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Junctions and interfaces consisting of unconventional superconductors provide an excellent exper-

imental playground to study exotic phenomena related to the phase of the order parameter. Not only does

the complex structure of unconventional order parameters have an impact on the Josephson effects, but it

also may profoundly alter the quasiparticle excitation spectrum near a junction. Here, by using

spectroscopic-imaging scanning tunneling microscopy, we visualize the spatial evolution of the LDOS

near twin boundaries (TBs) of the nodal superconductor FeSe. The π=2 rotation of the crystallographic

orientation across the TB twists the structure of the unconventional order parameter, which may, in

principle, bring about a zero-energy LDOS peak at the TB. The LDOS at the TB observed in our study, in

contrast, does not exhibit any signature of a zero-energy peak, and an apparent gap amplitude remains finite

all the way across the TB. The low-energy quasiparticle excitations associated with the gap nodes are

affected by the TB over a distance more than an order of magnitude larger than the coherence length ξab.

The modification of the low-energy states is even more prominent in the region between two neighboring

TBs separated by a distance ≈7ξab. In this region, the spectral weight near the Fermi level (≈� 0.2 meV)

due to the nodal quasiparticle spectrum is almost completely removed. These behaviors suggest that the TB

induces a fully gapped state, invoking a possible twist of the order parameter structure, which breaks

time-reversal symmetry.

DOI: 10.1103/PhysRevX.5.031022 Subject Areas: Condensed Matter Physics,

Superconductivity

I. INTRODUCTION

When two superconductors are in close proximity, they
are influenced by each other via the tunneling of Cooper
pairs. The Cooper pair tunneling results in the flow of a
superconducting Josephson current, which has been stud-
ied for decades and is used in various superconducting
quantum devices [1]. The Josephson current is governed by
the phase difference of the order parameters of the two
superconductors. Therefore, Josephson junctions consist-
ing of unconventional superconductors, where the super-
conducting order parameter changes its sign depending on
the momentum direction, serve as a unique platform
where novel phase-related phenomena, e.g., spontaneous

formation of half-flux quanta in a trijunction of cuprate
superconductors [2], take place. Compared to the well-
investigated Josephson currents, the spatial and energy
dependence of the superconducting order parameter and
quasiparticle states around these junctions remain to be
understood.
Recent progress in STM and STS technologies opens up

a way to directly visualize the spatial variation of the
electronic states in superconducting heterostructures [3–5].
However, STM or STS studies on superconducting junc-
tions made of unconventional superconductors are still
demanding. There are two reasons that make it difficult
to study unconventional junctions. First, it is often chal-
lenging to artificially fabricate well-defined junctions of
unconventional superconductors. Second, in most uncon-
ventional superconductors, surfaces are not electronically
neutral; the resultant charge accumulation at the surfaces
prevents STM or STS from accessing bulk superconducting
properties. In this study, we solve these problems by
inspecting the twin boundaries (TBs) in the nodal iron-
based superconductor FeSe [6,7].
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The TB is a crystallographic plane in a crystal shared by
two neighboring domains with one being the mirror image
of the other. The TBs are often formed by a tetragonal-to-
orthorhombic structural phase transition, which reduces the
fourfold (C4) symmetry at high temperature to twofold (C2)
symmetry at low temperature. In such a case, the ortho-
rhombic crystal may contain the TBs parallel to the (110)
plane, which act as an atomically well-defined junction.
Some unconventional-superconductor-related materials,
such as YBa2Cu3O7−δ, AEðFe1−xCoxÞ2As2 (where AE is
alkali-earth element) and NaFeAs, do form TBs upon the
tetragonal-to-orthorhombic transition that were identified
by STM or STS measurements [8–10]. However, unavoid-
able surface state formation and/or an insufficient amount
of chemical doping prevent the STM or STS measurements
from accessing superconductivity near TBs in these
materials.
FeSe (superconducting transition temperature Tc ≈ 9 K

[11]) is a promising candidate for studying the effects of
TBs on unconventional superconductivity by STM or STS.
Among various iron-based superconductors, FeSe has the
simplest crystal structure [Fig. 1(a)] in which electronically
neutral two-dimensional FeSe layers are stacked along the
c axis [11]. This guarantees the perfect cleaved surface,

which is electronically neutral. The tetragonal-to-ortho-
rhombic structural phase transition, which is likely caused
by the orbital ordering [12–17], occurs at Ts ≈ 90 K and
the TBs are spontaneously formed in the orthorhombic
phase as illustrated in Fig. 1(b).
Band-structure calculations show that the Fermi surface

of FeSe consists of hole cylinders around the zone center
and compensating electron cylinders around the zone
corner [19,20]. Several measurements, including penetra-
tion depth, quasiparticle interference, thermoelectric
response [7], quantum oscillations [14,21,22], and angle-
resolved photoemission spectroscopy (ARPES) [12–15,23]
reveal that the Fermi surface in the orthorhombic phase
consists of one hole and one (or two [14,22]) electron
bands, both of which have very low carrier densities. The
V-shaped tunneling spectrum [6], quasilinear temperature
dependence of the penetration depth down to 80 mK [7],
and the sizable residual thermal conductivity at T → 0 in
clean crystals [7] all provide strong evidence that FeSe is an
unconventional superconductor with line nodes in the
superconducting gap.
The TBs in FeSe have been studied by low-temperature

(4.2 K) STM or STS in the films grown by molecular beam
epitaxy, and the suppression of superconductivity by the

FIG. 1. (a) Crystal structure of FeSe visualized using the VESTA program [18]. (b) Schematic top view of the atomic arrangement near
the TB of FeSe (not in scale). Green filled circles and orange open circles denote topmost Se and Fe atoms, respectively. Se atoms
beneath the Fe layer are not shown. (c) A constant-current STM image of the cleaved (001) surface of FeSe at 1.5 K showing the TB
running from bottom left to top right. Crystallographic axes parallel to the Fe-Fe direction are shown by white arrows (b > a). The two

insets show a magnified image of the defect (8.8 × 8.8 nm2) in the upper-left or lower-right domain. Note that the pattern is rotated by
π=2 between the two domains. The setup conditions for imaging are Vs ¼ þ95 mV and It ¼ 10 pA. (d) Zero-bias conductance image
gðr; E ¼ 0Þ at 1.5 K showing vortices. A magnetic field of 1 T is applied along the c axis. The tip is stabilized at Vs ¼ þ10 mV and
It ¼ 100 pA. A bias modulation amplitude Vmod ¼ 0.21 mVrms is used for spectroscopy. (e) A low-bias STM image at 1.5 K taken with
Vs ¼ þ20 mV and It ¼ 10 pA. The field of view for (c)–(e) is the same. (f) An atomic-resolution STM image near the TB, which is
running vertically in the center of the field of view. Vs ¼ þ95 mV and It ¼ 100 pA.
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TBs has been reported [24]. We perform STM or STS
measurements at much lower temperature (≈0.4 K) in
vapor-grown single crystals to examine the details of the
superconducting gap and quasiparticle excitations near
the TBs.

II. EXPERIMENTAL METHOD

STM or STS experiments are conducted in a constant-
current mode with a commercial ultrahigh vacuum very
low temperature STM (UNISOKU, USM-1300) modified
by ourselves [25]. The samples used in this study are high-
quality bulk single crystals grown using the vapor transport
method [26]. Superconducting transition temperature
defined at zero resistance is about 9 K. These crystals
are undoped and stoichiometric, enabling us to investigate
uniform and clean TBs. Samples are cleaved in situ at
liquid N2 temperature to prepare clean and flat (001)
surfaces. Immediately after cleaving, the samples are
transferred to the STM unit kept below 10 K. We use
electrochemically etched polycrystalline tungsten wires for
the scanning tips, which were cleaned and sharpened in situ
by field evaporation using field-ion microscopy. The
tunneling conductance gðr; EÞ≡ dIt=dVsðr; EÞ reflecting
the LDOS at a position r and energy E is acquired by the
standard lock-in technique. Here, It and Vs denote the
tunneling current and the sample-bias voltage, respectively.

III. RESULTS AND DISCUSSION

A. Imaging the twin boundary in FeSe

Figure 1(c) depicts a STM image of the cleaved surface
of an FeSe single crystal at temperature T ¼ 1.5 K. The
image demonstrates the extremely small concentration of
defects, i.e., about one defect per 5000 Fe atoms in the
(001) plane. There is a shallow “groove” running along the
[110] direction of the Fe lattice across which the unidi-
rectional feature around the point defect is rotated by π=2,
indicating that the groove represents the TB. We also
observe that the elongated vortex cores [6], which are
imaged by mapping gðr; E ¼ 0Þ in a magnetic field, are
rotated by π=2 across the TB [Fig. 1(d)]. What is intriguing
is that the vortices trapped at the TB are not elongated along
the TB, demonstrating that the critical current density
across the TB is comparable to that of the bulk. The
STM image of the TB at a lower bias voltage is not a groove
but a “ridge” [Fig. 1(e)]. This suggests that the apparent
corrugations near the TB are primarily associated with the
electronic-state variations; the actual surface topography
near the TB may be essentially flat. A magnified STM
image near the TB is shown in Fig. 1(f). A regular square
lattice of the topmost Se atoms is well maintained even in
the close vicinity of the TB. These observations indicate
that the TB in FeSe is an atomically sharp superconducting
junction with minimal strain to the lattice. (A detailed

argument regarding the absence of strain is given in
Appendix A.)

B. Local density of states across the twin boundaries

We examine the LDOS evolution across the TB by
taking a series of gðr; EÞ along the line indicated in
Fig. 2(a). Here and in the following, we are interested
only in the evolution of gðr; EÞ along the x axis running
perpendicular to the TB leaving the y coordinate constant,
hence, gðx; EÞ. Figure 2(b) shows an intensity plot of
gðr; EÞ. Individual spectra taken at representative points are
depicted in Fig. 2(c). At the position far away from the TB
(I), gðr; EÞ exhibits a superconducting gap with clear
quasiparticle peaks at ≈� 2.5 meV. In addition to this
main feature, there is a shoulder outside of the main peaks
(≈� 3.5 meV), which may represent multiple supercon-
ducting gaps [7]. In contrast to the case of fully gapped
superconductors in which gðr; EÞ ¼ 0 in an extended E
region near E ¼ 0, gðr; EÞ in FeSe approaches zero only for
E→ 0 and is apparently V-shaped, indicating the presence
of line nodes [6]. Even right at the TB (III), the residual
LDOS at E ¼ 0 is negligibly small, indicating that the TB
hardly gives rise to a pair-breaking effect. In the vicinity of
the TB, the quasiparticle peak and the shoulder associated
with the superconducting gap diminish, and instead, sharp
particle-hole symmetric peaks appear at E≈�1.5meV. It is
important to note that the spatial evolution of the spectrum
does not accompany the smooth change in the quasiparticle-
peak energy; instead, the 1.5-meV peak coexists with the
2.5-meV peak in the crossover region (II). This means that
the 1.5-meV peak is not caused by the suppression
of the superconducting gap due to the TB but represents
the bound state generated by the TB. The 1.5-meV peak is
observed over about 5 nm from the TB, which is close to the
“averaged” in-plane coherence length ξab≈5nm obtained
from the upper critical field Hc2ð∥cÞ≈15T [7,21].
Another interesting observation is that low-energy quasi-

particle excitations are suppressed over a very long distance
from the TB. High-resolution gðr; EÞ spectra at the posi-
tions of (I), (II), and (III) are plotted in Fig. 2(d). While the
overall V-shaped behavior is maintained, the exact shape
near the bottom of the gap depends on the position. In order
to examine this behavior, we fit an empirical power law
gðr; EÞ ∝ jEjα to the low-energy (jEj < 0.5 meV) spectra
and plot the exponent α as a function of the distance from
the TB at x ¼ 0 [Fig. 2(e)]. Except close to the TB
(jxj≲ ξab), where the 1.5-meV peaks dominate, α increases
gradually with decreasing x by about ≈40%. This implies
the suppression of the low-energy quasiparticle excitations,
most probably due to the opening of a small gap induced by
the TB. The salient feature is that α continues to change
even at jxj > 10ξab (≈50 nm), indicating an unexpectedly
long-distance influence of the TB.
The long-distance TB effect on the LDOS can be seen in

a more dramatic way in two junctions in series formed by
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two TBs. As shown in Fig. 3(a), we find an area where two
TBs are running parallel to each other. The distance
between the TBs is 34 nm, which is about 7 times larger
than ξab. Figure 3(b) shows the spatial evolution of gðr; EÞ
across the double TBs. Individual spectra at representative
points are plotted in Fig. 3(c). The overall spectral features,
the 2.5-meV peak, the 3.5-meV shoulder, and the 1.5-meV
peak observed near a single TB are all reproduced
(positions I, II, and III). However, the low-energy spectrum
taken inside the central domain (position IV) shows a
striking anomaly that is absent in the case of a single TB.
Figure 3(d) depicts gðr; EÞ spectra at low energies. It is
clear that, in between the double TBs, there is a finite
energy range where gðr; EÞ is almost completely zero. The
noticeable difference of the gap structure between inside
and outside the central domain is clearly seen in Fig. 3(e),
which shows the exponent α plotted as a function of the
distance from one of the TBs; α is strongly enhanced in
the central domain and peaks at the middle of the domain.
The large power α ≈ 4, which is ≈3 times larger than the
values at large x, is essentially indistinguishable from an
exponential energy dependence. This apparent large power
again corroborates the finite gap opening in the excitation
spectrum of the quasiparticle.

C. Possible time-reversal-symmetry-broken state

near the twin boundary

The above observations, the TB-induced bound states at

finite energies and the suppression of the low-energy

quasiparticle excitations over a length scale much longer

than ξab, suggest a novel role of the TB in an unconven-

tional superconductor. In order to understand the origin of

these anomalies, it is important to examine the structure of

the gap node inmomentum space.We note that the so-called

horizontal node [27–29] is unlikely in FeSe. If it exists, the

horizontal node is on a hole cylinder and requires strong

dispersion along the c axis associated with the mixing of the

dz2 orbital to the band with dxz or dyz character near the Z

point [27–29]. However, recent a ARPES experiment has

revealed that the hole cylinder is essentially two dimen-

sional even though there is a finite dispersion along the c

axis; its orbital character keeps dxz or dyz everywhere [14].

Moreover, if the horizontal node were the case, there would

be no way to alter the superconducting gap across the TB,

thereby nodal excitations should not be affected at all. This

is apparently contradictory to the suppression of low-energy

quasiparticle excitations observed over long distances from

the TBs [Figs. 2(e) and 3(e)].

(a)

(b)

(e)

(c)

(d)

Low

High

0 

7 nS 

50 nm

(III) (II) (I) (I)

(II)

(III)

(I)

(II)

(III)

(II’)

(II’)

(II’)

FIG. 2. (a) A constant-current STM image at 1.5 K near a TB taken at Vs ¼ þ95 mV and It ¼ 100 pA. (b) Intensity plot of gðr; EÞ
along the yellow broken line in (a). Vs ¼ þ20 mV, It ¼ 100 pA, and Vmod ¼ 0.05 mVrms. Spectroscopic measurements are done at
0.4 K. (c) Tunneling spectra at the representative points indicated in (a). Positions (II) and (II0) are symmetric about the TB.
Vs ¼ þ20 mV, It ¼ 100 pA, and Vmod ¼ 0.05 mVrms. (d) High-resolution tunneling spectra at low E taken at the same positions as for
(c). Vs ¼ þ10 mV, It ¼ 100 pA, and Vmod ¼ 0.025 mVrms. Open symbols and solid lines denote experimental data and fitted results,
respectively. Apparent kinks are observed at ≈� 0.5 mV regardless of the positions. The origin of these features is unclear. The fitting is
made below this energy scale. Spectra shown in (c) and (d) are shifted vertically for clarity. (e) The exponent α [gðr; EÞ ∝ jEjα]
determined from the fit to the experimental data in the range of jEj ≤ 0.5 meV plotted as a function of the distance from the TB.
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By contrast, line nodes along the c axis are not only
consistent with the strong in-plane anisotropy observed in
the superconducting state, such as an elongated vortex core
[6], but may also bring about nontrivial effects in the
superconducting gap associated with the phase change
across the TB, as we show below. Recent high-resolution
laser ARPES measurements of FeSe indicate that the gap
opening on the hole cylinder is isotropic in plane [30],
implying that the line nodes are present on the electron
cylinder. In this case, there are two possible phase struc-
tures for symmetry of the superconducting gap across a TB,
as illustrated in Fig. 4, where the global phase of the
superconducting gap is either fixed to the crystallographic
axis [Fig. 4(a)] or flipped across the TB [Fig. 4(b)].
Note that the sign of either the nodal gap or the nodeless

gap is reversed between the two domains in Figs. 4(a)
or 4(b), respectively. This means that the amplitude of at
least one of the gaps vanishes at the TB, giving rise to the
zero-energy quasiparticle state that should appear as a
zero-energy peak in gðr; EÞ. This argument applies not only
for the particular phase structure shown in Fig. 4 but also
for a general case in which nodal and nodeless gaps reside
on multiple Fermi surfaces.

The observed bound-state peak at 1.5 meV apparently
contradicts this conjecture and suggests instead that the
TB induces an additional gap component that shifts the
position of a zero-energy peak to a finite energy. We point
out that, as long as the induced gap is real, a sum of the bulk
gap and the TB-induced gap reverses its sign at a finite
distance from the TB and still gives rise to a zero-energy
peak. However, as shown in Fig. 2(b), we do not observe a
zero-energy peak in gðr; EÞ over more than 100 nm from
the TB. Thus, we speculate that the induced gap has an
imaginary component, which means that time-reversal
symmetry is locally broken near the TB. In such a case,
bound state peaks are located at finite energies E ¼
�Δ cosðδφ=2Þ because the phase shift δφ on the TB is
reduced from π [31,32]. Here, Δ is the amplitude of the
superconducting gap. The possibility of the TB-induced
time-reversal-symmetry-broken state has been argued in d-
wave YBa2Cu3O7−δ with a small s-wave component [33],
and the splitting of the zero-energy peak has been argued
theoretically [34–36]. However, the experimental observa-
tion is still lacking.
The important question here is whether this time-

reversal-symmetry-breaking scenario can account for the
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(d)
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(I)

(II)

(III)

(I)

(II)

(III)

(IV)

(IV)

(IV)

(e)

FIG. 3. (a) Constant-current STM image at 1.5 K with double TBs taken at Vs ¼ þ95 mV and It ¼ 10 pA. (b) Intensity plot of gðr; EÞ
along the yellow broken line in (a). Positions of the TBs are indicated by broken lines. A low-conductance position at ≈ − 47 nm is due
to a point defect nearby. Vs ¼ þ20 mV, It ¼ 100 pA, and Vmod ¼ 0.05 mVrms. Spectroscopic measurements are done at 0.4 K.
(c) Tunneling spectra at the representative points I–IV indicated in (a). Vs ¼ þ20 mV, It ¼ 100 pA, and Vmod ¼ 0.05 mVrms. (d) High-
resolution tunneling spectra at low E taken at the same positions as for (c). Vs ¼ þ10 mV, It ¼ 100 pA, and Vmod ¼ 0.025 mVrms.
Symbols and solid lines denote experimental data and fitted results, respectively. Spectra shown in (c) and (d) are shifted vertically for
clarity. (e) The exponent [gðr; EÞ ∝ jEjα] determined by the fitting in the range of jEj ≤ 0.5 meV plotted as a function of the distance
from one of the TBs. The data of the single TB are shown by a red line for reference.
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suppression of the low-energy quasiparticle excitations
over a long distance from the TBs. In order to substantiate
the relevance, we calculate the spatial evolution of the
LDOS for a model order parameter with broken time-
reversal symmetry near TBs. We adopt a minimal model
that includes the C2 symmetry, the nodal gap, and the
broken time-reversal symmetry near TBs. We assume that
the global phase of the order parameter is fixed to the
crystallographic axis; that is, the nodal component changes
its sign across a TB as shown in Fig. 4(a).
The C2-symmetric order parameter is represented by a

sum of the isotropic component Δiso and the fourfold nodal
component Δ4ϕ sinð2ϕÞ,

ΔðxÞ ¼ Δiso þ Δ4ϕðxÞ sinð2ϕÞ; ð1Þ

where ϕ is the azimuthal angle in the momentum space; see
Fig. 4. The spatial variation ofΔ4ϕ around a TB at x ¼ x0 is

modeled by the form

Δ4ϕðxÞ ¼ Δ
bulk
4ϕ ftanh½ðx − x0Þ=ξ� cos θðxÞ þ i sin θðxÞg;

ð2Þ
where the x axis is taken to be perpendicular to the TB and

Δ
bulk
4ϕ is the amplitude of Δ4ϕ in the bulk. The phase φ of

Δ4ϕðxÞ equals θðxÞ for x − x0 ≫ ξ and π − θðxÞ for

−ðx − x0Þ ≫ ξ. The phase variable θðxÞ is assumed to
take a nonvanishing value near the TB and exponentially

decay with another length scale ~ξ. It is important to note

that the characteristic length ~ξ for the local time-reversal
symmetry breaking can be much longer than the coherence

length ξ [33]. (The derivation of the length ~ξ is given in
Appendix B.) Thus, Eq. (2) indicates the spatial variation of
Δ4ϕ for the amplitude over the coherence length ξ and for

the phase over another longer length scale ~ξ. To account for
low-energy excitations near the nodes observed in the
LDOS, we focus on the electron cylinder with nodal gaps

by setting the parameters Δiso ¼ 0.2Δ0 and Δ
bulk
4ϕ ¼ 0.8Δ0.

As a model order parameter with a TB at x ¼ x0 ¼ 0, we

take θðxÞ ¼ ðπ=6Þsechðx=~ξÞ, with ~ξ ¼ 5ξ, which gives

(a) (b)

FIG. 4. Schematic illustration of the phases of the superconducting gaps across the TB shown by the red line. Top panel represents the
iron lattice near the TB together with the momentum-space phase structure of the superconducting gaps opening at multiple Fermi
cylinders, a hole cylinder at the center, and electron cylinders at the corner of the Brillouin zone (black broken square). Different colors
(red and blue) denote different signs of the phase. We assume that the gap node exists on the electron cylinder and the sign reversal is
between the main lobe of the gap on the electron cylinder and the gap on the hole cylinders, but the argument given in the text applies not
only for this particular case but also for other cases. There are two possibilities: the phase structure is either fixed to the lattice (a) or
flipped across the TB (b). In the former case, the nodal component Δ4ϕ should change its sign across the TB, whereas the sign of the
isotropic component Δiso (either due to the fully gapped Fermi cylinder or associated with the C2 symmetry of the nodal gap) should be
reversed in the latter case.
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Δ4ϕðx ¼ 0Þ ¼ ði=2ÞΔbulk
4ϕ . The order parameter Δ4ϕðxÞ is

shown in Fig. 5(a), where jΔ4ϕj changes with the length

scale ξwhile ImðΔ4ϕÞ decays with the longer length scale ~ξ.
The phase φ abruptly changes near the TB and gradually
approaches 0 or π. Using this order parameter, we calculate
the spatial dependence of the LDOS within the quasiclass-
ical approximation [37]. Figure 5(b) shows the global
peak structure of the LDOS at representative points
calculated with energy smearing of η ¼ 0.03Δ0. Far from
the TB, namely in the bulk (I), the LDOS has peaks at

jEj ¼ Δ
bulk
4ϕ � Δiso. On the TB (III), the peaks observed in

the bulk are suppressed, and alternative peaks appear at
E ≈�0.4Δ0, which correspond to the bound states whose
energies are shifted from E ¼ 0 due to the local time-
reversal symmetry breaking in Δ4ϕ. The bound-state peaks

disappear at x ¼ 3ξ (II) since their wave functions decay
into the bulk with the length scale ξ. These features of the
calculated LDOS arising from the bound states are con-
sistent with the LDOS peaks observed at E ≈�1.5 meV by
STM. In Fig. 5(c) we show the LDOS at lower energy scale,
which has been calculated with a much smaller smearing
factor η ¼ 0.001Δ0. The clear V-shaped LDOS in the bulk
(I) changes to the U-shaped LDOS upon approaching the
TB, in agreement with the increase of the exponent α

evaluated from the experimental data [Fig. 2(e)]. The low-
energy LDOS is finite at x ¼ 0 (III) and x ¼ 3ξ (II) because

low-energy quasiparticles with momenta along the nodal
directions of the bulk gap can linger over long distance and
reach the TB, even though the local gap,

jΔðxÞj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ΔisoþReðΔ4ϕÞsinð2ϕÞ�2þ½ImðΔ4ϕÞsinð2ϕÞ�2
q

;

ð3Þ

does not vanish near the TB where ImðΔ4ϕÞ ≠ 0.

We also calculate the LDOS for double TBs located at
x ¼ �x0 ¼ �3.5ξ, taking the model order parameter of the
form

Δ4ϕðxÞ ¼ Δ
bulk
4ϕ ftanh½ðx − x0Þ=ξ� tanh½ðxþ x0Þ=ξ� cos θðxÞ

þ i sin θðxÞg; ð4Þ

shown in Fig. 5(d). We assume that the distance 2x0
between the TBs is in the range ξ ≪ x0 ≲ ~ξ. The phase
θðxÞ is an even function of x and takes a maximum value at
x ¼ 0. The global peak structure of the LDOS and its low-
energy blowup are shown for representative points along
the x direction in Figs. 5(e) and 5(f), respectively. The large
peaks at jEj ≈ 0.4Δ0 on a TB (III) and the small peaks at
jEj ≈ 0.2Δ0 at the middle point x ¼ 0 between the TBs (IV)
in Fig. 5(e) originate from the same dispersive mode of
bound states at a TB. The calculated LDOS spectrum at
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FIG. 5. (a) A model order parameter Δ4ϕðxÞ with a TB located at x ¼ 0. LDOS in the bulk (I), at x ¼ 3ξ (II), and on a TB (III), which
are calculated with an energy smearing of η ¼ 0.03Δ0 (b) and η ¼ 0.001Δ0 (c). The lines (I) and (II) have offsets g0 and 0.5g0 in (b) and
0.3g0 and 0.15g0 in (c), respectively, where g0 is the density of states in the normal state at the Fermi energy. (d) A model order parameter
Δ4ϕðxÞ with double TBs located at x ¼ �3.5ξ. The LDOS in the bulk (I), at x ¼ 7ξ (II), on a TB (III), and at the middle point between

double TBs (IV), which are calculated with η ¼ 0.03Δ0 (e) and η ¼ 0.001Δ0 (f). The lines (I), (II), and (III) have offsets g0, ð2=3Þg0, and
ð1=3Þg0 in (e) and 0.3g0, 0.2g0, and 0.1g0, in (f).
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x ¼ 0 between the double TBs (IV) in Fig. 5(f) exhibits a
clear energy gap extending over the region jEj≲ 0.1Δ0,
reflecting the existence of a larger local gap at x ¼ 0, where
the bulk low-energy quasiparticles cannot reach. We con-
clude that the local gap enhanced by the local time-reversal

symmetry breaking near TBs over the length scale ~ξ can
explain the strong suppression of the LDOS between the
two TBs observed in our STM or STS experiments.

IV. SUMMARY

We report on the visualization of the atomic scale
variation of the quasiparticle states of the nodal super-
conductor FeSe near TBs that enforce a sign inversion of
the superconducting gap. In contrast to the expectation that
the sign inversion generates a zero-energy quasiparticle
bound state near the TB, the TB-induced quasiparticle states
are not at zero but at finite energies E ≈�1.5 meV.
Moreover, the low-energy excitation spectrum is affected
by the TB over an extremely long distance, which is a few
tens of times larger than ξab. An even more dramatic change
in the low-energy spectrum is detected in the region between
double TBs separated by a distance ≈7ξab, where the
quasiparticle weight near the Fermi energy is almost com-
pletely removed in the energy range jEj≲ 0.2 meV. These
observations are qualitatively reproduced by a phenomeno-
logical model that assumes that the TB induces locally a
superconducting state that breaks time-reversal symmetry.
Our results suggest several important directions for

future studies. Although several models that predict time-
reversal-symmetry-broken superconducting state [33,38–
40] have been proposed, the microscopic mechanisms
and the relevance to the TB in FeSe should be clarified
by future theoretical studies. It is also interesting to go
beyond the quasiclassical approximation because FeSe is a
unique superconductor whose Fermi energy is of the same
order as the superconducting gap, placing this system in
the crossover regime between Bardeen-Cooper-Schrieffer
(BCS) and Bose-Einstein condensation (BEC) limits [7].
Experiments that directly probe the time-reversal symmetry
breaking, such as muon-spin rotation and local magnetom-
etry, are highly desirable and would give us further insights
into the unconventional superconducting junctions. We
anticipate that the TBs in FeSe will stimulate further
research on the role of the phase of the superconducting
order parameter near the interface, which has been difficult
to access experimentally.
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APPENDIX A: ABSENCE OF LATTICE

DISTORTION INDUCED BY THE TWIN

BOUNDARY

Although STM has a high spatial resolution, possible
creep in the piezoelectric scanner and/or the thermal drift
make it difficult to estimate the small distortions in the
topographic image. Here, we utilize the so-called Lawler-
Fujita algorithm [41] to deduce the lattice distortion and
show that the TB-induced strain is negligibly small.
First, we briefly explain the principle of the methodol-

ogy. The observed STM topography TðrÞ, which mainly
represents the topmost Se lattice, can be expressed as

TðrÞ ¼ T0( cos fqx · ½r − uðrÞ�g
þ cos fqy · ½r − uðrÞ�g)þ � � � : ðA1Þ

Here, T0 is the amplitude of the Se-lattice modulation, qx
and qy are wave vectors for the Se lattice, and center dots

represent all other modulations. The distortions from the
perfect lattice are described by the displacement field uðrÞ
that can be regarded as a spatially varying phase of the qx
and qy modulations. This approximation is justified as long

as the length scale of distortions is much longer than the Se-
Se distance aSe. Standard phase-sensitive detection scheme
can be used to evaluate uðrÞ. By multiplying TðrÞ and the
reference signal cos ðqx · rÞ, we get

TðrÞ cos ðqx · rÞ ¼
T0

2
fcos ½qx · uðrÞ�

þ cos ½2qx · r − qx · uðrÞ�
þ cos ½ðqx þ qyÞ · r − qy · uðrÞ�
þ cos ½ð−qx þ qyÞ · r − qy · uðrÞ�g
þ � � � : ðA2Þ

All terms except the first exhibit periodic spatial mod-
ulations, which can be removed by low-pass Fourier
filtering (LPFf� � �g):

LPFfTðrÞ cos ðqx · rÞg ¼ T0

2
cos ½qx · uðrÞ�: ðA3Þ

By using the quadrature reference sin ðqx · rÞ, we get

LPFfTðrÞ sin ðqx · rÞg ¼ T0

2
sin ½qx · uðrÞ�: ðA4Þ

Therefore, we obtain uxðrÞ, the x component of uðrÞ, as

uxðrÞ ¼
aSe

2π
tan−1

LPFfTðrÞ sin ðqx · rÞg
LPFfTðrÞ cos ðqx · rÞg

: ðA5Þ
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The y component uyðrÞ can also be deduced as

uyðrÞ ¼
aSe

2π
tan−1

LPFfTðrÞ sin ðqy · rÞg
LPFfTðrÞ cos ðqy · rÞg

: ðA6Þ

A schematic model of atomic arrangement near the TB is
shown in Fig. 6(a). We expect that the orthorhombic
distortion affects the atomic arrangement along the y
direction across the TB, while the periodicity along the
x direction remains intact. In order to verify this model and
to check if there is an additional lattice distortion, we
calculate uxðrÞ and uyðrÞ of the high-resolution STM image

containing a TB running along the y direction [Fig 6(b)].
Reference wave vectors qx and qy are obtained by Fourier

analysis in the left domain. For low-pass Fourier filtering,
we pick up only long-wavelength components by using a
Gaussian mask with half width at the half maximum of
0.21ð2π=aSeÞ. Since there is a translational symmetry along
the TB, we average uxðrÞ and uyðrÞ along the y direction,

yielding u
avg
x ðxÞ and u

avg
y ðxÞ, respectively. This signifi-

cantly enhances the signal-to-noise ratio.
Figures 6(c) and 6(d) show u

avg
x ðxÞ and its x derivative.

There is no noticeable anomaly in u
avg
x ðxÞ and duavgx ðxÞ=dx,

except for the smooth background associated with the creep
of the piezoelectric scanner. This is consistent with the
model shown in Fig. 6(a) and indicates that the in-plane
linear strain, which is known to affect Tc [26], should be

smaller than our detection limit of ≈0.5 × 10−3. As the
elastic constant C11 is estimated to be ≈95 GPa [42], the
TB-induced stress, if it exists, should be smaller than
≈0.05 GPa, which corresponds to the change in Tc of
only ≈1%.
By contrast, u

avg
y ðxÞ exhibits a sharp kink at the TB

[Fig. 6(e)], again being consistent with the model shown

in Fig. 6(a). It should be noted that du
avg
y ðxÞ=dx shown in

Fig. 6(f) is almost completely constant in both domains,
indicating that the TB-induced shear strain to the lattice is

also negligibly small. The observed value of du
avg
y ðxÞ=dx ≈

−1.1 × 10−2 in the right domain means that the angle β
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y

(e)

(f)
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10 nm-1
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(a)

(c)

(d)

x

y
 ?Se Fe

FIG. 6. (a) Schematic top view of the atomic arrangement near the TB of FeSe (not in scale). Note that an atomic periodicity along the

x direction is hardly affected by the TB. (b) A constant-current STM image taken over a field of view of 180 × 90 nm2 on a grid of
4096 × 2048 pixels. The setup conditions for imaging are Vs ¼ þ95 mV and It ¼ 100 pA. Inset: Fourier-transformed STM image
taken in the left domain of the main panel. A peak at qx is sharp and well isolated from other features, guaranteeing that qx · uðrÞ can be
treated as a spatially varying phase of the qx modulations. (The same is true for qy.) (c) The x component of uðrÞ averaged over the y axis.
Thick solid line and thin dashed line denote the data taken by the forward (left to right) and backward (right to left) scans, respectively.

The symmetric hysteretic behavior between the forward and backward scans indicates that u
avg
x ðxÞ is governed by the creep of the

scanner. No anomaly is observed at the TB. (d) The x derivative of u
avg
x ðxÞ. Spikelike features are associated with the point defects in the

image. (e) The y component of uðrÞ averaged over the y axis. Thick solid line and thin dashed line denote the data taken by the forward
(left to right) and backward (right to left) scans, respectively. Since the y direction is the slow-scan direction, the effect of the creep is

small. A clear kink is observed at the TB. (f) The x derivative of u
avg
y ðxÞ.
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defined in Fig. 6(a) is þ0.63°. This means that orthorhom-

bic distortion ðb − aÞ=ðbþ aÞ ≈ 2.8 × 10−3, which is con-
sistent with the x-ray result [43].

APPENDIX B: ASYMPTOTIC FORMS OF THE

ORDER PARAMETER DERIVED BY THE

GINZBURG-LANDAU THEORY

We derive asymptotic forms of the order parameter far
from TBs using the Ginzburg-Landau (GL) theory. We
consider the GL free-energy functional for tetragonal
symmetric systems [33] as an expansion in the isotropic
s-wave component Δiso and the fourfold d-wave compo-
nent Δ4ϕ of the order parameter:

FGL½Δiso;Δ4ϕ�

¼
Z

dV

�

X

μ¼iso;4ϕ

½ ~aμðTÞjΔμj2 þ bμjΔμj4 þ Kμj∇Δμj2�

þ γ1jΔisoj2jΔ4ϕj2 þ
γ2

2
ðΔ�2

isoΔ
2

4ϕ þ Δ
2

isoΔ
�2
4ϕÞ

þ
~K

2
½ð∂aΔisoÞ�ð∂aΔ4ϕÞ − ð∂bΔisoÞ�ð∂bΔ4ϕÞ þ c:c:�

�

;

ðB1Þ

where we have neglect the vector potential as it does not
play an important role in our discussion. The coefficients

bμ, Kμ, and ~K are positive, and ~aμðTÞ ¼ aμðT=Tcμ − 1Þ
with positive aμ. The differential operator ∇ ¼ ð∂a; ∂bÞ is
defined according to the crystal axes a and b. As in
Ref. [33], we assume γ2 > 0, so that the free energy is
minimized at φ ¼ �π=2, and the time-reversal-symmetry-
broken s� id state is stabilized when bothΔiso andΔ4ϕ are

finite.
The effect of orthorhombic distortion is taken into

account by adding the following term to the free-energy
functional [33]:

Fϵ ¼ cϵ

Z

dVðΔ�
isoΔ4ϕ þ ΔisoΔ

�
4ϕÞ; ðB2Þ

where c is a positive parameter and ϵ ¼ ϵaa − ϵbb is the
parameter of the orthorhombic lattice distortion. The total
free energy for a uniform state in the bulk is then given by

FGL þ Fϵ

V
¼

X

μ¼iso;4ϕ

ð ~aμjΔμj2 þ bμjΔμj4Þ þ γ1jΔisoj2jΔ4ϕj2

þ γ2jΔisoj2jΔ4ϕj2 cosð2φÞ
þ 2cϵjΔisojjΔ4ϕj cosφ; ðB3Þ

whereΔμ ¼ jΔμjeiφμ and the relative phase φ ¼ φ4ϕ − φiso.

If cjϵj ≥ 2γ2jΔisojjΔ4ϕj, then the free energy is minimized

at φ ¼ 0 for ϵ < 0 and at φ ¼ π for ϵ > 0. In the following

discussion, we assume that this inequality is satisfied and
the time-reversal symmetric s� d state is realized in
the bulk.
Next, we consider a TB located at x ¼ x0 along the y

axis, where the x and y axes are rotated by 45° from the

crystalline axes, x ¼ ða − bÞ=
ffiffiffi

2
p

and y ¼ ðaþ bÞ=
ffiffiffi

2
p

.
The orthorhombic lattice distortion parameter ϵ changes
its sign across the TB. We assume ϵðxÞ→ ∓jϵj for
x → �∞, so that the s� d state is realized in x → �∞.
Near the TB where ϵðxÞ is small, the s� id state is favored.
Then, the area density of the total free energy is given by

fGL þ fϵ ¼
Z

dx

�

X

μ¼iso;4ϕ

ð ~aμjΔμj2 þ bμjΔμj4 þKμj∂xΔμj2Þ

þ γ1jΔisoj2jΔ4ϕj2 þ
γ2

2
ðΔ�2

isoΔ
2

4ϕ þΔ
2

isoΔ
�2
4ϕÞ

þ cϵðxÞðΔ�
isoΔ4ϕ þΔisoΔ

�
4ϕÞ

�

: ðB4Þ

We first assume that Δiso is a real and uniform order
parameter while Δ4ϕ changes its sign across the TB, as

shown in Fig. 4(a). If we restrict Δ4ϕ to be real, then Δ4ϕ

varies over the coherence length [33],

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K4ϕ

~a4ϕ þ 6b4ϕjΔbulk
4ϕ j2 þ ðγ1 þ γ2ÞjΔisoj2

s

; ðB5Þ

where jΔbulk
4ϕ j is the amplitude of Δ4ϕ in the bulk. However,

we expect that time-reversal symmetry should be locally
broken at the TB. Thus, we allow Δ4ϕ to be complex,

Δ4ϕðxÞ ¼ jΔ4ϕðxÞjeiφðxÞ. With this order parameter, the

total free energy is given by

fGL þ fϵ ¼
Z

dx½ ~aisojΔisoj2 þ bisojΔisoj4 þ ~a4ϕjΔ4ϕj2

þ b4ϕjΔ4ϕj4 þ γ1jΔisoj2jΔ4ϕj2

þ γ2jΔisoj2jΔ4ϕj2 cosð2φÞ
þ 2cϵðx − x0ÞjΔisojjΔ4ϕj cosφ
þ K4ϕ½ð∂xjΔ4ϕjÞ2 þ jΔ4ϕj2ð∂xφÞ2��: ðB6Þ

In the bulk region (x − x0 ≫ ξ), where ∂xjΔ4ϕj ¼ 0 and

ϵðxÞ ¼ −jϵj, the GL differential equation to minimize
fGL þ fϵ is

K4ϕ∂
2
xφ ¼ −

jΔisoj
jΔbulk

4ϕ j ½γ2jΔisojjΔbulk
4ϕ j sinð2φÞ − cjϵj sinφ�:

ðB7Þ

Since φ ≪ 1 far away from the TB, we can linearize the
differential equation and find the relative phase to decay as

φ ∝ expð−x=~ξÞ with the characteristic length
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~ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K4ϕjΔbulk
4ϕ j

jΔisojðcjϵj − 2γ2jΔisojjΔbulk
4ϕ jÞ

s

: ðB8Þ

The characteristic length diverges when approaching the
phase boundary, where cjϵj ¼ 2γ2jΔisojjΔ4ϕj, between the

time-reversal symmetric s� d state and the time-reversal-
symmetry-broken s� id state.
Finally, we consider double TBs at x ¼ �jx0j, where

ξ ≪ jx0j≲ ~ξ. We assume ϵ > 0 between the double TBs
and ϵ < 0 otherwise. At the center x ¼ 0 between the

double TBs, we can set jΔ4ϕj ¼ jΔbulk
4ϕ j because jx0j ≫ ξ.

With this approximation, the GL differential equation to
minimize fGL þ fϵ for jxj ≪ jx0j is

K4ϕ∂
2
xφ ¼ −

jΔisoj
jΔbulk

4ϕ j ½γ2jΔisojjΔbulk
4ϕ j sinð2φÞ þ cjϵj sinφ�:

ðB9Þ

Integration of the differential equation yields

K4ϕð∂xφÞ2 ¼
jΔisoj
jΔbulk

4ϕ j ½γ2jΔisojjΔbulk
4ϕ j cosð2φÞ þ 2cjϵj cosφ

− γ2jΔisojjΔbulk
4ϕ j cosð2φ0Þ − 2cjϵj cosφ0�;

ðB10Þ

where the integration constant is determined from the
conditions ∂xφðx ¼ 0Þ ¼ 0 and φðx ¼ 0Þ≡ φ0. Since
we assume the distance between the TBs is in the range

jx0j≲ ~ξ, the relative phase does not reach π at x ¼ 0;
i.e., φ0 < π. For φ0 − φ ≪ 1 near x ¼ 0, the differential
equation [Eq. (B10)] has the solution

φðxÞ ¼ φ0 −

�

x

~ξ0

�

2

: ðB11Þ

For the model order parameter shown in Fig. 5(d), we

determine φ0 and ~ξ0 by the continuity condition at

x ¼ �jx0j=2, that is, by imposing that φ ¼ π −

ðπ=6Þsechðx=~ξÞ and φðxÞ in Eq. (B11) are smoothly
connected at x ¼ �jx0j=2. We note that different choices
of the connecting position yield little change in the value
of φ.
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