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Abstract 

Background: Children born extremely preterm are at heightened risk for intellectual and social impairment, includ-

ing Autism Spectrum Disorder (ASD). There is increasing evidence for a key role of the placenta in prenatal devel-

opmental programming, suggesting that the placenta may, in part, contribute to origins of neurodevelopmental 

outcomes.

Methods: We examined associations between placental transcriptomic and epigenomic profiles and assessed their 

ability to predict intellectual and social impairment at age 10 years in 379 children from the Extremely Low Gesta-

tional Age Newborn (ELGAN) cohort. Assessment of intellectual ability (IQ) and social function was completed with 

the Differential Ability Scales-II and Social Responsiveness Scale (SRS), respectively. Examining IQ and SRS allows for 

studying ASD risk beyond the diagnostic criteria, as IQ and SRS are continuous measures strongly correlated with 

ASD. Genome-wide mRNA, CpG methylation and miRNA were assayeds with the Illumina Hiseq 2500, HTG EdgeSeq 

miRNA Whole Transcriptome Assay, and Illumina EPIC/850 K array, respectively. We conducted genome-wide differ-

ential analyses of placental mRNA, miRNA, and CpG methylation data. These molecular features were then integrated 

for a predictive analysis of IQ and SRS outcomes using kernel aggregation regression. We lastly examined associations 

between ASD and the multi-omic-predicted component of IQ and SRS.

Results: Genes with important roles in neurodevelopment and placental tissue organization were associated with 

intellectual and social impairment. Kernel aggregations of placental multi-omics strongly predicted intellectual and 

social function, explaining approximately 8% and 12% of variance in SRS and IQ scores via cross-validation, respec-

tively. Predicted in-sample SRS and IQ showed significant positive and negative associations with ASD case–control 

status.

Limitations: The ELGAN cohort comprises children born pre-term, and generalization may be affected by unmeas-

ured confounders associated with low gestational age. We conducted external validation of predictive models, 
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Background
Despite substantial research efforts to elucidate the eti-

ology of neurodevelopmental impairment [1], little is 

known about transcriptomic and epigenomic factors 

influencing trajectories of neurodevelopment, such as 

those associated with preterm delivery [2]. Children 

born extremely preterm are at increased risk not only for 

intellectual impairment but also for Autism Spectrum 

Disorder (ASD) [3, 4], often accompanied by intellec-

tual disability. In addition, preterm-born children have 

consistently been observed to manifest social difficulties 

(e.g., fewer prosocial behaviors) in childhood and adole-

cense that do not meet diagnostic criteria for ASD [5].

�e placenta is posited as a critical determinant of 

both immediate and long-lasting neurodevelopmen-

tal outcomes in children [1]. �e placenta is involved in 

hormone and neurotransmitter production and transfer 

of nutrients to the fetus, thus having direct influence on 

brain development. �is intimate connection between 

the placenta and the brain is termed the placenta-brain 

axis [6, 7]. Epidemiological and animal studies have 

linked genomic and epigenomic alterations in the pla-

centa with neurodevelopmental disorders and normal 

neurobehavioral development [8–10]. For example, the 

Markers of Autism Risk in Babies: Learning Early Signs 

(MARBLES) study has identified a differentially methyl-

ated region containing a putative fetal brain enhancer in 

placentas from children diagnosed with ASD (N  =  24) 

compared to placentas from typically developing 

(N =  23) children [11]. �e study of molecular interac-

tions within and between the transcriptome and epige-

nome that represent the placenta-brain axis may advance 

our understanding of fetal mechanisms involved in aber-

rant neurodevelopment [6].

Most prior studies have investigated single molecu-

lar levels of the placenta transcriptome or epigenome, 

precluding analysis of possible interactions that could 

be linked to neurodevelopmental outcomes. Examining 

only a single molecular feature, or a single type of feature 

such as genotype even at a genome-wide scale can still 

result in much unexplained variation in phenotype due 

to potentially important interactions between multiple 

features [12, 13]. �is observation is in line with Boyle 

et  al.’s omnigenic model [14, 15], which proposes that 

gene regulatory networks are so highly interconnected 

that a large portion of the heritability of complex traits 

can be explained by effects on genes outside core path-

ways. Molecular integration to identify placental path-

ways related to fetal neurodevelopment in children has 

been largely unexplored but may prove to be insightful in 

associations with complex diseases [16].

We conducted a genome-wide analysis of DNA meth-

ylation (i.e., 5-methylcytosine), miRNA, and mRNA 

expression in the placenta, examining individual associa-

tions with social and intellectual impairment at 10 years 

of age in children from the Extremely Low Gestational 

Age Newborn (ELGAN) study [17]. We then combined 

the transcriptomic and epigenomic data to identify cor-

relative networks of placental biomarkers predictive of 

social and intellectual impairment as continuous scales, 

thus allowing us to study neurodevelopmental difficul-

ties beyond the ASD diagnostic categories [18]. To assess 

the convergent validity of our behavioral findings, we 

also examined the association of social and intellectual 

impairment in relation to ASD diagnoses [19]. �is is 

among the first study of its kind to use multiple placen-

tal molecular signatures to predict intellectual and social 

impairment, which may inform a framework for predict-

ing risk of adverse neurocognitive and neurobehavioral 

outcomes in young children.

Methods
ELGAN recruitment and study participants

From 2002 to 2004, women who gave birth at under 

28  weeks gestation at one of 14 medical centers across 

five U.S. states enrolled in the ELGAN study [17]. �e 

Institutional Review Board at each participating institu-

tion approved study procedures. Included were 379  of 

889 children with both placental molecular data  (CpG 

methylation, mRNA expression, and miRNA expression) 

and a 10-year neurodevelopment assessment.

Social and cognitive function and ASD at 10 years of age

Trained child psychologist examiners [5, 20] evaluated 

general cognitive ability (IQ) with the School-Age Dif-

ferential Ability Scales-II (DAS-II) Verbal and Nonverbal 

though the sample size (N = 49) and the scope of the available out-sample placental dataset are limited. Further 

validation of the models is merited.

Conclusions: Aggregating information from biomarkers within and among molecular data types improves predic-

tion of complex traits like social and intellectual ability in children born extremely preterm, suggesting that traits 

within the placenta-brain axis may be omnigenic.

Keywords: Prenatal neurodevelopmental programming, Social and cognitive impairment, Placental gene regulation, 

Epigenome-wide association, Differential expression analysis, Multi-omic aggregation
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Reasoning subscales [21]. �e Social Responsiveness 

Scale (SRS) was used to assess severity of ASD-related 

social deficits in 5 subdomains: social awareness, social 

cognition, social communication, social motivation, and 

autistic mannerisms [22]. We used the gender-normed 

T-score (SRS-T; intended to correct gender differences 

observed in normative samples) as continuous meas-

ure of social deficit [23]. All participants were assessed 

for ASD [19]. Diagnostic assessment of ASD was con-

ducted with three well-validated measures, administered 

sequentially. First, the Social Communication Question-

naire (SCQ) was administered to screen for potential 

ASD, using a score ≥ 11 to increase sensitivity relative to 

the standard criterion score of ≥ 15 [19, 24]. For children 

who screened positive on the SCQ criterion, we con-

ducted the Autism Diagnostic Interview–Revised (ADI-

R) with the primary caregiver [25]. All children who met 

ADI-R criteria for ASD, or who had a prior clinical diag-

nosis of ASD and/or exhibited symptoms of ASD during 

cognitive testing according to the site psychologist) were 

then assessed with the Autism Diagnostic Observation 

Schedule, Second Version (ADOS-2), which served as the 

criterion measure of ASD in this study [26]. All ADOS-2 

administrations were independently scored by a second 

rater with autism diagnostic and ADOS-2 expertise. In 

cases of scoring disagreements, consensus was reached 

via discussion between raters. Item-by-item inter-rater 

agreement for the 14 ADOS-2 diagnostic algorithm 

scores was on average 0.93 (SD = 0.12). �ese develop-

mental assessment procedures and all relevant test scores 

for ASD and intellectual function are reported in a prior 

publication [20].

Placental DNA and RNA extraction

After delivery, placentas were biopsied under sterile con-

ditions. �e ELGAN team collected a piece of the cho-

rion, representing the fetal side of the placenta [27]. More 

specifically, placentas were placed in a sterilized basin 

and biopsied by pulling back the amnion to expose the 

chorion at the midpoint of the longest distance between 

the cord insertion and edge of the placental disk. A sam-

ple from the fetal side of the placenta was removed by 

applying traction to the chorion and underlying tropho-

blast tissue. �e specimen was placed in a cryogenic vial 

and immersed in liquid nitrogen. Specimens were stored 

at − 80 °C for approximately 13–15 years until processed. 

For processing, a 0.2 g subsection of the placental tissue 

was cut from the frozen biopsy and washed with sterile 

1 × phosphate-buffered saline to remove any remaining 

blood. Samples were homogenized using a lysis buffer, 

and the homogenate was separated into aliquots. �is 

process was detailed in a prior publication [28]. Nucleic 

acids were extracted from the homogenate using AllPrep 

DNA/RNA/miRNA Universal kit (Qiagen, Germany). 

�e quantity and quality of DNA and RNA were ana-

lyzed using the NanoDrop 1000 spectrophotometer and 

its integrity verified by the Agilent 2100 BioAnalyzer. As 

previously described [29], RNA quality was determined 

using LabChip (Perkin Elmer) instrument to generate 

RNA integrity numbers (RIN), which ranged from 1 to 

3, and DV200 values, which were in acceptable range for 

placenta tissue [30].

Epigenome-wide placental DNA methylation

Extracted DNA sequences were bisulfate-converted using 

the EZ DNA methylation kit (Zymo Research, Irvine, CA) 

and followed by quantification using the Infinium Meth-

ylationEPIC BeadChip (Illumina, San Diego, CA), which 

measures CpG loci at a single nucleotide resolution, as 

previously described [27, 28, 31, 32]. Quality control and 

normalization were performed resulting in 856,832 CpG 

probes from downstream analysis, with methylation rep-

resented as the average methylation level at a single CpG 

site (β value) [28, 33–35]. DNA methylation data was 

imported into R for pre-processing using the minfi pack-

age [33]. Quality control was performed at the sample 

level, excluding samples that failed and technical dupli-

cates; 411 samples were retained for subsequent analyses. 

Functional normalization was performed with a prelimi-

nary step of normal-exponential out-of band (noob) cor-

rection method [36] for background subtraction and dye 

normalization, followed by the typical functional normal-

ization method with the top two principal components 

of the control matrix [34, 37]. Quality control was per-

formed on individual probes by computing a detection P 

value and excluded 806 (0.09%) probes with non-signifi-

cant detection (P > 0.01) for 5% or more of the samples. 

A total of 856,832 CpG sites were included in the final 

analyses. Lastly, the ComBat function was used from the 

sva package to adjust for batch effects from sample plate 

[38]. �e data were visualized using density distributions 

at all processing steps. Each probe measured the average 

methylation level at a single CpG site. Methylation levels 

were calculated and expressed as β values (β = intensity 

of the methylated allele (M))/(intensity of the unmeth-

ylated allele (U) + intensity of the methylated allele 

(M) + 100). βvalues were logit transformed to M values 

for statistical analyses [39].

Genome-wide placental mRNA and miRNA expression

mRNA expression was determined using the Illumina 

QuantSeq 3′ mRNA-Seq Library Prep Kit, a method with 

high strand specificity. mRNA-sequencing libraries were 

pooled and sequenced (single-end 50 bp) on one lane of 

the Illumina Hiseq 2500. mRNA were quantified through 

pseudo-alignment with Salmon v.14.0 [40] mapped to the 
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GENCODE Release 31 (GRCh37) reference transcrip-

tome. miRNA expression profiles were assessed using 

the HTG EdgeSeq miRNA Whole Transcriptome Assay 

(HTG Molecular Diagnostics, Tucson, AZ). miRNA 

were aligned to probe sequences and quantified using 

the HTG EdgeSeq System [41]. Genes and miRNAs with 

less than 5 counts and variance less than 0.5 for each 

sample were filtered [42], resulting in 11,224 genes and 

2047 miRNAs for downstream analysis. Distributional 

differences between lanes were first upper-quartile nor-

malized [43]. Unwanted technical and biological vari-

ation (e.g. cell-type heterogeneity) was then estimated 

using RUVSeq [44], where we empirically defined tran-

scripts not associated with outcomes of interest as nega-

tive control housekeeping probes [45]. One dimension of 

unwanted variation was removed from the variance-sta-

bilized transformation of the gene expression data using 

the limma package [46, 47].

Statistical analysis

All code and functions used in the statistical analysis can 

be found at https ://githu b.com/bhatt achar ya-a-bt/multi 

omics _ELGAN .

Correlative analyses between SRS, IQ, and ASD

Associations among SRS scores, IQ and ASD were 

assessed using Pearson correlations with estimated 95% 

confidence intervals, and the difference in distributions 

of SRS and IQ across ASD case–control was assessed 

using Wilcoxon rank-sum tests. Associations between 

demographic variables (race, sex, maternal age, number 

of gestational days, maternal smoking status, placental 

inflammation, birth weight Z-score and mother’s insur-

ance) with SRS and IQ were determined using multivari-

able regression, assessing the significance of regression 

parameters using Wald tests of significance and adjusting 

for multiple testing with the Benjamini–Hochberg proce-

dure [48].

Genome-wide molecular associations with SRS and IQ

Once associations between SRS and IQ and ASD were 

confirmed, we utilized continuous SRS and IQ measures 

as the main outcomes of interest. Associations between 

mRNA expression or miRNA expression with SRS and 

IQ were estimated through a negative binomial linear 

model using DESeq2 [46]. Epigenome-wide associations 

(EWAS) of CpG methylation sites with outcomes were 

assessed using robust linear regression with test statistic 

modification through an empirical Bayes procedure [47], 

described previously [28]. Both the differential mRNA 

and miRNA expression and EWAS models controlled for 

the following covariates: race, age, sex, number of gesta-

tional age days, birth weight Z-score, acute inflammation 

of the placental chorion, and education level of the 

mother. As in previous analyses, EWAS models also con-

trolled for five surrogate variables to account for cell-type 

heterogeneity [28, 38]. Multiple testing was adjusted for 

using the Benjamini–Hochberg procedure. Sensitivity 

analyses of test power across various effect sizes (fold 

change for RNA-seq and miRNA-seq expression) and 

parameters (mean and dispersion of expression) were 

conducted for differential gene expression analysis [49], 

showing sufficient power to detect effect sizes of differen-

tial expression (Additional file 2: Supplemental Results—

Figure S1A-B). Likewise, we found sufficient power to 

detect differentially methylated sites at large effect sizes 

(Additional file  2: Supplemental Results—Figure S1C) 

using the framework from Mansell et al.[50].

To examine placental cell type variability, we extended 

the differential mRNA expression analysis to consider 

cell-type specific proportions. We applied unmix, a ref-

erence-based deconvolution method [46], to estimate 

cell-type proportions using reference single cell RNA-

seq expression profiles for extravillous trophoblasts, 

cytotrophoblasts, syncytiotrophoblasts, and mesenchy-

mal stromal cells, derived from fetal placental tissue at 

24 weeks of gestation [51]. Here, we refer to the mRNA 

expression data from ELGAN as the bulk signal, as it rep-

resents the mRNA expression from the bulk tissue that 

includes gene expression signal from all contributing 

cell (i.e. different trophoblasts, endothelial cells, epithe-

lial cells, etc.). �is algorithm estimates the contribution 

to the bulk mRNA signal from individual cell types on 

a sample-by-sample basis. We incorporated these cell-

type proportions into the differential expression analysis 

by adding a covariate for cell-type proportions and an 

interaction term between gene expression and propor-

tion. �is cell-type interaction model subtly changes the 

interpretation of the main gene expression term, repre-

senting an estimate of the gene expression effect size on 

SRS or IQ when the bulk tissue contains 0% of the cell 

type. �us, we can detect cell-type-specific differentially 

expressed genes by testing the interaction effect, which 

measures how the magnitude of the gene-to-outcome 

association differs in bulk tissue with 0% and 100% of 

the cell type in question [52] (details in Additional file 1: 

Supplemental Methods).

Placental multi-molecular prediction of SRS and IQ

We next assessed how well an aggregate of one or more 

of the molecular datasets (CpG methylation, mRNA 

expression, and miRNA expression) predicted continu-

ous SRS and IQ scores. �e analytical scheme is summa-

rized in Fig. 1, using 379 samples with data for all three 

molecular datasets (DNA methylation, miRNA, and 

mRNA). Briefly, we first adjusted the outcome variables 

https://github.com/bhattacharya-a-bt/multiomics_ELGAN
https://github.com/bhattacharya-a-bt/multiomics_ELGAN
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and molecular datasets for above noted demographic 

and clinical covariates using limma [53] to account for 

associations between the outcomes and these coviarates 

in the eventual predictive models. Next, to model the 

covariance between samples within a single molecular 

profile, we aggregated the molecular datasets with thou-

sands of biomarkers each into a molecular kernel matrix. 

A molecular kernel matrix represents the inter-sample 

similarities in a given molecular profile (Additional file 1: 

Supplemental  Methods). A linear or non-linear kernel 

aggregation may aid in prediction of complex traits by 

capturing non-additive effects [54–56], which represents 

a sizable portion of phenotypic variation [57, 58]. Using 

all individual, pairwise, and triplet-wise combinations of 

molecular kernel matrices, we fitted predictive models 

of SRS and IQ based on linear mixed modeling [56] or 

kernel regression least squares (KRLS) [59] and assessed 

predictive performance with McNemar’s adjusted R2 via 

Monte Carlo cross validation [60]. We also optimized 

predictive models for the number of included biomark-

ers per molecular profile with feature selection in the 

training sets. Extensive model details, as well as alterna-

tive models considered, are detailed in Additional file 1: 

Supplemental Methods.

Validation in external dataset

Lack of studies that consider placental mRNA, CpG 

methylation and miRNA data with long-term child 

Fig. 1 Scheme for kernel aggregation and prediction models. (1) Design matrices for CpG sites, mRNAs, and miRNAs are aggregated to form a 

linear or Gaussian kernel matrix that measures the similarity of samples. (2) Clinical variables are regressed out of the outcomes IQ and SRS and 

from the omic kernels to limit influence from these variables. (3) Using 50-fold Monte Carlo cross-validation on 75–25% training-test splits, we train 

prediction models with the kernel matrices for IQ and SRS in the training set and predict in the test sets. Prediction is assessed in every fold with 

adjusted R2 and averaged for an overall prediction metric
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neurodevelopment limit the ability to extablish exter-

nal validation. We obtained one external placental CpG 

methylation dataset from the MARBLES cohort [11]. 

To assess out-of-sample performance of kernel mod-

els for methylation, we downloaded MethylC-seq data 

for 47 placenta samples, 24 of which were identified as 

ASD cases (NCBI Gene Expression Omnibus acces-

sion numbers GSE67615) [11]. β-values for DNA meth-

ylation were extracted from BED files and transformed 

into M-values with an offset of 1 [39], and used the best 

methylation-only predictive model to predict SRS and 

IQ in these 47 samples, as detailed in Additional file  1: 

Supplemental Methods.

Correlative networks and gene ontology enrichment 

analysis

In the final KRLS predictive models for both IQ and SRS 

including all three molecular profiles, we extracted the 

top 50 most predictive (largest point-wise effect sizes) 

CpGs, miRNAs, and mRNAs of SRS and IQ. A sparse 

correlative network was inferred among these biomark-

ers that links them  based on the strength of correlative 

signals using graphical lasso in qgraph [61, 62]. We then 

conducted biological process and molecular function 

gene ontology over-representation analysis of genes iden-

tified in these correlative networks using WebGestalt 

[63].

Results
Social impairment (SRS) and cognition (IQ) are associated 

with ASD

Although the sample is enriched for ASD cases (N = 

35 cases, 9.3% of the sample) relative to non-preterm 

cohorts, there is still a relatively low case–control ratio 

for a genome-wide study of this sample size (descriptive 

statistics for relevant covariates in Table  1). �erefore, 

we considered continuous measures of SRS and IQ at 

age 10 for both associative and predictive analyses. Using 

continuous variables for SRS and IQ allow us to to study 

complexities beyond the ASD diagnostic categories [16, 

18, 19]. Figure 2a, b shows the relationship between SRS, 

IQ, and ASD. SRS and IQ are negatively correlated [Pear-

son ρ = − 0.47,  95%CI (− 0.55, − 0.39)]. �e mean SRS 

is significantly higher in ASD cases compared to controls 

[mean difference of 1.74, 95%CI (1.41, 2.07)]. Mean IQ is 

significantly lower in ASD cases versus controls [mean 

difference of − 2.23, 95%CI  (−  2.46,  −  1.96)]. We also 

Table 1 Descriptive statistics for demographic and clinical covariates

Continuous variable Mean, SD, median

Maternal age (years) 29.6, 6.61, 29.5

Gestational age (days) 182.5, 9.17, 184.0

Birthweight Z-score 0, 1, 0.05

Categorical variable Number (proportion)

ASD

 Case 35 (9.3%)

 Control 344 (90.7%)

Race

 White 233 (61.5%)

 Black 112 (29.5%)

 Other 34 (9.0%)

Sex of baby

 Female 180 (47.5%)

 Male 199 (52.5%)

Mother’s smoking status

 Non-smoker 340 (89.7%)

 Smoker 39 (10.3%)

Mother’s insurance status

 Private 251 (66.2%)

 Medicaid 128 (33.8%)

Placental chorion inflammation

 Not inflamed 252 (66.5%)

 Inflamed 127 (33.6%)
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measured associations between demographic charac-

teristics with SRS and IQ using multivariable regression 

(Fig.  2c). Male sex is associated with lower IQ, while 

public health insurance is associated with both lower IQ 

and increased social impairment. Demographic variables 

included in the multivariable regression explain approxi-

mately 12% and 15% of the total variance explained in 

IQ and SRS, as measured by adjusted R2, with a sum-

mary of regression parameters in Table  2. Based on the 

associations identified here and the value of inclusion of 

continuous measures, subsequent transcriptomic and 

epigenomic analyses control for demographic covariates.

Genome-wide associations of mRNA, miRNA, and CpGs 

with SRS and IQ

Genome-wide association tests between each of the 

individual placental molecular datasets (e.g. the placen-

tal mRNA data, the CpG methylation, or the miRNA 

datasets) in relation to SRS and IQ (see "Methods") 

identified two genes with mRNA expression signifi-

cantly associated with SRS at FDR-adjusted P  <  0.01, 

namely Hdc Homolog, Cell Cycle Regulator (HECA), 

and LIM Domain Only 4 (LMO4). We did not find CpG 

sites or miRNAs associated with SRS (Table  3). Asso-

ciations between IQ and the mRNA expression, at FDR-

adjusted P  <  0.01, were observed at four genes, namely 

Ras-Related Protein Rab-5A (RAB5A), Transmembrane 

Protein 167A (TMEM167A), Signal Transducer and 

Activator of Transcription 2 (STAT2), ITPRIP Like 2 

(ITPRIPL2). One CpG site, cg09418354, located in the 

gene Carbohydrate Sulfotransferase 11 (CHST11) dis-

played an association with IQ, and no miRNAs were 

associated with IQ (Table  3). Manhattan plots (Addi-

tional file 2: Supplemental Results—Figure S2) show the 

strength of associations of all biomarkers by genomic 

position. No mRNAs, CpG sites, or miRNAs were signifi-

cantly associated with both SRS and IQ. Summary sta-

tistics for these associations are provided in Additional 

file 2: Supplemental Results: Table S1.

We also considered differential mRNA expression anal-

ysis specific to four key distinct cell-types that comprise 

the placenta: extravillous trophoblasts, cytotrophobalsts, 

SRS

IQ

ASD Control Case

a

P = x
−

Control Case

ASD

S
R

S

b

P < x
−

Control Case

ASD

IQ

IQ SRS

Gestational days

C
o
v
a
ri

a
te

c

R R

Fig. 2 Associations between SRS, IQ, and ASD and with clinical variables. a Scatter plot of SRS (X-axis) and IQ (Y-axis) colored by ASD case (orange) 

and control (blue) status. b Boxplots of SRS and IQ across ASD case–control status. P value from a two-sample Mann–Whitney test is provided. c 

Caterpillar plot of multivariable linear regression parameters of IQ and SRS using clinical variables. Points give the regression parameter estimates 

with error bars showing the 95% FDR-adjusted confidence intervals [48]. The null value of 0 is provided for reference with the dotted line
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syncytiotrophoblasts, and mesenchymal stromal cells 

[64]. Importantly, we did not detect any significant 

associations between placental cell-type proportions 

and the differentially expressed genes in the bulk tissue. 

Incorporating estimated cell-type proportions into an 

interaction-based differential mRNA expression model 

revealed no cell-type-specific differentially expressed 

genes at FDR-adjusted P < 0.01. To examine any cell-spe-

cific trends, at FDR-adjusted P < 0.05, we detected two 

SRS-associated stromal cell-specific differentially expres-

sion genes and two IQ-associated syncytiotrophoblast-

specific differentially expression genes (Additional file 2: 

Supplemental Results—Table  S2), all not detected with-

out the interaction model. �ese SRS-associated genes 

include Bromodomain Containing 2 (BRD2), associated 

with fetal metabolic programming of newborns [65]. Fur-

thermore, we detected a syncytiotrophoblasts-specific 

association between IQ and ATPase Plasma Membrane 

Ca2 + Transporting 1 (ATP2B1), a gene whose polymor-

phic variants have been shown to have associations with 

preeclampsia [66, 67].

Kernel regression shows predictive utility in aggregating 

multiple molecular datasets

Because the genome-wide association analyses revealed 

few mRNAs, CpG sites or miRNAs that were associated 

with SRS or IQ with large effect sizes, we next assessed 

the impact of aggregating these molecular datasets on 

prediction of SRS and IQ. �is was done to account for 

the considerable number of biomarkers that have mod-

erate effect sizes on outcome. To find the most parsimo-

nious model with the greatest predictive performance, 

we first selected the optimal number of biomarkers per 

molecular profile from the training set for each out-

come that gave the largest mean adjusted R2 in predic-

tive models with only one of the three molecular datasets 

(see Additional file 1: Supplemental Methods). Figure 3a 

shows the relationship between the number of biomark-

ers from the mRNA expression, CpG level, miRNA 

Table 2 Summary of multivariable regression models of SRS and IQ in relation to clinical covariates (self-reported race, 

sex, maternal age, smoking status, insurance level of the mother, gestational age, birthweight Z-score, and in�ammation 

of the placental chorion)

Parameter SRS IQ

Estimate (SE) FDR-adjusted
P value
(Raw P value)

Estimate (SE) FDR-adjusted
P value
(Raw P value)

Race

 Black 0.219 (0.13) 0.165 (0.091)  − 0.369 (0.13) 0.012 (0.004)

 Other 0.375 (0.19) 0.087 (0.043)  − 0.113 (0.18) 0.684 (0.533)

Sex

 Male 0.119 (0.10) 0.342 (0.243)  − 0.288 (0.10) 0.012 (0.004)

 Maternal age  − 0.002 (0.01) 0.800 (0.800)  − 0.003 (0.01) 0.792 (0.748)

Smoking status

 Yes 0.215 (0.17) 0.334 (0.204) 0.337 (0.17) 0.087 (0.043)

Mother’s insurance

 Medicaid 0.454 (0.13) 0.002 (0.001)  − 0.453 (0.13) 0.003 (0.001)

 Gestational age  − 0.017 (0.01) 0.012 (0.002) 0.012 (0.01) 0.087 (0.043)

 Birthweight Z-score  − 0.060 (0.05) 0.342 (0.247) 0.179 (0.05) 0.003 (0.001)

 Placental inflammation  − 0.042 (0.11) 0.793 (0.705)  − 0.046 (0.11) 0.793 (0.677)

Table 3 Summary of  genome-wide associations 

of  molecular pro�les with  SRS and  IQ at  FDR-adjusted 

P < 0.01

Biomarker E�ect size FDR-adjusted
Pvalue

SRS

mRNA expression

 HECA 0.571 0.001

 LMO4 0.467 0.001

IQ

Biomarker

 mRNA expression

 RAB5A  − 0.516 0.002

 TMEM167A  − 0.632 0.004

 ITPRIPL2  − 0.557 0.004

 STAT2  − 0.584 0.004

CpG methylation site

 cg09418354 (within CHST11)  − 0.005 0.002
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expression datasets and their predictive performance. In 

general, predictive performance steadily increased as the 

number of biomarker features increased until reaching 

a tipping point where predictive performance decreased 

(Fig.  3a). Overall, for CpG methylation, the top (low-

est P values of association) 5000 CpG features showed 

the greatest predictive performance, and for the mRNA 

and miRNA expression datasets, the top 1000 features 

showed the greatest predictive performance.

Using the fully-tuned 7000 biomarkers (5000 for CpG 

methylation and 1000 for both mRNA and miRNA 

expression) per molecular dataset with feature selec-

tion carried out in the training set, we trained predictive 

models (both linear and Gaussian kernel models) using 

all individual, pair-wise, and triplet-based combina-

tions of the three molecular datasets. Figure  3b shows 

that whereas the mRNA had the lowest predicted per-

formance to both IQ (R2 = 0.025) and SRS (R2 = 0.025), 

aggregating the mRNA expression, CpG methylation and 

miRNA expression datasets tends to increase the predic-

tive performance. Specifically, in relation to both out-

comes (SRS and IQ), the model using all three integrated 

a b

Fig. 3 In-sample predictive performance of kernel models. a Adjusted mean R2 (Y-axis) of best kernel models over various numbers of the top 

biomarkers (X-axis) in the CpG (dark blue), miRNA (orange), and mRNA (light blue) omics over 50 Monte Carlo folds. The X-axis scale is logarithmic. 

b Bar plots of adjusted mean R2 (Y-axis) for optimally tuned kernel predictive models using all combinations of omics (X-axis) over 50 Monte Carlo 

folds. The error bar gives a spread of one standard deviation around the mean adjusted R2
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datasets shows the greatest predictive performance 

(mean adjusted R2 = 0.11 in relation to IQ and R2 = 0.08 

in relation to SRS).

Correlative networks of placental biomarkers

To gain further understanding of the associations among 

the identified mRNA, CpG and miRNA biomarkers in 

the context of IQ and SRS, we extracted (n = 50) mRNA, 

CpGs, and miRNAs with the largest effect sizes on IQ 

and SRS in the kernel regression models and inferred 

sparse correlative networks using the graphical lasso 

[61, 62] (see "Methods"). In the networks (Additional 

file  2: Supplemental Results—Figure S3), each molecu-

lar dataset clusters by itself, with minimal nodes extend-

ing between molecular datasets, and more correlation 

observed between miRNAs and CpG methylation ver-

sus mRNAs. �ese networks point to genes that have 

been shown in literature to play important roles in neu-

ronal development and in placental function. For exam-

ple, SMARCA2 (SWI/SNF Related, Matrix Associated, 

Actin Dependent Regulator Of Chromatin, Subfamily A, 

Member 2) and DDX59 has been implicated in develop-

ment disorders of the brain, such as Nicolaides-Baraitser 

syndrome and epilepsy, and other developmental dis-

orders, such as dysfunctional central nervous system 

development and orofaciodigital syndrome [68–73]. Fur-

thermore, ARL5B (ADP Ribosylation Factor Like GTPase 

5B) and MPP5 (Membrane Palmitoylated Protein 5) have 

been associated with decidua and trophoblasts func-

tions within the placenta [74–76]. Furthermore, at FDR-

adjusted P < 0.05, over-representation analysis revealed 

gene enrichments for membrane organization processes 

(endomembrane system and membrane organization) for 

the IQ-associated gene set and nucleic acid and enzyme 

binding processes (RNA binding, ubiquitin protein ligase 

binding, heterocyclic compound binding, etc.) for the 

SRS-associated gene set (Additional file 2: Supplemental 

Results—Table S3).

Validation of in-sample and out-sample SRS and IQ 

prediction with ASD case and control

To contextualize our predictions, we tested whether 

the predicted SRS and IQ scores generated by our ker-

nel models are associated with ASD case–control status; 

these predicted SRS and IQ scores represent the portion 

of the observed SRS and IQ values that our models can 

predict from placental genomic features. We used the 

optimal 7000 biomarker features identified with a tenfold 

cross-validation process, splitting samples into 10 hold-

out sets and using the remaining samples as a training set 

to predict SRS and IQ for all 379 samples. After account-

ing for covariates, the predicted SRS and IQ values 

from the biomarker data were well-correlated with the 

observed clinical SRS and IQ values, explaining approxi-

mately 8% (approximate Spearman ρ =0.29, cross-valida-

tion R2 P value P = 7.5 ×  10−9) and 12% (Spearman ρ = 

0.35, P = 3.6 ×  10−12) of the variance in the observed SRS 

and IQ variables, respectively. �is shows that biomark-

ers in the placenta can explain considerable amount of 

the variance in SRS and IQ at 10 years of age.

Lastly, we assessed associations between molecu-

larly-predicted SRS and IQ values and ASD case–con-

trol status. In ELGAN, we found strong associations 

between the predicted SRS and IQ with ASD case and 

controls, mean difference of − 0.56 (test statistic W = 

8121,  P = 6.6 ×  10−4) for IQ, and mean difference of 

0.33 (W = 4717, P = 0.03) for SRS (Fig. 4a). Because of 

the lack of an available external dataset with all three 

molecular data (mRNA, CpG methylation, and miRNA) 

and IQ, SRS and ASD data, we assessed the out-of-sam-

ple predictive performance of the CpG methylation-only 

models using MethylC-seq data from the MARBLES 

cohort (GEO GSE67615) [11]. We computed predicted 

IQ and SRS values for 47 placental samples (24 cases of 

ASD) and assessed differences in mean predicted IQ and 

SRS across ASD case and control groups. �e direction 

of the association is similar to our data for IQ, yet the 

differences in mean-predicted IQ (− 0.22, P = 0.37) and 

SRS (− 0.42, P = 0.12) across ASD groups in MARBLES 

are not significant (Fig. 4b). �is external validation pro-

vides some evidence of the portability of our models and 

merits further future validation of these models, as more 

placental multi-omic datasets are collected.

Discussion
We evaluated the predictive capability of three types 

of molecular biomarker data, namely transcriptomic 

(mRNA), and epigenomic (miRNA expression, CpG 

methylation), in the placenta on cognitive and social 

impairment in relation to ASD at 10  years of age. �e 

molecular biomarker data highlight that genes that play 

important roles in placental functioning (ARL5B and 

MPP5) and neurodevelopment (SMARCA2, DDX59, 

MPP5) were associated with or predictive of SRS and IQ. 

�e multi-omic predictions of SRS and IQ are strong and 

explain up to 8% and 12% of the variance in the observed 

SRS and IQ variables in tenfold cross-validation, respec-

tively. External validation of our models is inconclusive, 

however, and merits further investigation to minimize 

uncertainty in our findings, as mentioned in the limita-

tions section. �is study supports the utility of aggre-

gating information from biomarkers within and among 

molecular datasets to improve prediction of complex 

neurodevelopmental outcomes like social and intellectual 
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ability, suggesting that traits on the placenta-brain axis 

may be omnigenic.

Several genes with known ties to neurodevelopmen-

tal disorders distinguished individuals with and without 

intellectual or social impairments. For example, LMO4 

(associated with social impairment) is a protein encod-

ing gene with a broad spectrum of expression in human 

tissues and involved in multiple developmental path-

ways, including neurogenesis. Among its many roles, 

LMO4 promotes the acquisition of cortical neuronal 

identities by forming a complex with the protein neu-

rogenin 2 (NGN2) and subsequently activating NGN2-

dependent gene expression [77]. Humans with deletions 

in LMO4 display intellectual disabilities and occasionally 

autism [78]. Furthermore, this gene has also been associ-

ated with modulation of fear [79] and cue-reward lean-

ing [80], which could result in perceptions and behaviors 

seen in association with social impairment. LMO4 also 

influence the growth factor-β (TGF-β) cytokine path-

way, which plays important roles in mammalian devel-

opment [81]. LMO4 and HECA has been identified in 

pathways and processes related to neural development 

via commonly regulated targets of Forkhead box protein 

P2 (FOXP2) and miR-3666; the LMO4 gene shows asym-

metric expression in the embryonic brain possibly due to 

repression by FOXP2 and hence plays important roles in 

cortical patterning [82].

Among the biomarkers associated with IQ, we found 

RAB5A, a protein coding gene belonging to a family of 

small GTPases, involved in a variety of cellular processes 

including intracellular membrane trafficking. In the 

placental syncytiotrophoblasts, a specialized epithelial 

structure that interfaces the placenta and maternal blood, 

RAB5A has shown involvement in vesicular trafficking 

which could affect the syncytiotrophoblast function of 

transporting nutrients necessary for fetal development 

[83]. RAB5A can also affect the regulation of genes with 

roles in cell proliferation [84]. In terms of cognitive out-

comes, RAB5A and the RAB family play critical roles in 

synaptic function [85, 86] and dendritic branching [87]. 

Finally, genetic variants of RAB5A have been associ-

ated with ASD [88]. Other relevant genes are STAT2 and 

CHST11. STAT2 is a well-known essential and specific 

positive effector of type I interferons (IFNs) signaling 

[89], and placental type I IFNs is an important immune 

modulator, including modulation of viral infection in the 

mother and fetus [90]. STAT2 was identified as one dif-

ferentially expressed genes in ASD and co-morbidities 

that overlap with innate immunity pathways [91]. Also, 

with important roles in immune regulation, the genetic 

variation and methylation of the CHST11 gene, for which 

we found a methylated CpG site associated with intellec-

tual impairment, has been linked to neurodevelopmental 

disorders [92, 93].

IQ SRS

Control Case Control Case

0

ASD

v

ASD Control Case

IQ SRS

Control Case Control Case

0

ASD

v

ASD Control Case

-4

a b

Fig. 4 Association of ASD case/control status with predicted SRS and IQ. a Box-plots of in-sample predicted IQ (left) and SRS (right) over ASD case/

control in ELGAN over tenfold cross-validation. b Box-plots of out-sample predicted IQ (left) and SRS (right) over ASD case/control in MARBLES 

external validation dataset. P-values presented as from a Mann–Whitney test of differences across the ASD case/control groups



Page 12 of 16Santos Jr et al. Molecular Autism           (2020) 11:97 

In our correlative gene network analysis, we detected a 

group of inter-related genes associated with IQ enriched 

for membrane organization processes. �is enrichment 

may point to a previously established link: endothelial 

cell membrane dysfunction leads to deficient nutrient 

exchange and has a lasting impact on neurodevelopment 

[94]. For example, one of these genes is DDX59; in our 

differential expression analysis, DDX59 shows a nomi-

nally significant negative association with IQ. A recent 

study has shown that DDX59 is upregulated in syncytio-

trophoblasts in severe preeclampsia patients compared 

to controls [95]. Another example is MPP5, expressed 

in the placenta, brain, nervous system and other tissues, 

which is essential for cell polarity, fate and survival. In the 

placenta, MPP5 seem to have significant roles: promo-

tion of embryo-decidual adhesion [75], differentiation of 

extravillous trophoblasts [76], and gene expression levels 

from chorionic villus have been associated with severe 

early-onset preeclampsia [96]. In terms of neurodevelop-

ment, both animal and human studies show that MPP5 

has been found to be essential in neurogenesis [97, 98]; 

in a murine model Mpp5 depletion led to microceph-

aly, decreased cerebellar volume and cortical thickness, 

while humans with de novo variants of MPP5 suffer from 

global developmental delays with language regression 

and behavioral changes [97]. In our differential expres-

sion analysis, we found that MPP5 has a nominal nega-

tive association with IQ. Lastly, we also estimated that 

SMARCA2 has a strong predictive effect on and a nomi-

nally positive association with IQ; previous literature 

shows that epigenomic effects on and genetic dysfunc-

tion of SMARCA2 plays a role in development of Nico-

laides-Baraitser syndrome, a developmental disorder 

categorized by intellectual disability and seizures [68, 69]. 

It is worth noting that these results are ultimately corre-

lational in nature, and a causal interpretation should be 

avoided. Future research using in vitro and in vivo studies 

could elucidate the mechanistic influences of placental 

expression of these genes on the brain.

Not only did our cell-type-specific differential expres-

sion analysis show that the differentially expressed genes 

we detected in the bulk placenta were minimally affected 

by cell-type heterogeneity, we detected genes whose cell-

type-specific expression has large associations with IQ 

and SRS. For instance, we detected a syncytiotrophoblast-

specific association between IQ and ATP2B1, a gene that 

has been implicated in preeclampsia [66, 67], an in utero 

condition that is partially mediated by dysfunctional 

syncytiotrophoblasts [99] and has negative impacts with 

childhood neurodevelopment [100, 101]. In addition, 

ATP2B1 encodes PMCA1, a plasma membrane calcium 

ion pump, shown to have reduced activity in fetal-facing 

syncytiotrophoblast basal plasma membranes in patients 

with preeclampsia compared to controls [102–105]. �is 

cell-type-specific analysis underscores the importance 

of not only accounting for cell-type-heterogeneity in 

bioinformatics analyses of the placenta but estimating 

cell-type-specific associations through deconvolution or 

single cell assays.

Comparing the individual molecular datasets, DNA 

methylation effects showed the strongest prediction of 

both SRS and IQ impairment. �ere is strong evidence 

suggesting inverse correlation between DNA methylation 

of the first intron or promoter region and gene expres-

sion across tissues and species [106]. We found that many 

of the CpG loci with the largest effect sizes on SRS and 

IQ identified in our analysis are located in genes with 

DNase hyperactivity or active regulatory elements for 

the placenta [107, 108], suggesting that these loci likely 

play regulatory functions. Experimental studies have 

demonstrated regions of the genome in which DNA 

methylation is causally important for gene regulation 

and those in which it is effectively silent [109]. We found 

that aggregating biomarkers within and among molecu-

lar datasets improves prediction of social and cognitive 

impairment. Specifially, this observation suggests new 

possibilities to the discovery of candidate genes in the 

placenta that convey neurodevelopmental risk, improv-

ing the understanding of the placenta-brain axis. Recent 

work in transcriptome-wide association studies (TWAS) 

are a promising tool that aggregates genetics and tran-

scriptomics to identify candidate trait-associated genes 

[110, 111]. Incorporating information from regulatory 

biomarkers, like transcription factors and miRNAs, into 

TWAS increases study power to generate hypotheses 

about regulation [112, 113]. Given our observations in 

this analysis and the number of the integrated molecu-

lar datasets, we believe that the ELGAN study can be 

used to train predictive models for placental transcrip-

tomics from genetics, enriched for regulatory elements 

[113]. �ese transcriptomic models can then be applied 

to genome-wide association study cohorts to study the 

regulation of gene-trait associations in the placenta.

Limitations
When interpreting the results of this study, some fac-

tors should be considered. Extremely preterm birth is 

strongly associated with increased risk for neurodevelop-

mental disorders [19]. �is association may lead to bias 

in estimated associations between the molecular bio-

markers and outcomes, mainly when unmeasured con-

founders are linked to both pre-term birth and autism 

[114]. Ideally, an external dataset with both multiomic 

data and pre-term birth phenotypes could be used to 

examine associations between molecular profiles and 

pre-term birth to investigate the degree to which collider 
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bias affects associations between molecular profiles and 

SRS and IQ [114, 115]. Without this assessment of col-

lider bias, results from our predictive models may not 

generalizable to term cohorts. Still, to our knowledge 

the ELGAN cohort is among the largest available placen-

tal repositories with both multiple molecular datasets 

and long-term neurodevelopmental assessment of the 

children.

Second, as the placenta is comprised of several hetero-

geneous cell types, cell type-specific molecular patterns 

in the placenta should be taken into consideration when 

interpreting these findings. We did consider deconvolu-

tion of our tissue samples using mRNA expression. Due 

to a dearth of placental cell-type-specific expression ref-

erences, we opted for a reference-based deconvolution 

of four key cell types. �ese four cell types, however, 

do not fully represent the cellular compexity of the pla-

centa. As these reference expression profiles become 

available, a more comprehensive analysis with reference-

based deconvolution may reveal more cell-type-specific 

expression and methylation patterns that are specific 

to diverse populations of trophoblasts, stromal cells, 

endothelial cells, and pericytes. �ere are also consid-

erations made about the degradation of RNA in the pla-

cental specimens over time. As the placental tissue was 

stored for ~ 15  years, we had to impose strict pre-filter-

ing of genes whose expression have low counts and dis-

persions [42], resulting in a reduction of the analyzable 

transcriptome.

Lastly, to test the reproducibility and robustness of 

our kernel models, further out-of-sample validation is 

required, using datasets with larger sample sizes and 

similar molecular datasets. �ough in-sample predictive 

performance is strong, platform differences between the 

ELGAN training set (assayed with the EPIC BeadChip) 

and the validation set (assayed with MethylC-seq) may 

lead to loss of predictive power. As our optimal models 

trained in ELGAN all aggregated the DNA methylation, 

miRNA, and mRNA datasets, the dearth of data for the 

placenta, in the context of social and intellectual impair-

ment, makes out-of-sample validation of the full model 

especially challenging. In spite of these limitations, these 

data support the association between molecular features 

within the fetal placenta and social and cognitive out-

comes in children that merits future investigation.

Conclusions
Our analysis underscores the importance of synthesizing 

data representing various levels of biological organization 

to understand distinct transriptomic and epigenomic 

underpinnings of complex developmental deficits, like 

intellectual and social impairment. �is study provides 

novel evidence for the omnigenicity of the placenta-brain 

axis in the context of social and intellectual impairment.
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