive zero-temperature numerical simulations. Indeed, supersymmetry
relates correlation functions in aD-dimensional disordered system with some other correlation functions in
aD − 2 clean system. We first show how to check these relationships in a finite-size scaling calculation and
then perform a high-accuracy test. While the supersymmetric predictions are satisfied even to our high
accuracy at D ¼ 5, they fail to describe our results at D ¼ 4.
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Introduction.—The suggestion [1] that the random-field
Ising model (RFIM) at the critical point [2–4] obeys
supersymmetry came as a major surprise in theoretical
physics. One of the implications of supersymmetry is
dimensional reduction [5,6]: The critical exponents of a
disordered system at space dimensionD and those of a pure
(i.e., nondisordered) system at dimension D − 2 coincide.
Let us remark that dimensional reduction is a consequence
of [1,7], but not necessarily equivalent to, supersymmetry.
However, in spite of its power and elegance, it was soon

clear that the applicability of supersymmetry is problem-
atic. The original argument [1] was based on the study of
the solutions of the stochastic Landau-Ginsburg equations
in the presence of a random magnetic field. Unfortunately,
the crucial assumption of uniqueness of the solution of
these equations [1] (which holds at all orders in the
perturbation theory) fails beyond the perturbation theory.
In fact, it was immediately clear that in the RFIM the
predicted dimensional reduction is absent at low dimen-
sions (but not for branched polymers [8], where dimen-
sional reduction has been mathematically proven [9–11]):
The RFIM has a ferromagnetic phase at D ¼ 3 [12,13],
while the D ¼ 1 pure Ising model has no transition.
Nonperturbative effects (e.g., bound states in replica space
[14–17]) are obviously important in D ¼ 3. Yet, their
relevance for D > 3 (especially upon approaching the
presumed upper critical dimension Du ¼ 6) is unclear. If
we consider the case of D ¼ 6 − ϵ, different scenarios are
possible, as listed below.

(1) Nonperturbative effects could destroy supersym-
metry at a finite order in the ϵ expansion or, even worse,
at D ¼ 6.
(2) Violations of supersymmetry might be exponentially

small ∼ expð−A=ϵÞ (see, e.g., Refs. [18,19]; the computa-
tion of A is still an unsolved problem).
(3) Supersymmetry has been suggested to be exact but

only for D > Dint ≈ 5.1 [20–22]. For D < Dint, the super-
symmetric fixed point becomes unstable with respect to
nonsupersymmetric perturbations.
In order to discriminate among these three scenarios, we

need accurate simulations aimed to test some of the many
predictions of supersymmetry. In the past few years, the
development of a powerful panoply of simulation and
statistical analysis methods [23–25] set the basis for a fresh
revision of the problem. Great emphasis was made on the
anomalous dimensions η and η̄ related to the decay of the
connected and disconnected correlations functions, respec-
tively [see Eq. (2)]. Supersymmetry predicts η ¼ η̄ (more-
over, the D-dimensional RFIM η ¼ η̄ are predicted to be
equal to the anomalous dimension of the pure Ising model
in dimension D − 2). Extensive numerical simulations at a
zero temperature showed that these relations fail at D ¼ 3
[23] and D ¼ 4 [25], but they are valid with good accuracy
at D ¼ 5 [26]. These numerical results suggest that
supersymmetry may be really at play at D ¼ 5. We should
mention as well a recent work using the conformal boostrap
[27], where it was found that dimensional reduction holds
in the RFIM for D ≥ 5.
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The predictions of supersymmetry go further beyond
those regarding the critical exponents: They involve both
finite volume effects and high-order correlations functions.
Here, we will show that several nontrivial supersymmetry
predictions hold at D ¼ 5 to a very high numerical
accuracy. This is the first direct confirmation that super-
symmetry holds in the RFIM at high dimensions. As a
consistency check, we show that the same relations are
definitively not satisfied at D ¼ 4.
Simulation setup.—The Hamiltonian of the RFIM is

H ¼ −J
X
hxyi

SxSy −
X
x

hxSx; ð1Þ

with the spins Sx ¼ �1 on a hypercubic lattice in D
dimensions with nearest-neighbor ferromagnetic inter-
actions and hx independent random magnetic fields with
zero mean and variance σ2. Given our previous universality
confirmations [28], we have restricted ourselves to normal-
distributed hx. We work directly at a zero temperature
[29–33], because the relevant fixed point of the model lies
there [34–36]. The system has a ferromagnetic phase at
small σ, that, upon increasing the disorder, becomes para-
magnetic at the critical point σc. Here, we work directly at
σc, namely, at 6.02395 ≈ σcðD ¼ 5Þ [26] and at 4.17749 ≈
σcðD ¼ 4Þ [25].
We consider two correlation functions, namely, the

connected and disconnected propagators, CðconÞ
xy and CðdisÞ

xy ,
respectively:

CðconÞ
xy ≡ ∂hSxi

∂hy ; CðdisÞ
xy ≡ hSxihSyi; ð2Þ

where the h� � �i are thermal mean values as computed for a
given realization, a sample, of the random fields fhxg. An
overline refers to the average over the samples.
For each of these two propagators, we scrutinize the

second-moment correlation lengths [37], as adapted to our
geometrical setting. In particular, our chosen geometry is an
elongated hypercube with periodic boundary conditions
and linear dimensions Lx¼Ly¼Lz¼L and Lt ¼ Lu ¼ RL
(at D ¼ 4, we chose Lx ¼ Ly ¼ L and Lz ¼ Lt ¼ RL)
with aspect ratio R ≥ 1. In fact, the supersymmetric
identities that we will check in the critical region hold in
the limit R → ∞, which should be taken before the
standard thermodynamic limit.
We simulated lattice sizes in the range L¼4–14 at D¼5

(L ¼ 4–28 at D ¼ 4) and aspect ratios 1 ≤ R ≤ 5.
Additional simulations for R ¼ 10 and L ≤ 10 were
performed at both 5D and 4D for consistency reasons.
For each pair of (L, R) values, we computed ground states
for 105 disorder samples. Our simulations and analysis
closely follows the methodology outlined in our previous

works at D ¼ 3 and 4 [23,25] (for full technical details,
see Ref. [24]).
Supersymmetric predictions.—Let us consider a point in

the 5D lattice, r ¼ ðx;uÞ, where x ¼ ðx; y; zÞ refers to the
first three Cartesian coordinates, while u ¼ ðt; uÞ. In a
similar vein, for the 4D case, we split r ¼ ðx; y; z; tÞ ¼
ðx;uÞ as x ¼ ðx; yÞ and u ¼ ðz; tÞ. The supersymmetric
predictions (see [7,38–41] for a more paused exposition)
are particularly simple for disconnected correlation
functions:

CðdisÞ;D
x1;u;x2;u ¼ ZGIsing;D−2

x1;x2 ; ð3Þ

where G is the pure Ising model correlator and Z is a
position-independent normalization constant that will play
no role (see below). Note that the left-hand side depends on
both linear dimensions L and RL, while the right-hand side
depends only on L. Therefore, we must carefully consider
under which conditions Eq. (3) is expected to hold. In a
more conventional study, one would require an hierarchy of
length scales LR ≫ L ≫ ξ ≫ 1 (recall that ξ is the corre-
lation length), while we demand for the D − 2 Euclidean
distance kx1 − x2k=ξ ∼ 1. We shall put under stress Eq. (3)
by demanding it to hold as well in the finite-size scaling
regime

LR ≫ L ∼ ξ ≫ 1; kx1 − x2k=ξ ∼ 1: ð4Þ

These preliminaries lead us to consider a D − 2 Fourier
transform in the D-dimensional RFIM

ĈðdisÞ;D
k ¼ 1

LD−2

X
x1;x2

eiðx1−x2Þ·khSx1;uihSx2;ui: ð5Þ

Note that the u dependence vanishes due to the disorder
average (hence we average over u in order to gain
statistics). We then compute the second-moment correla-

tion length from the ratio of ĈðdisÞ;D
k at k ¼ 0 and kmin ¼

ð2π=L; 0; 0Þ [37] [kmin ¼ ð2π=L; 0Þ for D ¼ 4]. The
important observation is that, because the constant Z in
the rhs of Eq. (3) cancels when computing the ratio,
the dimensionless ratio ξðdisÞ=L as computed in the D-
dimensional RFIM coincides with ξ=L as computed in the
D − 2 Ising model. This equality holds if ξðdisÞ=L is
computed precisely at the critical point σc and if the
thermodynamic limit is taken under conditions (4).
If we now consider the four-body disconnected corre-

lation function, supersymmetry predicts a relation analo-
gous to Eq. (3) (the normalization in the rhs changes toZ2),
so we may compute as well a (D − 2)-dimensional U4

parameter,

Mu ¼
X
x

Sx;u; U4 ¼ hM4
ui=hM2

ui2; ð6Þ
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that is predicted to coincide with that of the critical D − 2
Ising model (under the same condition discussed above for
ξðdisÞ=L). Again, we improve our statistics by averaging

both hM4
ui and hM2

ui over u.
We finally address the supersymmetric predictions for

the connected correlation function. It is convenient to
consider the correlation functions K defined as

Kx1;x2 ¼
X
u

CðconÞ
x1;0;x2;u

: ð7Þ

The Ward identity for supersymmetry [38] implies (see

[41]) that the second-moment correlation length ξðconÞσ−η
computed from K [46] is equal to the disconnected

correlation length. This prediction ξðconÞσ−η ¼ ξðdisÞ does not
make direct reference to dimensional reduction.
Results.—Let us start by recalling in Table I the

ðD − 2Þ ¼ 2, 3 universal quantities from the pure Ising
model that we aim to recover from the D-dimensional
RFIM. We shall need as well the value of the leading
corrections to scaling exponent ω; the analysis we present
is done using the exponent ω given by dimensional
reduction, which is not far from the one computed in
the large-scale simulations at D ¼ 5 [26].
First, we consider the dimensionless ratio ξðdisÞðL;RÞ=L

in Fig. 1. Our first task [recall Eq. (4)] is to extract the large-
R limit. The good news is that we expect this limit to be
reached exponentially in R and uniformly in L [50]. In fact,
the comparison of our numerical results for R ¼ 5 and 10
suggests that (within our statistical accuracy) R ¼ 5 is
large enough. Therefore, we focus the analysis on R ¼ 5,
where we reach our largest L value, namely, L ¼ 14. As is
clear from Fig. 1, our data are accurate enough to resolve
corrections to scaling. Furthermore, the nonmonotonic L
evolution of ξðdisÞðL;R ¼ 5Þ=L implies that subleading
corrections cannot be neglected. Hence, we have attempted
to represent these subleading corrections in an effective
way by means of a fit to a polynomial in L−ω. We have
included in the fit only data with L ≥ Lmin. We have
attempted to keep both Lmin and the order of the polynomial
as low as possible. We find a fair fit ( χ2=dof ¼ 3.24=2, p
value ¼ 20%) with a cubic polynomial and Lmin ¼ 6. The
corresponding extrapolation to L ¼ ∞ is

lim
L→∞

�
lim
R→∞

ξðdisÞðL;RÞ
L

�
¼ 0.654ð13Þ; ð8Þ

which is statistically compatible to the three-dimensional
result in Table I. Hence, our first check of supersymmetry

TABLE I. Universal quantities as computed in the pure Ising
model at two and three spatial dimensions. The somewhat
controversial situation with the corrections to scaling exponent
ω in two dimensions is discussed in Ref. [41].

D − 2 ξ=L U4 ω

2 0.905 048 8… [47] 1.167 93… [47] 1.75
3 0.6431(1) [48] 1.6036(1) [48] 0.829 66(9) [49]
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FIG. 1. ξðdisÞðL; RÞ=L vs L−ω for various R values, as computed
in the D ¼ 5 RFIM. The value of the corrections to scaling
exponent ω corresponds to the pure Ising model in three spatial
dimensions; see Table I (the value from Ref. [49] is so accurate
that we took their central value as numerically exact). The dashed
horizontal line corresponds to the value for ξ=L, also shown in
Table I. The continuous line is a fit to our R ¼ 5 data (see the text
for details). The extrapolation to L ¼ ∞ obtained from the fit is
compatible with the pure Ising model value, as predicted by
supersymmetry.
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FIG. 2. As in Fig. 1, but for the ξðconÞσ−η ðL; RÞ=L data, as
computed in the D ¼ 5 RFIM. The agreement of the L ¼ ∞
extrapolation with the value of ξ=L from the pure Ising model is a
direct confirmation of the supersymmetric Ward identity [41].
Inset: Enlargement of the main panel data corresponding to
R ¼ 5, 10 and L > 4. For the sake of clarity, in the vertical axis,
we have subtracted the value of the pure Ising model (see also
Table I).
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has been passed. The strength of this check is quantified by
our 2% accuracy.
The analysis of ξðconÞσ−η ðL;RÞ=L (see Fig. 2) is carried

out along the same lines. We find a good fit
( χ2=dof ¼ 0.63=3, p value ¼ 89%) with a quadratic
polynomial in L−ω and Lmin ¼ 6. The corresponding
extrapolation to L ¼ ∞ is

lim
L→∞

�
lim
R→∞

ξðconÞσ−η ðL;RÞ
L

�
¼ 0.642ð7Þ: ð9Þ

It follows that we have checked supersymmetry to a 1%
accuracy.
Our U4ðL; RÞ data (see Fig. 3) can be analyzed in

a similar vein. We find a fair fit ( χ2=dof ¼ 6.85=4,
p value ¼ 14%) with a quadratic polynomial in
L−ω and Lmin ¼ 5. The corresponding extrapolation to
L ¼ ∞ is

lim
L→∞

½ lim
R→∞

U4ðL;RÞ� ¼ 1.604ð3Þ; ð10Þ

again compatible with the three-dimensional pure Ising
model value (Table I). Supersymmetry is checked to the
0.2% level this time.
Finally, as a comparison, we show our data for the 4D

RFIM Ising model in Fig. 4. Even after carrying out the
double limit L → ∞ and R → ∞, all three dimensionless
quantities differ from their values in the 2D pure Ising
ferromagnet. Although this is hardly a surprise (recall, for
instance, exponents η and η̄ [25]), the discrepancy is at least
at the 10% level.

Conclusions.—The finding of supersymmetry and
dimensional reduction in the RFIM is, arguably, one of
the most surprising results in theoretical physics. Here,
thanks to state-of-the-art numerical techniques, we have
carried out a precision test of supersymmetry. Although
supersymmetry is clearly broken at D ¼ 4, the D ¼ 5
RFIM is supersymmetric with good accuracy. Hence,
scenario 1 in the introduction is plainly discarded.
The only remaining contenders are scenarios 2 and 3.

Exponent ω might help to settle the question. In the ϵ
expansion (ϵ ¼ 6 −D), we find at least two exponents:
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FIG. 3. As in Fig. 1, but for the U4ðL;RÞ data, as computed in
theD ¼ 5 RFIM. For comparison, we also show data for the pure
Ising model in three spatial dimensions. Corrections to scaling in
the pure model are of a similar size (but opposite sign) to those of
the large R limit for the RFIM at D ¼ 5.
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FIG. 4. Dimensionless quantities ξðdisÞðL; RÞ=L (a),

ξðconÞσ−η ðL; RÞ=L (b), and U4ðL; RÞ (c) vs L−ω as computed in
the D ¼ 4 RFIM. We set ω ¼ 1.75 from Table I. We show the
corresponding universal values for the 2D pure Ising model
(black dashed lines). Note that for R ¼ 1 there are two natural
ways of computing U4. One way (black squares) is averaging
over a codimension-two manifold [this is the natural way for a
supersymmetry check; recall Eq. (6)]. The other way, which is the
natural one when studying the D ¼ 4 RFIM per se, is averaging
over the full four-dimensional lattice (green diamonds). Clearly,
the two choices differ, both at finite L and in the large-L limit.

Instead, for ξðconÞσ−η ðL; RÞ=L these two kinds of spatial averaging
coincide by construction. The horizontal green dotted lines are
the large-L limit, as obtained for the D ¼ 4 RFIM [25].
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ωDR ¼ ϵþOðϵ2Þ (obtained through dimensional reduc-
tion) and ωNS ¼ 2þOðϵ2Þ (due to irrelevant nonsuper-
symmetric operators). The large value of ω found here and
in Ref. [26] [the values for ωðDÞ are in Ref. [41]], agrees
with dimensional reduction and favors scenario 2. Indeed,
in scenario 3, supersymmetry is broken only for space
dimension D < Dint, suggesting a much smaller value
ωðD ¼ 5Þ ∼Dint −D ≈ 0.1. However, further studies are
needed to resolve this delicate issue.
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[11] J. L. Cardy,arXiv:cond-mat/0302495.
[12] J. Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984).
[13] J. Bricmont and A. Kupiainen, Phys. Rev. Lett. 59, 1829

(1987).
[14] G. Parisi, Field Theory, Disorder and Simulations (World

Scientific, Singapore, 1994).
[15] G. Parisi and N. Sourlas, Phys. Rev. Lett. 89, 257204

(2002).
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