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Evidence from auditory simple reaction times
for both change and level detectors

STEPHEN L. BURBECK
Linus Pauling Institute ofScience and Medicine, Palo Alto, California

and

R. DUNCAN LUCE
Harvard University, Cambridge, Massachusetts

We examine the form of distributions of simple reaction time. The stimuli we use are the
offset of weak pure tones masked by wide-band noise. The hazard functions of the RT dis­
tributions (i.e., the probability of a response given that one has not already occurred) are
monotone increasing for very weak tones but become peaked for stronger tones. Of the models
available in the literature, none is very satisfactory, although two can account for the general
qualitative shape of the peaked hazard functions. We propose a model wherein both a change
and a level detector function in parallel. If one assumes that the change detector and level
detector have slightly different thresholds, this model can account for both the monotone
increasing and.the peaked hazard functions.

This paper reports new psychophysical evidence
that there exist two quite distinct classes of mecha­
nisms for detecting changes in the intensity ofauditory
signals. One type, called a change detector, is sensi­
tive to abrupt changes in the signal and responds
transiently to such changes. The other type, called a
level detector, is sensitive to the absolute level of the
signal. The level detector may be a bit slow to re­
spond to change, but, since it tracks the level of the
signal, it remains capable of reporting the changed
signal intensity long after the change is completed.
The change detector responds quickly to a change but
is less persistent in that, once the change has receded
sufficiently into the past, it is unlikely to initiate a
response. This difference in persistence is what we at­
tempt to exploit: it implies that the two types of de­
tector should produce quite different forms of simple
reaction-time distribution.

Physiological evidence for both classes of detectors
exists in vision and in audition (Cleland et al., 1971;
Enroth-Cugel & Robson, 1966; Gerstein, Butler, &

Erulkar, 1968; Marrocco, 1976; Meller, 1969; Pfeiffer,
1966). Psychophysical evidence is less plentiful, par­
ticularly in audition. Macmillan (1971, 1973) reports
auditory detection and recognition data that seem to
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implicate both change and level detectors, as do the
results of Ahumada, Marken, and Sandusky (1975).
And Tolhurst (1975) reports clear evidence of both
change and level detection in visual simple reaction
time.

We infer the existence of the two classes of detec­
tor from qualitative features of simple reaction-time
distributions that are obtained with a response­
terminated random foreperiod paradigm (Luce &

Green, 1970). These qualitative features are described
in terms of a transform of the distribution called the
hazard function, Thus, we must introduce the hazard
function and some of its properties before we can
discuss the qualitative features that implicate change
and level detectors.

Transforming Reaction-Time Distributions
The behavior of change and level detectors may

differ in many respects, but the difference that is
manifested in simple reaction time is one of persis­
tence: the change detector, if it fails to respond to a
change, is thereafter unlikely to respond because
those characteristics of its input which indicate a change
do not persist, whereas the level detector is unhin­
dered by the passage of time because successive esti­
mates of the level remain informative no matter how
much time has passed after the change. These differ­
ences in persistence are difficult to discern in the
reaction-time distribution function or density func­
tion, but are directly reflected in a transform of the
distribution function called the hazard function or
the conditional density function.

Let T be a nonnegative random variable, such as
the latency of a detection mechanism, and let f be its
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In interpreting the data to be presented subse­
quently, we postulate that both a level detector and a
change detector are independently at work-in paral­
lel-so that either can produce a detection response.
The hazard function of such a composite process
turns out to be simply related to the hazard functions
of each of its parts. Suppose the latencies of the
change and level detectors, Tc and TI, are indepen­
dent random variables with hazard functions he and
hi, respectively. If the overall_ parallel system re­
sponds as soon as either detector is triggered, then'
the system latency is T =min(Tc,TI) and its hazard
function is simply the sum
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density and F be its distribution function, that is,

F(t) = f~f(x)dx.

The hazard function of f is the density of an obser­
vation occurring at time t given that it has not oc­
curred earlier, that is,

f(t). d
h(t) = 1 _ F(t) = - dt In[1- F(t»). (1)

By integrating Equation I, solving for F(t), and dif­
ferentiating the result, one obtains the inverse rela­
tion h(t) = hc(t)+hl(t). (3)

f(t) = h(t) exp [- f~h(X)dx] . (2)

Thus, when one thinks of a probabilistic process as
unfolding in time and one is primarily interested in
the termination of that process (e.g., the termination
of a detection process), one is really talking about
the hazard function rather than the density function
because a process can terminate in the future only
if it has not done so already.

The quantity In[1- F(t») in Equation 1 is called the
logsurvivorfunction. Reaction-time data have some­
times been plotted in the form of the log survivor
function (Carterette et al., 1965; McGill, 1963;McGill
& Gibbon, 1965; Snodgrass, 1969; Shannon, Note 1).
With such plots, rough estimates of the hazard func­
tion can be obtained by eye, since the hazard func­
tion is the negative of the slope of the log survivor
function.

The assumptions that make the hazard function
useful for understanding simple reaction-time distri­
butions are: (1)The sensory information is encoded as
a stochastic process. This assumption is in accord
with what we know about the physiology of the early
stages of the auditory system (Kiang et al., 1965;
Rose et al., 1967). (2) The decision process is an on­
going evaluation of the stochastic input-either con­
tinuously or in discrete steps-which responds when
the probability of a false alarm first falls below a
fixed criterion. That is, the evaluation of the input
is equivalent to the computation of some possibly
quite complex statistic from the stochastic input; the
detector responds when this statistic first crosses a
fixed criterion. This assumption is most supportable
in the context of a random foreperiod paradigm, in
which the stimulus context forces an ongoing de­
cision process. Given these two assumptions, the
hazard rate of the reaction-time distribution (if we
ignore the influence of residual latencies) is a mea­
sure of the average accumulated information as a
function of time.

The assumption that Tc and TI are independent is
untested and quite likely untestable. However, if the
two processes receiveinputs from distinct sets of neu­
rons, the assumption is quite plausible. If not, then
the assumption rests on further assumptions about
the processing of those inputs. Because the neural
code is stochastic, the decision processes can be
thought of as depending upon some statistic com­
puted from the input. In general, these statistics may
either be independent (e.g., the mean and variance
of the normal) or not (e.g., the mean and variance
of the Poisson). Therefore, until change and level
detectors can be isolated physiologically, the assump­
tion of independence must remain unjustified.

Qualitative Features of Change
and Level Detectors

There is no need for us now to develop detailed
models of change and level detectors, although else­
where (Burbeck, 1979) a physiologically motivated
model for a change detector is presented and tested
against reaction-tiIne data and Luce and Green (1972)
have studied a simple level detector. Here it suffices
to state the major qualitative distinctions between
the two classes of devices under the general assump­
tions mentioned above together with two further as­
sumptions. The first is that the signals are response
terminated. The second is that the memory available
to each detector is not unlimited. The assumption
that the signals are response terminated (i.e., only
one change in the intensity occurs prior to the sub­
ject's response) is not strictly necessary but simplifies
the discussion of change detectors. The importance
of the second assumption will become clear as we
proceed.

Consider a signal that changes, say, decreases in
intensity, abruptly at time to. The subject's task is to
detect the change. We assume that during the fore­
period (prior to to), when the signal is unchanging,
any detector of the class we are considering here has
some constant, presumably small, tendency to ter-
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minate (i.e., produce a false alarm) as a result of ran­
dom fluctuations in the neurally encoded signal.
Hence, during the foreperiod, both he and hi are
constants. The major feature of a change detector
is that shortly after to, he increases markedly-how
much, depends upon the magnitude of the change­
and then, as the change recedes into the past, de­
creases again to a low value associated with the steady
intensity of the signal after to (see Figure 1). The
hazard rate increases as the ongoing decision process
receives evidence of the change, although that evi­
dence may at first be obscured by the stochastic na­
ture of the input. The subsequent reduction in the haz­
ard rate results from the memory limitation. Even­
tually the evidence of the change is "forgotten." (If
the memory were unlimited, then one could construct
a model change detector that does not become less
effective, because it can reexamine the entire history
of its input.) By contrast,' the hazard rate of a level
detector is low up to to, then rises monotonically to

a higher value as neurally encoded evidence of the
new level collects, and persists at that value until the
intensity of the signal is changed again. In this case,
the memory limitation does not result in a decreasing
tail, because newly arriving information continues to
indicate that the offset has occurred.

The hazard function of the composite detection
process is the sum of the above two functions. If the
peak in he is sufficiently large relative to hi, then the
composite hazard rate is low prior to to, rises to a
peak, and then declines to an asymptotic value that
is due largely to the level detector. If the peak in he
is sufficiently small relative to hi (perhaps because
the change is nearer the threshold of the change de­
tector than that of the level detector), the composite
hazard function may be monotone increasing. Sche­
matic plots of change and level detector hazard func­
tions are shown in Figure 1 together with their sum
(Equation 3) and the corresponding log survivor
function.

THE EXPERIMENT
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The empirical reaction-time distributions available
in the literature are seldom based on enough trials to
see the shape of the tail of the log survivor function.
Green and Luce (1971) used large samples, and sev­
eral of their distributions, although plotted in another
way, had peaked hazard functions. Even clearer ex­
amples can be found in the data of Snodgrass (1969),
although she did not use random foreperiods and her
signals were not response-terminated. The most pro­
nounced curvature we know of is the unpublished
data of Shannon (Note 1), which was what led us to
undertake this study.

The simple reaction-time paradigm we report here
used weak, response-terminated signals with expo­
nentially distributed random foreperiods (Carterette,
Friedman, & Cosmides, 1965; Green & Luce, 1971;
Luce& Green, 1970;Shannon, Note 1).We used weak
signals for two reasons: (1) Reaction time to strong
signals is rapid and most probably dominated by
residual factors extraneous to the detection process,
whereas with weak signals the reaction times are
much slower, so the residual delays are less bother­
some; and (2) the differences in persistence of the
two sorts of detector do not manifest themselves
until the signal has gone unnoticed for a few hundred
milliseconds, which is an exceedinglyrare occurrence
unless one uses weak signals. We avoided the usual
short-duration signalin favorofaresponse-terminated
signal because analysis of the data was simplified if
we ensured that, once the signal changed, it did not
change again. We used exponentially distributed ran­
dom foreperiods to eliminate the value of strategic
anticipation responses, inasmuch as the exponential
provided no information as to when the signal would
appear (Green & Luce, 1971;Nickerson, 1967).
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Fllure 1. Schematic relations of sllnal Intensity, the detector
hazard functions, their sum, and the correspondlnl 101 survivor
function. The level detector hazard function satisfies
.003(1- e- tJ*) and the chanle detector .038S(t/l00)'e-tJ50+ .0001.
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The stimulus used in the first phase of the experi­
ment was the offset of a weak pure-tone signal in
broadband noise. We selected offsets because
Shannon's data exhibited the clearest evidence for
peaked hazard functions and this may have been due
to his use of offsets rather than onsets. The broad­
band masker serves to reduce threshold differences
between subjects and therefore permits the subjects
to be run at the same time using the same signal param­
eters.

We gathered data at a range of frequencies (250,
1,000, and 4,000 Hz) because of the widespread be­
lief that sensory encoding may be different at low
frequencies from what it is at high frequencies: the
periodicity of neural firing may be the critical vari­
able at low frequencies, and the place of maximal
stimulation of the basilar membrane may be critical
for high frequencies (see Small, 1970). Although
both types of encoding may be involved at 1,000 Hz,
that frequency is commonly used and hence the re­
sulting data are most comparable to those of other
experimenters. Two intensities were used at each fre­
quency. The intensities differed by only 2 dB because
mean reaction time is exquisitely sensitive to inten­
sity in the low range and we wished to see if other
properties of the distribution were as sensitive.

As will become clear in a later section, we also re­
quired distributions that approximate the subject's
minimum (i.e., residual) reaction times. The stimulus
we chose was the offset of a loud, wide-band noise.
There were two reasons for using noise rather than a
tone. First, some evidence suggests that the internal
effect of noise decays more rapidly than does that of
a pure tone (Miller, 1948). Second, and perhaps more
importantly, noise stimulates the entire basilar mem­
brane and more of the auditory nerve than does a
pure tone. Thus, the decision about change can, in
principle, be made on the basis of whichever frequency­
specific channel responds most quickly on each trial.
In that case, the decision latency is the minimum of
a possibly large number of parallel decision processes.

One potential drawback to using noise is that the
total power of the signal is limited by consideration for
the observers, and so the noise power available to each
channel is less than would be available if a pure tone
were used. Whether the tradeoff favors noise or a pure
tone was not studied in depth, but an informal pilot ex­
periment showed mean reaction times to be at least as
short for noise as for a pure signal tone.

Method
Three male observers (S.B., D.L., P.O.), including the first

author, participated in the experiments (except that D.L. was un­
available when the strong-signal condition was run and P.O. was
unavailable for one of the weak-signal conditions). They all had
normal hearing. Other than S.B., they were paid at an hourly rate
of $2.25 plus a bonus, described below.

Each observer was seated in a separate sound-treated booth,
and all received the same stimuli presented binaurally through

TDH-39 earphones driven in phase. The observers responded by
pressing a rnicroswitch, Except for the strong-signal case, masking
noise was present continuously; its spectrum was flat (prior to the
earphones which began to roll off at about 8 Hz), with a spec­
tral density of 10 dB SPL. To avoid detectable off-frequency
energy splatter from the abrupt offset, the signal channel was
filtered with a bandwidth of 100 Hz centered on the signal fre­
quency; hence, the decay lasted about 10 msec.

The signals run were: 250 Hz at PIN. = 20, 22 dB; 1,000 Hz at
PIN. =20, 22 dB; 4,000 Hz at PIN. =24, 26 dB; and wide-band
(0 to 10kHz) noise at 70 dB SPL.

The temporal structure of a trial was as follows. The warning
signal consisted of three successive 2OO-msec warning lights. Two
hundred milliseconds after the offset of the third light, the fore­
period began. It was exponentially distributed with a mean of
4 sec in the I,OOO-Hz, PIN. = 22 dB case and of 3 sec in all others.
(After collecting the initial data, it was decided that a mean wait
of 4 sec was uncomfortably long.) The instructions to the ob­
servers included an explanation of the statistical properties of the
exponential foreperiod distribution. In particular, it was made
clear that the hazard function is constant and that "guessing"
strategies are inherently pointless. Since the exponential is un­
bounded, we elected to truncate it at a duration of five times the
mean, a cutoff affecting less than 1010 of the trials. The tone was
turned off at the end of the foreperiod and remained off until the
last observer responded or until 3 sec had elapsed (an extremely
rare occurrence). Then the tone was restored and feedback was
provided as described below. After the completion of each block
of trials, mean reaction times and the number of false alarms were
printed by the computer (a PDP-IS) and made available to the
observers.

Trials were grouped into blocks of 75 to 100 trials, depending
on conditions that affected the average length of each trial. A
block typically lasted about 10 min, and a few minutes of rest were
allowed between blocks. From five to nine blocks were run on each
day. At most, the observers participated for 2 h per day. There
were 6 days of training (2,855 trials) before the data reported here
were collected. During this time, the observer's performance im­
proved and stabilized.

To minimize unstable observer performance, trial-by-trial feed­
back was provided. Observers were rewarded for fast responses
and penalized for false alarms (defined, for this purpose, as both
anticipations and responses within the first 100 msec after signal
offset). For the I,OOO-Hz, PIN. = 22 dB case, a single deadline was
set for each observer (S.B., 400 msec; D.L., 430 msec; P.O.,
460msec), so that all three wereabout equally able to beat the dead­
line. The observers were informed each time they had beaten the
deadline (by a flashing light) and were credited with three payoff
points. They were also informed of each false alarm and debited
one payoff point. For the remaining conditions, more detailed
feedback was provided by a more elaborate deadline structure.
Five bands were defined (again, according to the average speed of
the individual observer). Responses after the longest deadline were
not rewarded. The remaining four deadlines were spaced 50 msec
apart, and each was worth an additional point. At the end of the
2-h session, $2 was apportioned between D.L. and P.O. in pro­
portion to their accumulated points for that session.

DATA ANALYSIS

Estimating Hazard Functions
The eye can read the hazard function roughly from

plots of In[1 - F(t)] vs, t, but for more careful study
of the detection process, better estimates are needed.
Moreover, since we are making no distribution as­
sumptions, we need distribution-free estimation pro­
cedures. Watson and Leadbetter (l964a, 1964b) dis­
cuss a variety of such methods, beginning with a
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S(i) = (n - i + l)[Z(i) - Z(i -1)]. (4)

This estimate will not work for i < j, but for the first
j - 1 intervals, one can let j =i.

In the present application, S(i) is just the difference
between the [th ordered reaction time and the one pre­
ceding it times the number of trials on which the re­
sponse was longer than the [th RT. The estimate of
the hazard rate for the [th interval is

Mixture Distributions Due to Parameter Drift

Reaction-time distributions, if they are to be useful
for the present purpose, require a large number of
trials which must be gathered in manageable blocks
of trials over a period of many days. This extended
data gathering raises doubts about the stability of

whatever parameters define the detection process
(Grice, 1968). Parameter drift can have a pronounced
effect on the tails of the reaction-time distributions,
as may be shown by example. Suppose To has the
simplest hazard function, ho(t) =A, so the distribu­
tion is the exponential Ae-At• Suppose further that the
parameter A, rather than remaining constant, has
some distribution, say, the gamma Jln+1Ane-,..A/nl. It
is not difficult to show' that the resulting mixture dis­
tribution has the hazard function h(t) =(n +1)/{J.i +t),
which, unlike its component constant hazard func­
tions, is a decreasing function of t. It would, there­
fore, exhibit the concave character we· expect of a
system composed ofchange and level detectors despite
the fact that it is made up of nothing but a randomly
responding detector with a drifting rate parameter.

Two types of parameter drift can be detected, and
their effects can be largely negated by appropriate
data-censoring methods. The first of these is a fore­
period effect-systematic drift as a function of fore­
period length. If there is no such drift, then, except
for the impact of residual delays (e.g., muscular in­
ertia and motoneuron conduction delays) on the first
two or three hundred milliseconds, the false-alarm
distributions should exhibit constant hazard rates.
As will be seen later (Figure 4), the hazard rates begin
at zero and approximate a steady value only after
500 to 750 msec for all three observers in all condi­
tions. The rate is then constant up to about 9 sec,
after which it increases for two observers and decreases
for the third.

Parameters may also change from day to day or
from one block of trials to the next. Evidence of such
drift can be found in the variability of block mean
reaction times (MRTs). If all parameters remained
stable, the variability of block MRTs would neces­
sarily obey familiar laws: Since reaction times are
approximated by the lognormal distribution, the
block geometric means should be distributed as a
normal with a mean equal to the underlying geo­
metric mean of the reaction-time distribution and a
variance of VIN, where V is the underlying geometric
variance of the reaction-time distribution and N is
the number of trials in each block (excluding false
alarms). But the observed variability in these block
MRTs is much greater than expected if the param­
eters remain fixed across blocks.

A third type of drift, which is neither identifiable
nor removable, is irregular parameter drift within a
block of trials. The random criterion model to be dis­
cussed later (Grice, 1968, 1972) predicts a peaked
hazard function precisely because it explicitly as­
sumes that the reaction-time distribution is a mixture
due to a randomly fluctuating criterion. Trial-by-trial
feedback presumably aids the subject in stabilizing
his criteria, but one can never rule out this sort of
criterion shift simply by experimental manipulation.

(5)
i

~ S(k)
k=i-j+l

H(i) =--,--=----, j < i < n.

slightly formalized faired curve to the log survivor
function and ending with rather more refined tech­
niques.

Most estimation methods produce very ragged esti­
mates of hazard functions, particularly in the tails
(Rice & Rosenblatt, 1976). Roughly, they all depend
upon having a smoothed sample density function ob­
tained by linearly filtering the ordered events, that is,
smoothing each event with the same smoothing func­
tion. The various estimation methods differ in the
manner in which the smoothing function is applied,
but all use the same width throughout the distribu­
tion. As a result, the estimate is ragged wherever the
data are sparse, most notably in the tails of the dis­
tributions. Furthermore, while they are usually asymp­
totically unbiased estimators, they converge with the
square root or, in some cases, with the cube root of

the sample size.
A distribution-free estimation method recently

proposed by Miller and Singpurwalla (1977) seems to
offer substantial improvement over previous methods.
They abandoned the linear smoothing for what they
call random smoothing. This amounts to adjusting
the width of the smoothing function to the density of
events. Where events are closely packed, the smooth­
ing function is narrow, and where they are sparse,
the smoothing function is wide. The hazard function
is estimated by a step function, H(i), which is con­
stant over each interval Z(i), Z(i - 1), where Z(i),
i =1, ... , n is the order statistic from a sample of n
reaction times, that is, Z(i) is the ith smallest observed
reaction time, and Z(O) =O. H(i) is calculated on the
basis of j consecutive ordered reaction times (where j
is a parameter) as follows. Let
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Data Censoring Methods
The aforementioned foreperiod effect can be dealt

with simply: we merely reject from further analysis
all trials on which the foreperiod was less than about
500 msec or more than 9,000 msec (the exact values
depend on the observer). That is, we assume that the
false-alarm rate is indicative of the subject's "readi­
ness to respond." We reject trials for which the fore­
period was so short or so long that the subject may
not have been appropriately ready to respond at the
time the signal occurred.

The block-to-block drift presents a more difficult
problem. We wish to eliminate as few blocks as pos­
sible in order to retain the maximum number of trials
in the tails of the censored distributions, but we also
must exclude blocks with extreme means in order to
minimize the effect of mixtures on the tails. There­
fore, we accept only those blocks with block means
(M) that satisfy the relation IZj I< c, where Zj is the
usual normal deviate IZj I = (M, - M)/v' Vj/Nj, N; is
the number of RTs in the ith block, and c is a cri­
terion. The larger the criterion, the more blocks are
accepted, but the more serious the possible effect of
mixture. We use values of c between 1.25 and 2, ac­
cording to the need for enough data in the tails. (In
10 of 17 distributions, c was set at 1.5.) However,
because the values of M and V are not known in ad­
vance, the censoring proceeds iteratively, beginning
with the assumption that the correct values of M and
V are just the mean and variance of the uncensored
distribution. At each successive step, the true mean
and variance of the censored distribution are assumed
to be those resulting from the previous step. The pro­
cess continues until the mean and variance obtained
for the censored distribution closely approximate
those assumed in the block selection process.

The use of geometric MRTs in the block-censoring
poses one further problem because of the sensitivity
of that statistic to very short reaction times. Responses
that occur before the end of the foreperiod are clearly
false alarms, as are responses that are initiated prior
to the signal but completed after the signal. More­
over, if there is some nonzero minimum latency (1m)

in the decision process, responses initiated before
that minimum should also be treated as false alarms.
The minimum observed response time with loud sig­
nals (which produce very few false alarms) was
140 msec, and, more importantly, 1m for the weak
signals we used may add considerably to that mini­
mum. Thus, if we knew the legitimate minimum re­
sponse time, we could ignore all faster responses and
thereby avoid excluding a block on the basis of an
excessively small geometric MRT made so by happen­
stance. Here the hazard function is again useful. The
legitimate minimum response time can be estimated
as the point in the reaction-time distribution at which
the hazard rate first rises above the false-alarm rate.
The point cannot be determined with precision, but

it can be estimated to within 50 msec or so, and re­
sponses occurring prior to that point can be treated
as false alarms. With the weak signals we used, the
minimums were found to be between200 and 250 msec,
whereas for strong signals it is on the order of
150 msec. Assuming that the strong signal latency is
due almost entirely to residual processes, the differ­
ence between the strong-signal minimum and the
weak-signal minimum represents a minimum decision
latency on the order of 50 to 100 msec. This is in
agreement with a result of Green and Luce (1971).

Block-to-block parameter drift, in addition to af­
fecting the block MRT, also might be expected to
affect the block false-alarm rate. We therefore took
the precaution of excluding blocks with extreme false­
alarm rates. The bounds were chosen by examining
scatterplots of MRT vs. P(FA). These scatterplots
typically showed a central cluster of blocks surrounded
by sparsely scattered outliers. This censoring may
well have been unnecessary, but if the variability in
false-alarm rate was independent of any parameter
drift, then exclusion of blocks according to false­
alarm rate did no harm other than to decrease the
number of trials in the final censored distributions.
If, however, the variability is due in part to param­
eter drift, then censoring according to the false-alarm
rate should reduce the effect of that drift.

Evaluation of the Censoring Method
There are no established results to guide us in eval­

uating the censoring methods just described. It seemed
advisable, therefore, to do a Monte Carlo study of
such censoring on simulated data obtained from pure
distributions (i.e., those with fixed parameters) and
mixture distributions (where the parameters are varied
deliberately). We chose to base the simulations on the
Wald distribution (see Discussion section), which has
a peaked hazard function.

The first test of the effects of censoring used 1,000
independent samples generated from a Wald distri­
bution (arithmetic mean = 200, standard deviation =
350) and organized into 20 blocks of 50 trials each
(a block size comparable to that of the reaction-time
data). The criterion (c) chosen for block exclusion
was very conservative (.5 instead of the 1.5 which was
typically used with the data) in order to provide a
severe test of the censoring procedure. The results,
shown in Figure 2, are rather surprising. Even though
55070 of the blocks were rejected, the resulting sample
log survivor function is practically unchanged.

The second test concerned the effectiveness of the
censoring process in extracting a reasonably pure dis­
tribution from a mixture made up of known distri­
butions. To this end, we produced a distribution com­
posed of a mixture of three known Wald distribu­
tions with arithmetic means and variances that are
representative of values we obtained in fast, medium,
and slow blocks of reaction-time data. The means
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Figure 2. Effect of censoring on a known Wald distribution of true mean 200
and standard deviation 350. The sample mean was 189.88 and standard deviation
326.67. The block censoring criteria were: geometric mean (m) = 89.76, standard

deviation (s) =3.28, and criterion (c) = .5.

were 280, 320, and 360 msec, and the standard devia­
tions were, respectively, 180, 240, and 301. Ninety­
nine blocks of 50 trials each were generated for each
of the three distributions and pooled into one dis­
tribution. Our block-censoring process was then used
to extract each of the three component distributions

(with the exception that we used the known means
and variances rather than the iterative method). The
results were not particularly sensitive to the value of
the criterion (c); two values, .50 and .84, were tried,
and both gave similar results. The recovery of the
medium distribution was quite good (Figure 3). How-
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Figure 3. Effect of censoring mixed Wald distributions. The three components shown, with sample
statistics shown below were combined Into one mixed distribution. The summary statistics of the pure
distributions are given at the top of each panel. The geometric mean and standard devlatlonr of these
pure distributions were used In succession In an attempt to recover each of the original components
from the mixture (with c = .84 In all three cases). The summary statistics are as follows:
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Figure 4. Examples of false-alarm distributions. Note that the
false-alarm hazard rate is essentially zero for the fint 500 JDSec.

Other Models lind Their Hazard Functions
A variety of distributions have been proposed for

reaction time (see Table 3 for a summary). Some, for
example, the log normal and the double monomial,
are ad hoc attempts to account for the well-known

The primary purpose of collecting these data was
to determine the form of the reaction-time distribu­
tions. Some are clearly peaked, but it was not clear
whether the tails of the hazard functions are con­
stant, as would be predicted from the combination
of both a change and a level detector. The Gnedenko
test (Gnedenko, Belyayev, & Soloyev, 1969) with
alpha = .05 indicates that the hazard functions of the
tails are constant for all of the censored distributions
but declining for six of the uncensored distributions
(see Table 2). These declining rates are therefore pre­
sumably due to parameter drift. Thus, the conclusion
is that the tails are asymptotically constant and sub­
stantially higher than zero.
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ever, the process was unable to recover the fast or
slow distribution, and the manner of failure is in­
structive. In both cases, the result of the censoring
process tended to be biased toward the medium dis­
tribution. This bias is a valuable property of the cen­
soring process if, as seems likely, the distribution of
detection parameters over blocks is unimodal. Re­
sults of early iterations should be biased toward the
unmixed distribution that would result from the modal
parameters, and subsequent iterations would, if the
data are as well behaved as our simulation, produce
something very close to that modal reaction-time dis­
tribution.

Hazard Functions of the Censored Distributions
Figure 4 shows examples of the log survivor func­

tion for false alarms, Figure 5 shows the estimated
hazard functions of the censored distributions, and
Table 1 gives the associated summary statistics.

Before embarking on a discussion of the form of
the distributions in Figure 5, let us first consider the
effect of frequency and intensity on the distributions.
The intensity effect is consistent and surprisingly
large, given that 2 dB constitutes at most only a
few JNDs. At the higher intensity, the arithmetic
MRT, averaged across subjects and frequencies, was
495 msec. At the lower intensity, it was 676 msec. The
corresponding average standard deviation changed
from 172 to 315 msec, nearly a factor of two. Most
interesting, however, is the effect of intensity on the
shape of the hazard functions. At the lower intensity,
the hazard functions show either a relatively small
peak or, in several cases, virtually no peak at all,
which suggests that the change detector is near or
below threshold. In every case, the addition of 2 dB
to the signal produced a marked increase in the hazard
rate between about 400 and 1,000 msec after onset.
The increased intensity also tends to increase the
hazard rate past 1,000 msec, but by a smaller factor.
Indeed, in two cases (S.B. at 1,000 and 4,000 Hz), the
asymptotic hazard rates are virtually the same at both
intensities despite the appearance of a large peak be­
tween 400 and 600 msec with the higher intensity. If

detection is due to the parallel operation of a change
and a level detector, then the addition of 2 dB seems
to benefit the change detector far more than the level
detector.

The frequency effects are more subtle. There seems
to be no major qualitative difference between 250
and 4,000 Hz. There are some quantitative differ­
ences in MRT, and there is some suggestion that the
ratio of peak hazard rate to asymptotic hazard rate
may be higher for the 4,OOO-Hz data than for the
other two frequencies. But these quantitative differ­
ences may be due to intensity inasmuch as threshold
is well known to be a function of frequency.

RESULTS AND DISCUSSION
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Figure 5. Estimated hazard functions of the censored distributions. The hazard functions were estimated by the random smooth­
ing method with j = 20, and then the resulting curves were smoothed by eye so that two functions could be juxtaposed in each
panel. The unsmoothed data are available in Burbeck (1979). The solid curve is the more intense signal, and the dotted one the less
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positive skew and high tails that characterize simple
reaction-time distributions. Others, for example, the
extreme value distributions and the one proposed by
Thomas (1969), arise from models of choice reaction
time and, although they may therefore not be rele­
vant to simple reaction time, they are included for
completeness.

Of those that have been derived from explicit models
for simple reaction time, only two predict peaked
hazard functions with asymptotically constant (non­
zero) tails: (1) the Wald distribution (Wald, 1947)
which arises from the random walk model (Emerson,
1970; McGill, 1963; Stone, 1960; Wald, 1947), and
(2) Grice's random criterion model (1968, 1972). We
therefore pay particular attention to these models.
The Wald distribution is used in simulating some
reaction-time data, and we attempt to fit it to the
data as an alternative to change and level detectors.

Grice's model assumes that information about the
stimulus accumulates deterministically-either lin­
early (Grice, 1968) or exponentially (Grice, 1972).
Thus, for any given criterion, the reaction time is
uniquely determined. In his model, the randomness
found in reaction-time distributions is entirely due to
a randomly fluctuating criterion which he assumes
to be normally distributed. This model was proposed
in the context of a fixed-foreperiod catch-trial para­
digm and cannot account for the observed false­
alarm behavior of subjects in a random-foreperiod
paradigm: it predicts that all false alarms would oc­
cur at the instant the trial begins. Moreover, the as­
sumption of deterministic information is not in ac­
cord with what we know about the peripheral audi­
tory system. Nonetheless, the model highlights the
potential problem of parameter drift and will be dis­
cussed further in a subsequent section.
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Table 1
Summary Statistics of the Censored Reaction-Time Distributions

N Arithmetic Geometric

Subject Original Censored Mean SO Mean SO P(FA)

250 Hz, 20 dB

S.B. 880 413 681.20 305.96 630.97 1.451 .16

D.L. 823 306 786.73 402.85 709.00 1.552 .26
P.G. 776 242 1108.71 608.39 959.05 1.725 .30

250 Hz, 22 dB

S.B. 1629 417 481.20 120.16 467.44 1.265 .17
D.L. 1593 486 530.84 192.20 506.32 1.337 .19

P.G. 1426 385 673.35 341.54 618.24 1.464 .27

1,000 Hz, 20 dB

S.B. 1852 514 500.77 151.58 480.62 1.327 .21

D.L. 1766 564 562.57 238.13 526.01 1.418 .31

P.G. 1688 700 674.29 273.81 629.41 1.437 .35

1,000 Hz, 22 dB

S.B. 1848 593 414.75 86.04 406.88 1.212 .18
D.L. 2363 1041 474.82 122.25 463.52 1.234 .15
P.G. 2179 665 537.71 180.57 516.74 1.306 .23

4,000 Hz, 24 dB

S.B. 948 240 629.55 385.78 557.21 1.576 .23
D.L. 970 269 462.00 155.89 442.46 1.324 .24

4,000 Hz, 26 dB

S.B. 1490 635 444.17 230.88 416.43 1.367 .12
D.L. 2441 1353 403.15 105.58 393.02 1.239 .23
P.G. 952 332 530.42 285.80 489.67 1.430 .37

Noise

S.B. 2034 627 167.80 12.33 167.30 1.075 .02
D.L. 2007 910 166.S0 17.28 175.80 1.097 .02
P.G. 1977 595 199.60 28.21 198.00 1.130 .03

Note-There were no data for P.G. at 4,000 Hz, 24 dB.

Fitting tbe Wald Distribution

Figure 6 shows that the Wald distribution is char­
acterized by a peaked hazard function which be­
comes asymptotically constant. It should be noted,
however, that the random walk model from which
the Wald distribution is derived is neither a change
nor a leveldetector in the sensethat theseare described
in the introduction. As it is usually formulated for
two-choice situations (Laming, 1968; Stone, 1960;
Wald, 1947), the Wald sequential model begins at
signal onset with numerical information about the
signal (from a common random variable) being regis­
tered at discrete periods of time. When the sum of
these numbers first falls outside an interval defined
by two numerical barriers, one or the other response
is initiated, corresponding to the barrier crossed. The
tendency (expected value) of the information to cross
one rather than the other barrier depends upon which
signal is presented. In the Wald model, the random
variable representing signal information is assumed
to be Gaussian distributed. (It is not widely realized
that the form of the distribution of first crossings
of the barriers is quite sensitive to deviations from

this Gaussian assumption.) To adapt this model to
simple reaction times, two things need to be done.
First, since there is only one signal to be responded
to, one barrier is placed at _00; this assumption can
be shown to lead to the so-called Wald distribution
for crossings of the remaining barrier, provided that
the increments in the random walk are small relative
to the barrier location. Second, since signal onset or
offset is the issue, the collection of information must
begin at the warning signal, and not at the unknown
time at which the reaction signal is presented. This
means that during the foreperiod the random vari­
able should have mean 0 and then at the reaction sig­
nal change to a positive mean. With this assumption,
the process is more akin to a level detector than a
change detector: the decision random variable (i.e.,
the sum of the signal random variables) estimates the
product of the level of the signal and the time the
signal has been present-thus it is a kind of accu­
mulated energy detector. This model has been dis­
cussed qualitatively by Laming (1968, pp. 80-82),but
to our knowledge it has not been investigated in de­
tail mathematically. So we confine our attention to
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Table 2
Results of Gnedenko Test for Constant Hazard Rates

in the Tails of the Distributions

If the characteristic function is defined by

C(w) = E(eiwT) , i=v=T, (8)

250 Hz, 20 dB

S.B. Constant beyond 750* Decreasing
D.L. Constant beyond 1520 Decreasing
P.G. Increasing out to 2005 Decreasing

Constant beyond 2005

250 Hz, 22 dB

S.B. Constant beyond 750* Decreasing
D.L. Constant beyond 750* Decreasing
P.G. Constant beyond 815 Decreasing

1,000 Hz, 20 dB

S.B. Constant beyond 750* Constant beyond 750*
D.L. Constant beyond 750* Constant beyond 1340
P.G. Constant beyond 1114 Constant beyond 1581

1,000 Hz, 22 dB

S.B. Constant beyond 750* Constant beyond 903
D.L. Constant beyond 866 Constant beyond 997
P.G. Constant beyond 1030 Constant beyond 874

4,000 Hz, 24 dB

S.B. Constant beyond 836 Constant beyond 1572
D.L. Constant beyond 785 Constant beyond 1653

4,000 Hz, 26 dB

S.B. Constant beyond 850 Constant beyond 934
D.L. Constant beyond 750* Constant beyond 1173
P.G. Constant beyond 1077 Constant beyond 1062

Subject Censored Uncensored

then it is well known that

(9)

The conversion of the convolution integral, Equa­
tion 7, into the multiplication of Equation 9 is a
great conveniencefor studying reaction times(Christie
& Luce, 1956;Green, 1971).

To estimate hn somewhat more accurately than by
hRT, we need to know something about TR. Here we
invoke the second assumption, namely that the dis­
tribution of TR is independent of signal intensity.
It is well known that as intensity is increased, both
the mean reaction time and its variance decrease
markedly. For example, Green and Luce (1971) show
that near threshold the ratio of the standard devia­
tion to the mean is about I, whereas at high inten­
sities the ratio drops to 1I10th or less (Hopkins &

Kristofferson, 1980, report standard deviations as
small as 7 msec for mean latencies varying from 310
to 550 msec). Letting an asterisk denote these quan­
tities at a high signal level, we have the approxima­
tion

Note-There were no data for P.G. at 4,000 Hz, 24 dB.
"Tests not made for RT < 750 msec. (10)

the somewhat unrealistic one-barrier model with
known signal offset, leading to the Wald distribu­
tion.

As has long been recognized (Donders, 1868/1969),
the observed reaction times are not direct measures
of the decision process alone: the detector latencies
are always blurred by other residual random pro­
cesses. Assuming that these effects are purely addi­
tive, as seems plausible, then

where TRT is the observed reaction time, TD the de­
tector (or decision) latency, and TR the residual la­
tency.

We make two strong assumptions for which there
is little evidence one way or the other. First, we as­
sume TD and TR are independent random variables.
Second, we assume that the distribution of TR is in­
dependent of signal intensity.

By Equation 6 and the assumption that TDand TR
are independent,

(11)

Inverting the transform yields an estimate of fD. We
use this deconvolution procedure to test the fit of a
specific model of fD. The deconvolution procedure
may produce a somewhat distorted estimate of fD,
particularly if the independence assumptions are
wrong. But the alternative is to explicitly model the
entire reaction-time process from the eardrum to the
fingertip-a formidable, if not hopeless, task.

Deconvolution has one unfortunate consequence:
Although it produces useful estimates of the decision
distribution, it does not preserve the information

CD(w) e! CRT(w)/Ch(w). (13)

We do not know d, but if we are willing to assume
that it is very small, Equation 12reduces to

where d is the mean detection time for a very intense
signal. It is wellknown that Equation 10implies

Substituting in Equation 9,

(6)
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Condition Patel's Method Minimum x'

Hz dB x' df X' df

S.B.

250 20 53.8 24 45.9 25
250 22 159.3 22 147.2 23

1000 20 29.4 18 26.6 17
1000 22 43.2 9 31.3 9
4000 24 1523.4 14 75.1 20
4000 26 127.3 11 85.2 11

P.G.

250 20 * 143.7 31
250 22 129.9 19 125.8 19

1000 20 129.8 88 116.3 84
1000 22 96.8 31 81.9 32
4000 26 119.3 6 340.1 24

"Cannot estimate because matrix is singular.

Table 4
Goodness of Fit Between the Deconvolved Distributions

and Waid Distributions

where += AIJot, and var(X) =1l
3/A.

The maximum likelihood estimators for Il and A

have been determined by Tweedie (1957), but they
require raw data (i.e., individual reaction times)
which are lost in the process of deconvolution. More­
over, the censored distributions are doubly truncated
prior to deconvolution-reaction times longer than
3,000 msec or shorter than the estimated minimum le­
gitimate reaction time were ignored-and the negative
loops introduced in the tails by the deconvolution re­
quired further truncation. It is therefore convenient
that Johnson and Kotz (1970, Vol. I, p. 146) give es­
timators (due to Patel, 1965) that begin with sample
moments from the doubly truncated distribution.
Using these, we can, under the assumption that the
data are from a Wald distribution, estimate Il and A

and then determine the goodness of fit between the
resulting Wald distribution and the data. Table 4
gives the results of that test.

The results of chi-square tests indicate that the
Wald distribution, as estimated by Patel's method,
does not fit the data. But, because slight alterations
in the estimated parameters may produce smaller chi­
square values, a trial and error gradient search pro­
gram was used to find the minimum chi-square fit,
beginning at the estimated parameters found by
Patel's method. The minimum chi-square fits are
somewhat better (see Table 4), but are still not satis­
factory. Figure 7 shows two examples of decon­
volved data together with the Wald distributions es­
timated by each method.

Although the Wald distribution provides a reason­
ably good account of the 1,000-Hz, 20-dB data of all
subjects, it fails badly for the other five conditions.
The source of the failure is the inability of the Wald
distribution to account for the decreasing hazard
rates in the tails. That may seem paradoxical inas­
much as the hazard functions of Wald distributions

1.21.0.8.6

X

.4.2

.4

2.4

2.0

1.6

X

:I:

1.2

Figure 6. Tbe hazard function of tbe Wald distribution. Eacb
distribution bas unit mean. Tbe shape parameter, +, determines
tbe sbarpness of tbe peak in the bazard function. As +becomes
large, tbe Wald distribution approacbes tbe normal distribution,
wbicb bas a monotonic Increasing bazard function.

Fitting the Wald Distribution
The general form of the Wald distribution is

2.8 r---:r-......--r,-----------~

.8

f(t) = lJ.t+/(2nt3
) ] Vz

. exp[+-(1I2)+(tlll+lllt)], (14)

about individual reaction times that is required by the
random smoothing method of hazard function esti­
mation. The slopes of the deconvolved log-survivor
functions indicate that deconvolution does not much
change the shape of the hazard functions; it narrows
the peaks somewhat, but primarily it results in a trans­
lation of the function toward the origin. Thus, be­
cause other methods of estimating the hazard func­
tions are not very satisfactory, we present only the
deconvolved log-survivor functions and leave the
reader to verify that the deconvolved hazard func­
tions retain their general shape.

With the present data, the individual reaction times
were collapsed into 2-msec bins before transforming
the histograms. The transforms of the weak-signal
data were then divided by the transform of the loud­
signal data to obtain the transforms of the estimated
decision distributions. This process produces high­
frequency components that reflect, primarily, the
discontinuities inherent in the histograms. So, to re­
duce this problem and to arrive at reasonably smooth
estimates of the decision distribution, all frequencies
greater than 20 Hz were removed (for a discussion
of this problem, see Davis, 1975, 1977). The filtered
transforms were then inverted to obtain estimates
of the decision histograms.
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Figure 7. Samples of deconvolved data for PG vs. estimated Wald distributions. Note:
Because of the negative excursions in the tails of the deconvolved histograms, the log sur­
vivor functions are not monotone decreasing.

are peaked. But the shape parameter, t, which deter­
mines the sharpness of the peaks, is linked to the co­
efficient of variation (cv), that is, (CV)2=1/t. Fig­
ure 6 shows that the hazard function of the Wald
distribution is markedly peaked only for t < 1, that
is, for coefficients of variation larger than one. More­
over, the hazard function of the Wald distribution
becomes more peaked as t decreases (or the coeffi­
cient of variation increases). The data, on the other
hand, show coefficients of variation less than one,
and smaller coefficients correspond to more peaked
hazard functions. Therefore, the inability of the
Wald distribution to account for the data is related
to a fundamental difference between its properties
and those of the data. But the failure of the Wald
distributions to account for our data does not allow
us to rule out the random walk model entirely, for
the Wald is only the asymptotic form of the model.
If the random walk is assumed to proceed in rela­
tively few, large jumps, then it does not give rise to
the Wald distribution. Perhaps, in that case, the pre­
dicted decision distribution has better properties, but
it is not the purpose of the present paper to pursue
the matter further.

Random Criterion Models
A random criterion model of the sort proposed by

Grice may yet be able to account for our data. Al­
though the model, as he formulated it, cannot ac­
count for random foreperiod data, it could be mod­
ified in a number of ways that would work. The re­
sulting predicted hazard functions would not be ex­
actly the same, but they would very likely be of the
same general character, because mixtures (as pro­
duced by a random criterion) tend to give rise to
peaked hazard functions. The model as given in Ta-

ble 1 has three free parameters, and modifications
necessary to introduce a random component to the
information accumulation would no doubt introduce
more free parameters. Thus, it seems safe to assume
that a random criterion model can be made to fit the
data. However, the fact that the addition of 2 dB
can change the hazard function from monotone in­
creasing to strongly peaked (e.g., with Subject P .G.
at 250 Hz) casts some doubt on the random criterion
model. Mixtures of monotone increasng hazard func­
tions can become peaked, but mixtures of peaked
hazard functions cannot become monotone increas­
ing (d. Barlow & Proschan, 1965). Thus, the pres­
ence of both implies that the distribution for any
fixed criterion is monotone increasing, and therefore
that the height of the peak is a measure of the vari­
ance of the criterion. The data imply, then, that the
criterion is more stable with a 20-dB signal than with
a 22-dB signal-a curious result with little intuitive
appeal.

Grice (1972) also presented reaction-time data
which his model fits reasonably well. However, his
data do diverge from his model, and the divergence
suggests that the data has more strongly peaked
hazard functions than the model. And, to the extent
that such a fit impliesthat his data would show peaked
hazard functions, a combined change and level detec­
tor model may account for his data just as well. More­
over, other sources of psychophysical evidence for
change detection (referenced in the introduction) are
not explainable by random criteria. Thus, it is not at
all clear that a random criterion model is necessary
to account for reaction-time data. Nor is it desirable.
Some variability in criteria is no doubt inevitable in
real world situations. But, if substantial variability
is inescapable, we cannot hope to uncover much,
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if anything, else about the decision process: it will
always be confounded with whatever process con­
trols the criterion.

SUMMARY

Our analysis of reaction times to response­
terminated, weak-signal offsets has rested upon two
major methodological procedures. First, there are
the experimental and analytical procedures designed
to ensure that the distributions are built up from
component distributions having minimal mixture
artifacts. The data-censoring procedures are some­
what suspect, but we believe that the arguments pre­
sented and the simulations performed justify them.
The second is the use of Fourier transform tech­
niques and reaction-time distributions with loud sig­
nals to factor out the obscuring residual latencies.
Although it is no doubt true that the loud-signal data
include some decision component, those distribu­
tions are narrow enough for small changes in their
shapes not to appreciably change the resulting esti­
mates of the decision distributions. Thus, if the as­
sumptions underlying the use of deconvolution are
not badly wrong, then our estimates of the decision
distributions ought to be reasonably good.

We find that the decision latency distributions
show two forms, either monotone increasing hazard
functions or peaked hazard functions with asymp­
totically constant tails. Moreover, these two forms
are systematically related to the intensity of the sig­
nal: monotone increasing hazard functions are found
only with the weaker signals. Although the data do
not rule out a random criterion model, they are most
consistent with the hypothesis that two types of de­
tectors function independently, with detection being
initiated by whichever detector responds first to the
offset. The level detector responds somewhat slug­
gishly but continues to provide information after the
offset and accounts for the asymptotic hazard rate.
The change detector is quicker, is inherently less
persistent, has a somewhat higher threshold, and ac­
counts for the peaks of the hazard functions. Thus,
the reaction-time data are in accord with the accu­
mulating physiological evidence that the parallel
operation of change and level detectors is a fre­
quently encountered principle of neural organization.

REFERENCE NOTE

1. Shannon, R. V. Unpublished data, 1973. Examples of these

data appear in Burbeck (1979).
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NOTES

1. By independence, 1- F(t) = [1- Fc(t)J[I- FI(t»). Taking

the derivative, f(t) = fc(t)[l- FI (!) ) + f l (t) [1 - Fc(t»). The result is
immediate.

2.

integrating to get 1- F(t) and solving for h(t) yields the result.
3. The geometric standard deviation is simply the antilog of the

arithmetic sample standard deviation of the logs of the reaction

times.
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