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Abstract. Microsomal membrane vesicles prepared 

either from chicken medullary bone or isolated os- 

teoclasts were shown to have ATP-dependent H+-trans - 

port activity. This activity was N-ethylmaleimide-sen- 

sitive but resistant to oligomycin and orthovanadate, 

suggesting a vacuolar-type ATPase. Furthermore, im- 

munological cross-reactivity of 60- and 70-kD os- 

teoclast membrane antigens with Neurospora crassa 

vacuolar ATPase was observed when analyzed by im- 

munoblotting. Same antibodies labeled only osteoclasts 

in chicken and rat bone in immunohistochemistry. Im- 

munoelectronmicroscopy localized these antigens in 

apical membranes of rat osteoclasts and kidney inter- 

calated cells of inner stripe of outer medulla. Pretreat- 

merit of animals with parathyroid hormone enhanced 

the immunoreaction in the apical membranes of 

osteoclasts. No immunoreaction was seen in osteo- 

clasts when antibodies against gastric H+,K+-ATPase 

were used. These results suggest that osteoclast 

resorbs bone by secreting protons through vacuolar 

H+-ATPase. 

STEOCLASTS are multinucleated giant cells that are 
responsible for bone resorption. Like secreting epi- 
thelial cells, they are polarized when active in bone 

resorption, showing three distinct specialized cell membrane 
areas (for review see Vaes et al., 1988). In addition to the 
basolateral membrane, which is rich in Na+,K+-ATPase 
(Baron et al., 1986), resorbing osteoclast exhibits a clear 
zone that mediates the attachment of resorbing cells to the 
bone matrix. The cytoplasm in the vicinity of this clear zone 
contains specialized cytoskeletal structures (Holtrop et al., 
1974; Lakkakorpi et al., 1989). The third specialized mem- 
brane area, the ruffled border, faces the actual bone resorp- 
tion site on the bone surface. The resorption lacuna under- 
neath the ruffled border membrane is acidic. This has been 
shown by acridine orange accumulation experiments (An- 
derson et al., 1986; Bar6n et al., 1985) and direct micro- 
puncture measurements (Fallon, 1984). The acidic pH favors 
dissolution of the bone mineral. In addition, proteinases active 
at acid pH and capable of collagen degradation are present 
in osteoclasts (Vaes et al., 1988; Blair et al., 1986). Enzyme 
histochemistry suggests the presenc$ of ATPase activity in 
the plasma membrane of the osteoclast-(Akisaka et al., 1986). 
Baron et al. (1985) found at the ruffled:border of the osteo- 
clast a 100-kD lysosomal membrane polypeptide that showed 
immunological similarity to gastric H+,K+-ATPase. Now we 
report that osteoclasts contain an ATP-dependent proton pump 
that is clearly different from the gastric proton pump and 
from the mitochondrial proton pump but shows considerable 
immunological similarities to the vacuolar type H+-ATPase 
of Neurospora crassa. 

Materials and Methods 

Preparation of Bone Microsomes 

Bone microsomes were prepared from medullary bone of regularly laying 
hens. Medullary bone from the tibia and femur was dissected out and im- 
mediately homogenized in a medium containing 5 mM Tris pH 7.4, 250 mM 
sucrose, 1 mM K2CO3, 1 mM DTT, and 1 mM EGTA in a glass-Teflun 
homogenizer. The homogenate was centrifuged at 1,000 g for 10 rain. The 
supernatant was then centrifuged at 10,000 g for 30 rain and the resulting 
supernatant centrifuged again at 100,000 g for 60 rain. The final pellet was 
suspended in the homogenization buffer. Microsomes from chicken kidney 
medulla were prepared as described earlier for bovine kidney (Gluck et al., 
1984). Gastric vesicles from pig stomach were prepared using the method 
of Saccomani et al. (1977). 

Isolation of Osteoclasts 

Osteoclasts were isolated from the medullary bone of regularly laying hens 
using an earlier described method (Hentunen et al., 1990) with minor 
modifications. Briefly, the tibias and femurs from three hens were quickly 
dissected on ice. Medullary bone was rinsed with PBS to remove bone mar- 
row cells. Small pieces of the medullary bone were then incubated for 60 
rain at 370C with gentle rotation in DME containing 59[ FCS and 1.5 rng/ml 
collagenase (type I; Sigma Chemical Co., St. Louis, MO). After this diges- 
tion the bone pieces with suspended cells were passed through glass wool 
followed by centrifugation 400 g for I0 rain. The pellet was suspended into 
8 ml of DME containing 5% FCS and layered on the top of stepwise Percoll 
gradient (10, 20, 30, and 50% Percoll in isotonic sucrose). After centrifuge- 
tion at 400 8 for 25 rain a band of osteoclasts visible between the first and 
the second interface was collected. Percoll was washed out with PBS by cen- 
trifugation. Small samples from final fractions were used to prepare smears 
that were stained by toluidine blue to count the number of mononuclear and 
multinuclear cells. Osteoclastic microsomes from isolated cells were pre- 
pared by homogenization in a glass homogenizer followed by centrifugation 
as described above for medullary bone microsomes. 
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Proton Transport Measurement 

Proton transport by isolated membrane vesicles was assayed in a dual-beam, 
dual-wavelength spectrophotometer (UV-3000; Shimadzu Corp., Tokyo, Ja- 
pan) by measuring the uptake of acridine orange. The membrane vesicles 
(35 or 70 ttg protein) were suspended in 2 mM Hepes buffer, pH 7.4, con- 
taining 10 ttM acridine orange, 2 mM MgCI2, 1/~M valinomycin, and 175 
mM KCI in a final volume of 1 ml. The reaction was initiated by adding 
1 mM Na2 ATP or Na2 GTP (pH was adjusted to 7.5 with Tris base) and 
the reaction was reversed by 1 ttg of nigericin. 10 #M N-ethylmaleimide 
(NEM), 10/zM oligomycin or 100 #M orthovanadate were added before 
ATP when used. Acridine orange fluorescence was measured with excita- 
tion and emission wavelengths of 492 and 547 nm, respectively. 

Immunoblotting 

Antisera against the 57- and 67-kD subuhits ofNeurospora crassa vacuolar 
ATPase were generous gifts from Dr. B. Bowman (Department of Biology, 
University of California, Santa Cruz) (Bowman et al., 1988a,b). 

Samples of isolated bone microsomes (25 ;tg protein) were fractionated 
by SDS-PAGE and transferred onto nitrocellulose (Towbin, 1979). Nitro- 
cellulose strips were incubated with diluted primary antiserum or preim- 
munoserum (1:600) for 2 h at 370C followed by washing with PBS. After 
a subsequent 30-min incubation (37°C) with swine anti-rabbit immuno- 
globulins, the strips were washed again with PBS and treated with peroxi- 
dase-rabbit antiperoxidase complex (Dakopatts, Copenhagen, Denmark). 
The reaction product was visualized using diaminobenzidine as an electron 
donor and H202 as a substrate. 

Protein and Lysosomal Enzyme Measurements 

Protein was measured by the method of Lowry et al. (1951). Acid phospha- 
tase activity was measured with p-nitrophenyl phosphate as substrate at pH 
4.5 (Bessey et ai., 1946). Aryl-sulfatase was assayed using 40 mmol 2-hy- 
droxy-5-nitrophenyl-salfate as substrate at pH 5.3 (Roy, 1953). ~-Ghicuron- 
idase was assayed usingp-nitrophyenyl-I)-glucuronide as substrate at pH 5.3 
(Kato et al., 1960). 

Immunohistochemistry 

Small pieces of chicken medullary bone or bone from the proximal tibia of 
2-wk-old rats were fixed in ice-cold Carnoy fluid for 4 h and embedded in 
paraffin at 52"C in vacuum. 5-~m sections were stained using peroxi- 
dase-antiperoxidase method as described earlier in detail (V~nanen and 
Parvinen, 1983). 

lmmunoelectronmicroscopy 

Trabecular bone slices from distal femurs of 5-d-old rats were fixed for 3 h 
either with 2% fresh paraformaldehyde containing 0.2% glutaraldehyde or 
1% acrolein with 0.2% glutaraldehyde or 2% glutaraldehyde in phosphate 
buffer out of which paraformaldehyde preserved immtmoreaction best. 10 
5-d-old rats were given 7 ttg parathyroid hormone (PTH)I/10 g body wt 
s.c. (Sigma Chemical Co.) 2 h before being killed. Slices of kidney from 
normal male adult rats and gastric mucosa from fasted ones, were also fixed 
as described. 

Ultracryotomy was performed basically according to Tokuyasu (1973) 
with minor modifications (Laurila et al., 1989). Protein A-gold technique 
was used to label antigens (Roth et al., 1978; G-euze et ai., 1981). The fixed 
tissue sections on the grids were first incubated in fluid gelatin and then 
transferred to PBS containing 0.02 M glyeine at 37"C. From now on all the 
incubations were done at room t e ~  and washed with PBS in between. 
The grids were treated with 1% NaBI-U and then incubated in normal 
sheep serum for 30 rnin. Antisera against 57- or 67-kD subunits of Neu- 

rospora crassa vacuolar H+-ATPase, non-immtmosera, and rabbit antise- 
rum against carbonic anhydrase III (Viiananen et al., 1986), used as a con- 
trol hyperimmunoserum, were all diluted 1:100 in PBS, containing 1% 
sheep serum. Incubation time with primary antibodies was 1 h. Rabbit 
anti-mouse IgG were used as a bridge antibody with the monoclonai anti- 
H+K+-ATPase antibodies (a generous gift from Dr. G. Sachs, Cure Foun- 
dation, Los Angeles, CA). Then they were incubated with protein A-gold 
complexes (5 or 10 nm) for 1 h (Slot and Geuze, 1985). After the immuno- 

1. Abbreviations used in this paper: NEM, N--ethylrnaleimide; PTH, 
parathyroid hormone. 
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Figure I. Proton transport in bone microsomes is ATP dependent 

(a and d) and inhibited by NEM, but not by orthovanadate or 

oligomycin. Kidney microsomes (b) showed similar inhibitor prop- 

erties to bone microsomes, but gastric microsomes (c) were in- 

hibited strongly by vanadate and unaffected by NEM. 

staining the grids were counterstained with uranyl acetate and embedded 
in methyl cellulose. They were examined and photographed with Philips 
410 LS transmission electron microscope. The effect of PTH treatment to 
the 60-kD subunit of vacuolar ATPase was further studied by quantitation 
of immunoreaction in ruffled border membranes of unstimulated and stimu- 

Table L Distribution of Lysosomal Enzymes in Different 
Centrifugation Fractions of Homogenized Medullary Bone 

Acid phosphatase ~-Glucuronidase Arylsulphatase 

SPA % SPA % SPA % 

1,000 g pellet 0.42 39 0.28 55 4.48 60 

10,000 g pellet 3.50 23 1.12 14 20.55 19 

100,000 g pellet 1.14 9 0.24 4 5.98 7 

Final supernatant 0.78 29 0.37 27 2.70 14 

Specific activities (SPA) and percentage of enzyme activity (%) in each fraction 
(nanomoles/minute per milligram protein). 
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Figure 2. a shows fraction of isolated osteoclast from chicken medullary bone used to prepare microsomes for H+-transport measure- 
ments (b), which was sensitive to NEM and resistant to vanadate and oligomycin. Bar: (a) 30/~m. 

lated cells. The length of ruffled border membrane was measured from pho- 
tographs and the number of gold particles was counted from corresponding 

alp, as. 

Results 

To study proton transport in osteoclast-derived membrane 
vesicles, a microsomal membrane fraction from chicken 
medullary bone was prepared. Fig. I a shows that acidifica- 
tion of the bone cell derived microsomes is ATP-driven and 
that the addition of the proton/potassium uncoupler nigericin 
(Nig) rapidly dissipates the pH gradient. Proton transport in 
bone microsomes is sensitive to NEM but insensitive to 
oligomycin and orthovanadate (Fig. 1 a). When acidification 
of microsomes derived from kidney was compared with that 
of the bone cell microsomes, the same pattern of inhibition 
effects with NEM and orthovanadate was observed (Fig. I b). 
In the contrary, proton transport in microsomes derived 
from the parietal cells of the gastric mucosa was abolished 
by orthovanadate but unaffected by NEM (Fig. 1 c). 

We measured activities of some lysosomal enzymes in 
each fraction of differential centrifugation to evaluate possi- 
ble lysosomal contamination in bone microsomes. The re- 
sults are presented in Table I. Clear enrichment of lysosomal 

Figure 3. Immunoblots of bone microsomes 
stained with rabbit polyclonal antiserum raised 
against either the 57-kD (lane A) or the 67 kD 
(lane B) subunit ofNeurospora crassa vacuolar 
H+-ATPase revealed protein bands of 60 and 
70 kD, respectively. Lane C represents preim- 
munoserum to B. 

enzymes is seen in the 10,000 g fraction that also revealed 
almost the same magnitude of proton transport activity with 
GTP as with ATP (ratio 1:1.8). Some activity of lysosomal 
enzymes was found in microsomal pellet (100,000 g) and 
when ATP was replaced by GTP, ITP or UTP, only minor 
proton transport activity was observed in this fraction (Fig. 
1 d). 

To test whether the microsomal fraction from medullary 
bone homogenate represented osteoclast-derived proton 
transport, we isolated osteoclasts from medullary bone (Fig. 
2 a) and prepared microsomal fraction from this cell prepa- 
ration. The percentage of nuclei in multinucleated cells var- 
ied between 70-85 % from all counted nuclei in different ex- 
periments. These osteoclast-derived vesicles revealed the 
same characteristics of proton transport as did the vesicles 
from whole medullary bone microsomes (Fig. 2 b). We also 
prepared microsornal fraction from rat osteoblastic cell line 
UMR 106, using the same homogenization and centrifuga- 
tion protocol as for bone and osteoclasts. No proton trans- 
port activity from these osteoblast-derived microsomes 
could be found (data not shown). 

Western blotting of the bone cell microsome fraction was 
performed with antibodies against two subunits of Neu- 

rospora crassa vacuolar H+-ATPase and by antibodies 
against the gastric H+,K+-ATPase. Fig. 3 shows that the an- 
tiserum against the 57-kD subunit of Neurospora crassa 

H+-ATPase cross-reacted with a single polypeptide of 60 
kD derived from the chicken bone cell microsomes. The an- 
tiserum against the 67-kD subunit of Neurospora crassa 

vacuolar H÷-ATPase also recognized a polypeptide with a 
molecular mass of ~70 kD. Preimmunosera gave negative 
staining reaction, mAbs raised against gastric H+,K÷-ATPase 
did not show any labeling. 

In sections of chicken medullary bone or rat trabecular 
bone the antiserum against the 67-kD subunit of  Neurospora 

crassa vacuolar H÷-ATPase selectively marked osteoclasts 
(Fig. 4). No clear evidence of staining was found in other 
bone cell types or in the bone marrow (Fig. 4, a and b). Con- 
trol sections stained with preimmuneserum were negative 
(Fig. 4 c). The immunoperoxidase staining reaction in the 
chicken medullary bone osteoclasts was distributed diffu- 
sively throughout the cell. Thus no definite evidence for 
polarity of the immunostaining was obtained. Resorbing os- 
teoclasts in the rat trabecular bone, however, showed clear 
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Figure 4. Immunohistochemical staining of chicken medullary (a) 
or rat trabecular bone (b) with antivacuolar H+-ATPase antisera 
showed specific labeling of osteoclasts with clear polarization of the 
reaction product to the ruffled border area, especially in the rat os- 
teoclasts (b). Both sections (a and b) were stained with antiserum 
to the 70-kD subunit of Neurospora crassa vacuolar H+-ATPase. 
c represents preimmunoserum (x320). Bars, 30 #m. 

polarization of immunostaining to the area of the cell faced 
to the bone surface (Fig. 4 b). Immunostaining with antise- 
rum against the 57-kD subunit of vacuolar H+-ATPase gave 
similar, but less intense, results to those stained with the an- 
tiserum against the 67-kD subunit. 

In immunoelectron microscopy of osteoclasts, there was 
labeling at the ruffled border membrane when antiserum 

against either 57- or 67-kD polypeptide ofNeurospora crassa 

vacuolar ATPase was used (Fig. 5, a and b). Little labeling 
was found in the Golgi area or ER (Fig. 5 g). Secretory vesi- 
cles were labeled very faintly. The ampuUary secretory vesi- 
cles showed a little stronger labeling than the small ones 
(Fig. 5, e and f )  but still much less than the ruffled border 
membrane where most labeling was seen. Nuclei, lyso- 
somes, or basal or healing zone plasma membranes or the 
extracellular matrix were totally devoid of immunoreaction 
(Fig. 5). 

PTH treatment increased strongly both the 57- and 67-kD 
vacuolar H+ATPase antibody reaction at the osteoclast 
ruffled border (Fig. 5, c and d). At the ruffled border area 
the increase of immunoreaction of 57-kD antigen compared 
with nontreated animals was from 0.84 + 0.23 gold parti- 
cles/#m (n = 6) to 1.49 + 0.58/#m (n = 11) (P < 0.05, 
t tes0. In other areas of osteoclasts, labeling remained simi- 
lar to that in untreated osteoclasts. 

When monoclonal antiserum against gastric H+K+-ATPase 
was used no labeling was seen in ostoclasts, not even at the 
ruffled border membrane (Fig. 6 a). Instead in rat parietal 
cells this antiserum gave intense labeling at the tubulovesicu- 
lar and apical villus membranes (Fig. 6 b). 

Kidney cells of the inner stripe of outer medulla, identified 
by ultrastructural criteria as intercalated cells, were densely 
labeled at the apical plasma membrane with antibodies against 
both 57- and 67-kD subunits of the vacuolar H+-ATPase of 
Neurospora crassa (Fig. 7 a). In this area of the kidney no 
labeling was seen at the basal membrane of the intercalated 
cells (Fig. 7 b). Neither was there any labeling seen in the 
principal cells. 

Nonimmune serum and antiserum against carbonic anhy- 
drase [ ]  used as controls did not give any labeling in os- 
teoclasts, parietal cells or intercalated cells. 

Discussion 

Vacuolar ATPase represents a new class of proton pumps 
found in membranes of acidic compartments in many types 
of eukaryotic cells (Mellman et al., 1986). The similar type 
of proton pumping ATPase has been extensively character- 
ized from the vacuolar membranes of Neurospora crassa 

(Bowman et al., 1988a,b). Two major polypeptides of mo- 
lecular masses 70 and 60 kD are found in all vacuolar ATPases 
known so far and it has been previously shown that antibod- 
ies against these subunits show considerable cross-reactivity 
with comparable polypeptides of other vacuolar ATlases 
(Bowman et al., 1986; Mandala et al., 1986). Immunoblot- 
ting experiments from our isolated microsomal membrane 
fraction revealed also respective protein bands suggesting 
that immunologicaUy related subunits are also found in chicken 
osteoclasts. This was further supported by immunohisto- 
chemistry, which revealed intense staining of chicken medul- 
lary bone osteoclasts. Immunohistochemistry also suggested 
that in bone, osteoclasts are the only cells with considerable 
amount of immunoreaction. Clearly polarized immunoreac- 
tion in rat osteoclasts and specific labeling at apical membrane, 
ruffled border, support the assumption that antibodies against 
5% and 67-kD subunits of Neurospora crassa H+-ATPase 
also label H+-translocating ATPase in osteoclasts. 

The significant increase of labeling in ruffled border mem- 
brane after PTH treatment is in further agreement that 
vacuolar type H+ATPase plays an important role in bone 
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Figure 5. Immuncelectron mi- 
croscopy of rat bone with vae- 
udar H+-AT~se antisera iden- 
tiffed both the 67- (a) and the 
57-kD (b) subuait at the ruled 
border membrane area of the 
osteoelast. This staining was 
further enhane~ by lrrl-I treat- 
ment of the rats: immunolo- 
calization of the 67- (c) and 
the 57-kD subunit (d). Weak 
staining reaction was observed 
in intraeellular vacuoles and 
in Golgi vesicles but not in 
basolateral plasmamembrane: 
57-kD antiserum (e-g). Hy- 
perimmunoserum against car- 
bonic anhydrase HI used as an 
additional control showed no 
reaction (h). Bars, 1 #m. 

resorption. On the other hand, selective labeling of apical 
membrane of kidney intercalated cells of the inner stripe of 

outer medulla with Neurospora crassa vacuolar H+-ATPase 
antibodies supports the recent finding of Blair et al. (1989), 
that the proton pump in osteoclast is similar, if  not identical, 
to the proton pump in kidney cells. 

To characterize functional properties of osteoelastic pro- 

ton pump, we isolated membrane vesicles from hen os- 
teoclasts and studied their H+-transport activity. We used 
medullary bone of regularly egg-laying hens as a source of 
tissue because of its high number of osteoclasts. H+-trans - 
port properties of bone microsomal membrane fraction were 
compared with gastric microsomes and kidney microsomes 
that are known to contain H+K+-ATPase and vacuolar AT- 
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Figure 6. Antibodies against gastric H+K+-ATPase did not show any labeling in the osteoclasts (a), but labeled intensively the apical 
membranes of rat gastric parietal cells (b). Bars, 1 #m. 

Pase, respectively (Saccomani et al., 1977; Gluck et al., 
1984). Bone cell microsomes and kidney microsomes showed 
almost identical inhibition patterns with NEM and ortho- 
vanadate, whereas the microsomes derived from the parietal 
cells of the gastric mucosa showed profound differences. Also, 
in immunoelectron microscopy no reaction was seen at the 
apical membrane of the osteoclasts, whereas strong reaction 
was seen at the apical membrane of the parietal cells when 
monoclonal antibodies against gastric H+,K+-ATPase were 
used. Thus, the possibility of an E~E2 type of proton pump 
being responsible for the acidification of the bone cell micro- 
somes is ruled out. 

A recent observation that ruffled border membrane of the 
osteoclasts and lysosomal membrane share the same 100-kD 
antigen, which also cross-reacts with H+,K+-ATPase, sug- 
gested that extracellular lacuna can function as a large sec- 
ondary lysosome and the proton pumps in lysosomes and at 
the ruffled border could be identical (Baron et al., 1985). As 
mentioned above our results with isolated bone microsomes 
and mAbs against H+,K+-ATPase are against the presence 
of H+,K+-ATPase in the ruffled border membrane. Lyso- 
somal enzymes were clearly concentrated in the premicro- 
somal pellet and vesicles from this pellet could use GTP 
almost as well as ATP as a substrate for H+-transport whereas 

microsomal pellet showed only traces of H+-transport with 

other substratcs than ATP. Previous study (Harikumar and 

Reeves, 1983) has suggested that lysosomal proton pump can 

use GTP instead of ATP. However, the possibility that lyso- 

somal fraction could convert GTP to ATP prevents us from 

making firm conclusions about the substrate specificity of 
lysosomal H+-pump. Although our results clearly show that 
GTP could not replace ATP in the bone microsome prepara- 
tion like in lysosome enriched pellet, we can't rule out the 
functional or structural identity of bone mierosomal H* pump 
from the one present in lysosomes. So far, sequenced vacuo- 
lar ATPases from different sources have shown remarkable 
homology in their primary structures although some differ- 
ences in subunlt composition seem to occur (Nelson, 1989). 
Insensitivity of H+-transport in bone microsomes to oligo- 
mycin ruled out the possibility of marked mitochondrial con- 
tamination in our microsomal preparations. 

The question how well our bone cell-derived microsomes 
represent osteoclasts needs some further comments. First, 
the fact that vacuolar ATPase antibodies detect only os- 
teoclasts at tissue level and that both 60- and 70-kD antigens 
are enriched to our microsomal membrane fraction that 
shows also active proton transport of vacuolar type, support 
the conclusion that our H+-transporting vesicles are derived 
mostly from osteoclasts. Secondly, membrane vesicle frac- 
tion prepared from cultured osteoblast-like cells (UMR 106 
cells) did not reveal any proton transport activity. Thirdly, 
our experiments with membrane vesicles derived from iso- 
lated, highly purified, osteoclasts revealed also NEM-sen- 
sitive and vanadate-resistant H+-transport, similar to that 
observed in medullary bone microsomes. 

The selective labeling of the apical membranes of the os- 
teoclast in trabecular bone and the above mentioned charac- 
teristics of proton transport in medullary bone cell-derived 

Figure Z In rat kidney me- 
dulla antiserum against the 67- 
kD subunit of H+-ATPase la- 
beled apical plasmamembrane 
of intercalated cells (a), but 
not basolateral plasmamem- 
brahe (b). Bars, 1 ~tm. 
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microsomes strongly support the view that the observed ac- 

tive proton transport was associated with osteoclast derived 

membrane vesicles. 

These data lead us to conclude that a vacuolar type 

H+-ATPase is located at the ruffled border membrane of the 

active osteoclast and is responsible for acidification of the ex- 

tracellular resorption lacuna during bone resorption. 
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