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Abstract: Uncertainty is widely present in target recognition, and it is particularly important to
express and reason the uncertainty. Based on the advantage of the evidence network in uncertainty
processing, this paper presents an evidence network reasoning recognition method based on a cloud
fuzzy belief. In this method, a hierarchical structure model of an evidence network is constructed; the
MIC (maximum information coefficient) method is used to measure the degree of correlation between
nodes and determine the existence of edges, and the belief of corresponding attributes is generated
based on the cloud model. In addition, the method of information entropy is used to determine the
conditional reliability table of non-root nodes, and the target recognition under uncertain conditions
is realized afterwards by evidence network reasoning. The simulation results show that the proposed
method can deal with the random uncertainty and cognitive uncertainty simultaneously, overcoming
the problem that the traditional method has where it cannot carry out hierarchical recognition, and
it can effectively use sensor information and expert knowledge to realize the deep cognition of the
target intention.

Keywords: dynamic evidence network; evidence theory; uncertain information; target recognition;
cloud model

1. Introduction

Uncertainty is widespread in the real world, and such uncertainty can be either aleatory
uncertainty, caused by randomness, or epistemic uncertainty, caused by limited knowledge;
thus, it is particularly important to represent and make inferences about uncertainty [1–5].
The development of information technology has greatly enhanced sensor detection capa-
bilities and has provided rich information for target intent recognition; however, in the
face of the increasingly complex information environment, both the sensor target attribute
information and a priori knowledge present great uncertainty and complexity [6–10], which
leads to difficulties in accurate target intent recognition, and the effective fusion of real-time
acquired target attribute information and a priori knowledge has become the mainstream
method for target intent recognition in recent years.

From the existing theoretical and applied research on target intent recognition, the
mainstream methods currently include template matching, Bayes theory [11,12], DS ev-
idence theory [13–15], fuzzy inference, neural networks, deep learning, reinforcement
learning, etc. Jiang et al. [16] constructed a template library based on domain expert knowl-
edge, extracted features from target actions, and determined target intent by inferring
the degree of matching between the features and the template library from DS evidence.
Yang et al. [17] constructed a dynamic sequence Bayesian network model and proposed
an intention recognition model based on the extended multi-entity Bayesian network by
analyzing the limitations of the multi-entity Bayesian network in expressing the probability
transfer relationship of rule knowledge. Xu et al. [18] realized target intention recognition
by defining target motion feature parameters and using target state features and expert
knowledge to build fuzzy inference models and rules. Li et al. [19] treated target intent
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recognition as a multi-classification problem and proposed a long short-term memory
(LSTM) target recognition method based on improved the attention mechanism. Xue
et al. [20] designed a new deep learning method known as panoramic convolutional long
short-term memory networks (PCLSTM) to improve the recognition of targets in order
to solve the problem where traditional methods have difficulty effectively capturing the
essential features of target information. Chen et al. [21] applied the knowledge graph
to target intention recognition, built the target ontology model, and analyzed the binary
relation to obtain the knowledge graph, where the authors then input signals into the
knowledge graph to realize the intention recognition.

Target intention recognition is a process of deducing the target intention based on the
observation of the target’s features and behaviors. It is not only related to multiple feature
dimensions, but also to multiple logical levels. The effectiveness of the system decision can
be only improved after the target feature information obtained by various sensors is fused
and reasoned [22–25]. The existing methods generally judge the target intention directly
according to the motion features and do not fully consider the hierarchical characteristics
of the target intention, which leads to the problems of consuming more time and having
low procedural efficiency, and it is difficult to achieve the real-time recognition of the
hierarchical target intention. Among many uncertain information reasoning methods, the
evidential reasoning methods represented by the DS evidence theory and its derived model,
the evidential network (EN) [26–30], have a strong expression and reasoning ability for
uncertain information. It is considered to be very suitable for target recognition in complex
information environments [31–35]. To solve the problem of target recognition by using an
evidence network, an important task is to determine the topology of the network and the
relationship between each node in the network. Typically, the traditional evidence network
modeling method is to manually establish the network structure and provide the network
parameters according to the causal relationship based on expert experience. This method is
suitable for the situations of lack of knowledge and scarce data. However, it does not apply
to cases with large amounts of statistical and measurement data.

To address the above two aspects, this paper proposes a data-driven evidence network
inference recognition method based on traditional recognition algorithms that cannot
perform hierarchical recognition and fail to effectively utilize sensor information. This
method can combine the hierarchical idea of the expert thinking process and use the data
to automatically obtain the network structure and parameters so as to realize the evidence
inference recognition for the hierarchical target intent.

The rest of the paper is organized as follows. Section 2 of the paper provides the
theoretical foundation of evidence networks, including DS evidence theory and evidence
networks. Section 3 lists the method of constructing the evidence network structure
model for multi-level target intent recognition, including evidence network structure
modeling, cloud model-based belief generation, evidence network parameter construction,
and evidence network inference methods. Section 4 presents numerical simulations to test
and validate the method proposed in this paper. Finally, a brief conclusion is provided in
Section 5.

2. Theoretical Foundations of Evidence Network
2.1. DS Evidence Theory

Evidence theory, a set of mathematical theories established by Dempster and Shafer
in the late 1960s and early 1970s, is a further expansion of probability theory, which is
flexible and effective at dealing with imprecision and uncertainty in the absence of a priori
information, and the theory has been widely used in a variety of fields such as pattern
recognition, fault diagnosis, risk analysis, and human factors reliability analyses.
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Definition 1. Let the finite set of all values of a proposition be denoted by Θ = {X1, X2, · · · , Xi, · · · , XN},
where Θ is a complete set composed of N independent and mutually exclusive elements. Then Θ is
called the frame of discernment of the proposition. The power set 2Θ of Θ is a set of 2N elements,

2Θ = {∅, {X1}, {X2}, · · · , {XN}, {X1, X2}, · · · , {X1, X2, · · · , Xi}, · · · , Θ} (1)

where ∅ denotes the empty set. If A ∈ 2Θ, then A is said to be a hypothesis or proposition.

Definition 2. For the identification frame Θ, if there is a function m : 2Θ → [0, 1] and the
following conditions are satisfied, then

m(∅) = 0
∑

A∈2Θ
m(A) = 1

m(A) ≥ 0

(2)

In DS evidence theory, known as basic probability assignment (BPA) or mass function,
BPA is essentially an evaluation weight for various hypotheses. However, BPA is not a
probability because it does not satisfy the countability and additivity. If m(A) > 0, A is
called the focal element of the basic probability assignment m on Θ, and the set of all focal
elements forms the core of the BPA.

Definition 3. Let m, Bel, and Pl be the BPA, belief function, and plausibility function on Θ,
respectively. Then for any A ∈ 2Θ, there is

Bel(A) = ∑
B⊆A

m(B) (3)

Pl(A) = 1− Bel(A) = ∑
B∩A 6=∅

m(B) (4)

Bel(A) and Pl(A) are the lower and upper bound functions of proposition A, respectively, and
Pl(A) ≥ Bel(A).

Definition 4. Assuming that m1 and m2 are two independent BPAs in the identification frame Θ,
Dempster’s combination rule can be expressed as follows:

m(A) =


1

1− K ∑
B,C∈2Θ |B∩C=A

m1(B)m2(C), A 6= ∅

0, A = ∅
(5)

where K can be expressed as

K = ∑
B,C∈2Θ |B∩C=∅

m1(B)m2(C) (6)

K is the conflict coefficient, which is used to measure the degree of conflict among
focal elements of evidence. The greater the value of K, the greater the conflict. Obviously,
Dempster’s combination rule is only valid if K < 1.

2.2. Evidential Network

In many dynamic complex systems, state probability estimation is very difficult.
An evidence network combines the advantages of DS evidence theory and the Bayesian
network to provide an intuitive problem description method, which makes the relationship
between the variables easy to understand. It is a widely used uncertain reasoning method
that can solve the uncertain problem in target recognition more effectively. Evidence
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network models are able to transform uncertain knowledge and logical relationships into
graphical models, making it possible for uncertainty to propagate through the network,
while taking into account the dependencies between dynamic evolution and the conditions
of use.

An evidence network is a directed acyclic graph (DAG) that can be formally described
as EN = ((Q, A), P), where EN denotes an evidence network, (Q, A) denotes a directed
acyclic graph with Q nodes, Q denotes the set of nodes, A denotes the set of connected
arcs between nodes, the directed arcs between nodes denote logical relationships between
the variables, and P denotes the network parameters. An evidence network consists of
a network structure and network parameters, and a basic evidence network is shown in
Figure 1.
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Figure 1. Basic evidence network diagram.

Using the conditional belief function (CBF) as the parameter model of an evidence
network is a very effective way to describe knowledge, which can quantitatively describe
the degree of association between the nodes. The expression of the parameters of the
evidence network model is provided below.

Definition 5. Let Θ be the identification frame and m be the basic reliability assignment on Θ. For
A, B ⊆ Θ, the conditional basic belief is defined as

m(B|A) =

 ∑
X⊆A

m(B ∪ X), B ⊆ A ⊆ Θ

0 other
(7)

Definition 6. Let Θ be the identification frame. Bel is the belief function on Θ, and for A, B ⊆ Θ,
the conditional belief function on Θ is defined as

Bel(B|A) = Bel(B ∪ A)− Bel(A), ∀B ⊆ Θ (8)

where Bel(B|A) represents the belief of B given A.

Definition 7. Let Θ be the identification frame. Pl is the plausibility function on Θ, and for
A, B ⊆ Θ, the conditional plausibility function on Θ is defined as

Pl(B|A) = Pl(A ∩ B), ∀B ⊆ Θ (9)

According to the DS evidence theory, there is a correspondence between the BPA,
belief function, and plausibility function. Similarly, there is a correlation between the
conditional belief function, which can be transformed into each other using the algorithm.
The following is the transformation relationship between the conditional BPA, conditional
belief function, and conditional plausibility function.
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Theorem 1. Let the identification frames of X and Y be ΘX and ΘY, respectively. If x ⊆ ΘX , for
any ∅ 6= y ⊆ ΘY, the conditional belief function of y given x is

Bel(y|x) = ∑
z⊆ΘY ,z⊆y

m(z|x) (10)

Theorem 2. Let the identification frames of X and Y be ΘX and ΘY, respectively. If x ⊆ ΘX , for
any ∅ 6= y ⊆ ΘY, the conditional plausibility function of y given x is

Pl(y|x) = ∑
z⊆ΘY ,z∩y 6=∅

m(z|x) (11)

Theorem 3. The following relationships exist between the conditional BPA, conditional belief
function, and conditional plausibility function: Bel(y|x) = 1− Pl(y|x)

m(y|x) = ∑
z⊆y

(−1)|y−z|Bel(z|x) (12)

3. Structural Modeling of Multi-Level Target Intent Recognition Evidence Network

This section will introduce a target intention recognition method based on evidence
network reasoning. Based on data preprocessing, measured data obtained by sensors are
used to drive the generation of an evidence network structure and root node belief function,
and the evidence network reasoning algorithm based on the conditional belief parameters
is then used to solve the non-root node belief function and finally achieve target intention
recognition. Figure 2 shows the intent recognition process.
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Figure 2. Process of target intention recognition in evidence network reasoning.

3.1. Evidence Network Structure Modeling

In order to describe the relationship between the nodes of an evidence network more
accurately, make the node elements as few as possible, and improve the reasoning efficiency,
the correlation between the elements of the network should be considered. The stronger
the correlation between the elements, the greater the possibility of a causal relationship
between them. Therefore, it is necessary to adopt the evidence network structure modeling
method to establish the relationship model between the elements. The structure of evidence
network expresses the causal relationship between events. The modeling of evidence
network structure expresses the logic of target recognition at the level of qualitative analysis,
and it mainly studies the key elements in the system, establishing the relationship between
the elements. The structural model of an evidence network mainly includes nodes and
edges. Nodes represent research objects, and edges describe the logical relations between
nodes. Because the nodes can be determined by the variables in the data set, the edges
between the nodes can be mined using the data set.

The traditional evidence network structure modeling is too subjective, so this paper
adopts a data-driven evidence network structure modeling method. In order to be able
to identify nonlinear functional relations and process uncertain information, a maximum
information coefficient (MIC) is introduced in this section to measure the degree of cor-
relation between nodes, determine the existence of edges, and establish the structure of
an evidence network. The MIC can capture the correlation between two variables from
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massive data. Because the MIC is symmetric, that is, MIC(x, y) = MIC(y, x), it can only
determine if the correlation between the variables is undirected.

Assuming that there are two variables and they have a correlation, a grid can be drawn
on the scatter plot corresponding to the two variables, and the relationship between the
two can be partitioned. Let D represent the finite data set of ordered pairs x and y, and let
the data sample size be N. Given the ordered pairs < a, b >, the X and Y planes can be
divided into multiple units, where such a division is called grid G. Let D|G represent the
distribution of points in D on grid G. For fixed D, a different grid G produces different
distributions. The eigenmatrix of data set D can be calculated by the following formula:

M(D)x,y =
maxI(D|G)

log min{a, b} (13)

where, maxI(D|G) represents the maximum mutual information of grid partition into G
on data set D.

For data set D with sample size N = n, the maximum information coefficient can be
calculated by the following formula:

MIC(D) = max
xy<B(n)

{M(D)x,y} (14)

where B(n) is a function of sample size, usually set as B(n) = n0.6. The degree of depen-
dence of two nodes can be determined by the size of the MIC. If MICx,y is large, it indicates
that node x is directly or indirectly connected to node y through one or more nodes; if
MICx,y is small, it indicates that the probability of association between node x and node
y is small. When the MIC value between two nodes is large, it does not mean that the
two nodes must be directly connected in the evidence network. When a pair of nodes
are indirectly connected through multiple nodes, their MIC value will be larger. There-
fore, if only the MIC value is used to determine whether nodes are connected, redundant
edges will be introduced. An example of producing redundant edges is shown in Figure 3.
Figure 3a shows that node x and node y are indirectly connected through nodes a, b, and c,
respectively, resulting in a large MIC value. If nodes are directly connected according to
the MIC value, the obtained evidence network structure, as shown in Figure 3b, produces
redundant edges and is inconsistent with the actual network.
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This paper introduces a modified MIC evidence network structure modeling method [36].
The steps are as follows:

Step 1: Create an MIC value list of node xi, and store MIC values between node xi
and all other nodes in descending order, denoted as MICxi .

Step 2: Correct the MIC value and record it as MICδ
xi

.

MICδ
xi
(xj) = MICxi (xj)−

δ

m

m

∑
h=1

(MICxi (xh) + MICxj(xh)) (15)
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where MICxi (xj) represents the MIC value between node xi and node xj and δ represents
the penalty factor. The larger the penalty factor is, the smaller the probability of generating
triangle rings in the network, and δ = 0.1 is preferable. xh represents a class of nodes in
both list MICxi and list MICxj , and m is the number of nodes xh.

Step 3: Set MMICδ
xi

as the maximum value of MICδ
xi

in the list, and set γ as the
isolation threshold factor of MMICδ

xi
. If MMICδ

xi
< γ is satisfied, node xi is considered as

the isolated node.
Step 4: If node xi and node xj have undirected edges, the following conditions must

be met: 
MICδ

xi
(xj) ≥ α×MMICδ

xi
or

MICδ
xj
(xi) ≥ α×MMICδ

xj

(16)

where α is the connection threshold factor. The larger α is, the stricter the conditions for
generating edges and the lower the probability of generating redundant edges.

3.2. Belief Generation Based on a Cloud Model
3.2.1. Gaussian Cloud Model

The cloud model [37] is a mathematical method that can model uncertain data. Three
digital features, the expected value Ex, entropy En and hyper entropy He, are used to
represent a concept as a whole. Ex reflects the center of gravity position of the cloud droplet
group, En reflects the range acceptable by this qualitative concept, that is, the ambiguity,
and He reflects the cohesion of the uncertainty of all points, that is, the agglomeration of
the cloud droplet.

The two-order normal forward cloud model generator is adopted, and its implementa-
tion process is described as follows.

Step 1: Generate a normal random number with En as the expected value and He2 as
the variance.

En′ = NORM
(

En, He2
)

(17)

Step 2: Substitute the measured value x to obtain the determination u(x),

u(x) = exp
−(x−Ex)2

2En′2 (18)

where Ex is the expected value of target characteristic attribute value in the database, En′ is
the normal random number obtained in Step 1, and x is the measured value of the unknown
target.

3.2.2. A Method of Belief Generation Based on Cloud Model

The membership of the target characteristic parameter was set as the mean value
of the parameter value. The entropy was k times of the standard deviation of the prior
value, where the size of k reflected the dispersion degree of the estimated noise error. The
super entropy was l times of the standard deviation of the prior value of the cloud model
distribution, and the size of l could reflect the randomness. Assuming that the expected
value of the characteristic parameter value of an attribute class is Ex and the standard
deviation is En, the membership degree of the corresponding attribute class is calculated
according to the measured data and then converted into the BPA on the attribute.

Step 1: Generate a normal random number with an expected value of k·En and a
variance of (l·En)2, En′ i = NORM(k·En, (l·En)2);

Step 2: Substitute the target measurement feature parameter xi = x0 and calculate its
membership degree of a certain feature class as:

µi = exp

(
−(x0 − Ex)2

2En′ i

)
(19)
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In this way, the Gaussian cloud model can be used to describe the membership
distribution of training samples on each attribute.

Step 3: Construction of composite category attribute model
Target identification needs to rely on multiple attributes, such as speed and height.

For the attribute of target speed, membership functions corresponding to high speed,
medium speed, and low speed are expressed as µH(x), µM(x), and µL(x), respectively.
Different membership functions may intersect, which corresponds to the combination state
of categories. If the membership function µHM(x) represents the attribute model that may
belong to category H or category M, its mathematical expression can be described as:

µHM = min{µH(x), µM(x)} (20)

Membership function µHML(x) represents attribute models that may belong to cate-
gories H, M, and L, and its mathematical expression can be described as:

µHML = min{µH(x), µM(x), µL(x)} (21)

Correspondingly, the membership function µ12···n(x) represents the attribute model
that may belong to any category in the identification framework Θ = {1, 2, · · · , n}, and its
mathematical expression can be described as:

µ12···n(x) = min{µ1(x), µ2(x), · · · , µn(x)} (22)

Step 4: Match the test sample with the Gaussian cloud model
Suppose Q is a proposition in the identification frame and t is the value of the test sam-

ple on an attribute. Then, the matching degree between the test sample t and proposition
Q is defined as:

F(Q← t) = µQ(x)
∣∣
x=t (23)

The size of the F(Q← t) value represents the matching degree between the sample
and proposition Q, which depends on the intersection point between the Gaussian cloud
model corresponding to proposition Q and the test sample. Q can represent either a monad
set proposition or a multi-subset proposition. For example, for the target velocity data set,
the matching degree between test sample t and propositions {H}, {H, M}, and {H, M, L}
is defined as: 

F(H ← t) = µH(x)|x=t
F(HM← t) = µHM(x)|x=t

F(HML← t) = µHML(x)|x=t

(24)

Step 5: Pignistic probability transformation
Because of the reliability assignment problem of multiple subset propositions, it is

impossible to make a decision directly based on the BPA, so the basic belief assignment
m(·) can be approximated as a probability by using pignistic probability transformation
BetP(·) to facilitate the hard decision of evidential reasoning.

Assuming that m(·) is the reliability function on the identification frame Θ, BetP(·)
represents its pignistic probability distribution, and then corresponding to any element
x ∈ Θ, there is

BetP(x) = ∑
x∈B⊆2Θ

1
|B| ·

m(B)
1−m(∅)

(25)

where B is a proposition in the belief function m and |B| represents the potential of proposi-
tion B.

3.3. Construction of Evidence Network Parameters

An evidence network is mainly composed of a network structure and network param-
eters. Network parameters express quantitative knowledge, that is, the degree of influence
from cause to result, and use different forms of belief function to represent the quantitative
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correlation between nodes. In the process of building an evidence network model for target
recognition, network parameters can be in the form of a conditional belief table, and expert
knowledge can be included in the conditional belief table, which can reflect the degree of
correlation or influence between nodes.

The original DS evidence theory only considers the evidence modeling problem under
the same recognition framework. For the relationship between nodes in the evidence net-
work model, it is necessary to consider the evidence representation of two or more variables
under different recognition frameworks, namely the joint reliability function model. When
the scale of the problem is large and the variable state space is large, the combined explosion
problem easily occurs in the joint belief function model. The conditional belief function
is an effective way to describe knowledge, and its function is similar to the conditional
probability function in Bayesian networks. Compared with the joint belief function model,
the conditional belief function model is more direct and easier to understand. In addition,
from the perspective of model complexity, the conditional belief function model also has
advantages over the joint belief function. Therefore, this paper chooses the conditional
belief function as the parameter model of the evidence network.

In order to generate conditional belief, the method based on information entropy is
used to determine the conditional belief table. Assume that the characteristic attribute
of target intent recognition is ATi ∈ {0, 1, 2, 3}, which can be graded by multiple experts.
Assume that the evaluation result of an expert is Ek

ij = {(Gn, βk
n), n = 1, · · · , N}, where

Gn represents the nth evaluation level, βk
n represents its support level, and

N
∑

n=1
βk

n = 1.

If p(Gn) represents the probability at the evaluation grade Gn, a probability distribution
P defined on Θ can be obtained based on the evaluation results. When determining the
conditional belief distribution, entropy can be used to describe the degree of uncertainty in
the information. The information entropy of this probability distribution can be calculated
and taken as the belief value of multiple subsets. In order to obtain the belief value of the
monad set element, the belief value of multiple subsets can be removed and allocated to
the monad set in the corresponding proportion:mP({Gn|Gn ∈ Θ, p(Gn) 6= 0}) = −

N
∑

n=1
p(Gn) logk p(Gn)

mP(Gn) = [1−mP({Gn|Gn ∈ Θ, p(Gn) 6= 0})]p(Gn)
(26)

where N represents the number of evaluation levels and k represents the number of
experts. When the evaluation levels of all experts are different, there is p(Gn) = 1

k ,
mP({Gn|Gn ∈ Θ, p(Gn) 6= 0}) = mP(Θ) = 1. In this case, it means completely unknown. If
all expert evaluation results are consistent, such as G1, p(G1) = 1 and mP(G1) = 1, which
means that all reliability is assigned to G1.

3.4. The Method of Evidence Network Inference

By building an evidence network with the conditional belief as the parameter, and after
obtaining the measurement information of some evidence network nodes, it is necessary to
estimate the state of unknown nodes through evidence network inference. That is, based on
the known network structure model and parameter model, the belief inference algorithm is
used to calculate the inference value of nodes of interest. In practice, an evidence network
inference for target recognition is used to obtain the key variables of the target recognition
system, establish the relationship between them through the evidence network structure
model, use the evidence network parameter model to describe the degree of influence
between variables, and then deduce the state information of other nodes according to the
state information of input variables. In theory, the evidence network inference based on the
conditional belief function as the parameter model needs strict mathematical derivation
algorithm to achieve effective information transmission. The inference mode can be divided
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into forward reasoning and reverse reasoning. The inference process includes three main
steps: inference initialization, information transfer, and node information update.

Figure 4 shows the evidence network model with belief reliability as the param-
eter. The node set of the evidence network is N = {Y, Z, X}, the directed arc set is
A = {(Y, X), (Z, X)}, the parameter model is Bel(x|y) and Bel(x|z), and the identification
framework of Y, Z, X is assumed to be ΘY, ΘZ, ΘX and y ∈ ΘY, z ∈ ΘZ, x ∈ ΘX, respec-
tively. Then, the state information of X can be obtained from y, z and conditional belief
Bel(x|y) and Bel(x|z); that is, BelX(x) can be regarded as the function F of y, z, Bel(x|y)
and Bel(x|z):

BelX(x) = F(y, z, Bel(x|y), Bel(x|z)) (27)
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The solution of function F needs to go through several steps, such as information
transformation, forward reasoning, and belief synthesis. Information transformation can be
processed through the relationship between beliefs. This paper mainly studies the forward
reasoning algorithm, proposes a new belief synthesis algorithm, and realizes the evidence
network reasoning under the conditional belief parameter model.

Assuming that the identification frames of nodes Y and X are ΘY, ΘX respectively,
then for ∀y ⊆ Y, ∀x ⊆ X, the conditional basic belief function from Y to X is defined and
extended, and the marginalization operation theorems are:

mX(x|y) = ∑
( ∪

i:yi∈y
xi)=x

∏
i:yi∈y

mX(xi|yi) (28)

If the belief information on each subset of Y is known, denoted by m0(y), y ⊆ Y, then
∀x ⊆ X, and the conditional basic belief can be expressed as

mX(x) = ∑
y⊆Y

mX(x|y)m0(y) (29)

The conditional belief and conditional plausibility function can be expressed as:

BelX(x) = ∑
y⊆Y

m0(y)BelX(x|y) = ∑
y⊆Y

m0(y)

(
∏
yi∈y

bX(x|yi)− ∏
yi∈y

bX(∅|yi)

)
(30)

PlX(x) = ∑
y⊆Y

m0(y)PlX(x|y) = ∑
y⊆Y

m0(y)

(
1− ∏

yi∈y
(1− PlX(x|yi))

)
(31)

For any x ∈ ΘX , y ∈ ΘY,

PlX(y|x) =
Pl(x|y)Pl(y)

Pl(x)
(32)
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Through forward reasoning, BelX(x)|y0 can be obtained by reasoning from y0 and
Bel(x|y), and BelX(x)|z0 can be obtained by reasoning from z0 and Bel(x|z). BelX(x)|y0
and BelX(x)|z0 need to be synthesized to obtain the final reasoning result of X. Dempster’s
rule of composition can be adopted for evidence synthesis.

4. The Illustrative Example

This section takes target intention recognition as an example to systematically verify
the method proposed above and adopts hierarchical evidence network reasoning, which is
divided into three levels of a reasoning and recognition system: state level, action level,
and intention level. The data-driven cloud model can generate the belief degree of the
feature attributes of the target, which can make full use of the prior information of the
known samples of the target, adopt the method based on information entropy to determine
the conditional belief table, effectively integrate expert knowledge, and finally realize the
intention recognition of the target through evidential reasoning.

4.1. Constructing Evidence Network

Based on the prior knowledge of experts in combination with the MIC algorithm, the
correlation between nodes is judged. The evidence network structure modeling is carried
out for the target intention recognition, and the dependency and ownership relationship
between nodes are obtained. As shown in Figure 5, the target intention can be expressed
in a hierarchical way, which is divided into the state layer, action layer, and intention
layer. The perceived state describes the state data of the target, indicating the change in
the target’s action, including the distance, speed, and other information. Action reasoning
describes the action taken by the target and the role it plays, including entity action and
electromagnetic action, among which entity action is associated with distance and speed
information and electromagnetic action is associated with alarm information. Intentional
reasoning describes the inference or estimation of an entity’s intention.
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Figure 5. Evidence network structure of target intent recognition.

Through the previous experiment, it can be seen that after determining the network
structure and network parameters, the target intention can be estimated based on the infer-
ence method. In the aspect of network structure construction, the algorithm can correctly
construct hierarchical evidence network structure by combining expert prior knowledge
with the MIC algorithm. Compared with the traditional method that simply relies on expert
prior knowledge, the algorithm effectively makes use of the information associated in the
data of different attributes. Through experimental verification, the distance, azimuth, and
velocity information are associated with the entity action node; warning information is
associated with the electromagnetic action, and the entity action node and electromagnetic
action node are associated with the target intention node. The whole network structure
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in Figure 5 conforms to the conditional independence of the data set, and the constructed
network structure is reasonable and can meet the requirements of evidential reasoning.

4.2. Cloud Fuzzy Belief Generation

The training samples were selected from the data set to construct its cloud model
on various attributes. The remaining samples were used as test samples to test the BPA
generation.

According to the recognition framework of target feature attribute R, A, V as {H, M, L},
the Ex, En, and He of their corresponding training samples are calculated, respectively.
For example, under attribute R, ExL = 100, ExM = 150, ExH = 200, En = 1, and
He = 0.2. Similarly, we can obtain the Ex, En, and He under attribute A and Ex, En, and
He under attribute V. According to the obtained parameters, the Gaussian cloud model
En′ = NORM

(
En, He2) on the target attributes R, A, V can be constructed as shown in

Figure 6.
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On the basis of obtaining the Gaussian cloud model of each attribute of the target, the
input sample can be matched with the Gaussian cloud model to obtain the matching degree
between the input sample and the characteristic attributes of the target, thus generating the
BPA of the test sample.

4.3. Conditional Belief Parameter

Target intent recognition requires input information from sensors, including target
distance (R), azimuth (A), velocity (V), warning information (W), and output target intent
by reasoning through the evidence network. There are specific dependence or influence
relationships between nodes in the evidence network. Table 1 describes the framework of
variables related to target intent recognition.

Table 1. Frame description of variables related to target intent recognition.

Feature of Target Mark of Representation Identify Frames and Elements

Intention of target TI {A, C, L}

Activity of entity PO {F, Y, P}

Electromagnetic activity EO {H, L}

Distance R {H, M, L}

Azimuth A {H, M, L}

Velocity V {H, M, L}

Warning information W {N, S, T}

The evidence network requires a conditional belief table with the state value of each
node as the condition to represent the connection strength of causal relationship between
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nodes. In the process of target intention recognition, a conditional belief table based on
the value state of the parent node of a node is also needed to express the strength of
the relationship between events or activities. The number of parameters that need to
be estimated for the conditional belief exponentially increases with the increase in the
number of parent nodes. Therefore, when constructing the conditional belief table, the
direct cause of the event should be selected to reduce the number of parameters in the
conditional belief table and avoid the combination explosion problem. The conditional
belief can be obtained byusing sample learning and expert estimation. When there is not
enough sample data, the conditional belief must be estimated, which is a very difficult
task. In this paper, the expert knowledge estimation is used to estimate the conditional
belief parameters. It is assumed that the conditional belief parameters are formed by
combining the knowledge of five experts, and the conditional belief of the entity action
node is obtained. The identification frame of entity action node is Θ = {F, Y, P}, and each
expert can make an independent evaluation of the three action styles F, Y, P. According to
the expert evaluation results, the conditional belief m(PO = F|L, M, H), m(PO = Y|L, M, H),
m(PO = P|L, M, H), . . . , m(PO = FY|L, M, H), . . . , m(PO = FY|L, M, H) of entity action node
PO is obtained. When five experts provide the m(PO = U|L, M, H), U ∈ {F, Y, P} of the
evaluation results of {E1 = F, E2 = Y, E3 = F, E4 = Y, E5 = F}, the probability distribution
is p(F) = 3/5, p(Y) = 2/5, p(P) = 0 under the probability distribution, and the physical
action node PO belief distribution can be obtained through the calculation of the following
conditions:

m(PO = F, Y|L, M, H) = −(3
5
× log5

3
5
+

2
5
× log5

2
5

)
= 0.4182

m(PO = F|L, M, H) = (1−0.4182)× 3
5
= 0.3491

m(PO = Y|L, M, H) = (1−0.4182)× 2
5
= 0.2327

The conditional belief parameters of the evidence network of node PO, node EO, and
node TI were obtained according to the above methods, as shown in Tables 2–4.

Table 2. Conditional belief parameters of node PO.

Condition
Parameter\Node Variable PO = F PO = Y PO = P PO = FY PO = YP

R = L, A = H, V = H m(F) = 1 m(Y) = 0 m(P) = 0 m(FY) = 0 m(YP) = 0

R = M, A = M, V = H m(F) = 0.5513 m(Y) = 0.1378 m(P) = 0 m(FY) = 0.3109 m(YP) = 0

R = L, A = M, V = H m(F) = 0.3491 m(Y) = 0.2327 m(P) = 0 m(FY) = 0.4182 m(YP) = 0

R = M, A = L, V = H m(F) = 0 m(Y) = 0.3491 m(P) = 0.2327 m(FY) = 0 m(YP) = 0.4182

Table 3. Conditional belief parameters of node EO.

Condition
Parameter\Node Variable EO = H EO = L EO = HL

W = N m(H) = 0.1378 m(L) = 0.5513 m(HL) = 0.3109

W = S m(H) = 0.3491 m(L) = 0.2327 m(HL) = 0.4182

W = T m(H) = 1 m(L) = 0 m(HL) = 0
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Table 4. Conditional belief parameters of node TI.

Condition
Parameter\Node Variable TI = A TI = C TI = L TI = AC TI = CL

PO = F, EO = H m(A) = 1 m(C) = 0 m(L) = 0 m(AC) = 0 m(CL) = 0

PO = Y, EO = H m(A) = 0.5513 m(C) = 0.1378 m(L) = 0 m(AC) = 0.3109 m(CL) = 0

PO = P, EO = L m(A) = 0 m(C) = 0.1378 m(L) = 0.5513 m(AC) = 0 m(CL) = 0.3109

In the experiment, the method based on information entropy is used to determine
the conditional belief table, which can make full use of the expert knowledge to estimate
the conditional belief parameters. As can be seen from Tables 2–4, the conditional belief
parameters of node PO, node EO, and node TI are given, which can quantitatively reflect
the degree of influence of lower level nodes on upper level nodes. For the conditional
probability of Bayesian networks, the probability can only be assigned to a single element in
the identification frame. However, for the conditional belief data of the evidence network,
the conditional parameters of the evidence network can be assigned on the multi-element
set. As shown in Table 3, when the conditional parameter W = N, in addition to the
assignment of single element EO = H and EO = L of nodes, the conditional reliability
parameter m(HL) = 0.3109 can also be assigned to multiple elements EO = HL of nodes,
indicating that there is cognitive uncertainty about EO = H, L, and HL under the condition
W = N. At this time, a part of the belief is assigned to the recognition frame element HL
of the node state. It can be seen that this is a form of multi-element belief allocation that
can fully describe inaccurate and incomplete information, reflecting the advantages of
evidential reasoning network.

4.4. Evidence Network Reasoning Based on Conditional Belief Parameters

Assume that at a certain moment, the basic belief of target features R, A, V, and W
after cloud fuzzy belief processing is

m(R = H) = 0.1, m(R = M) = 0.2, m(R = L) = 0.7,

m(A = H) = 0.6, m(A = M) = 0.2, m(A = L) = 0.2,

m(V = H) = 0.5, m(V = M) = 0.3, m(V = L) = 0.2,

m(W = N) = 0.2, m(W = S) = 0.3, m(W = T) = 0.5.

According to the basic belief assignment and conditional basic belief, the correspond-
ing node information is obtained by forward reasoning.

(1) Use the alarm information to conduct electromagnetic action EO reasoning:

Bel(EO = H) = m(EO = H|W = N)·m(W = N) + m(EO = H|W = S)·m(W = S)
+m(EO = H|W = T)·m(W = T) = 0.6323

Bel(EO = L) = m(EO = L|W = N)·m(W = N) + m(EO = L|W = S)·m(W = S)
+m(EO = L|W = T)·m(W = T) = 0.1801

Bel(EO = HL) = m(EO = HL|W = N)·m(W = N) + m(EO = HL|W = S)·m(W = S)
+m(EO = HL|W = T)·m(W = T) = 0.1876

After pignistic transformation, the belief degree of the EO single factor is obtained:
Bel(EO′ = H) = 0.7261, Bel(EO′ = H) = 0.2739.

(2) Reasoning entity action PO according to distance R, azimuth A, and velocity V
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Bel(PO = F) = m(PO = F|R = L, A = H, V = H)·m(R = L, A = H, V = H)
+m(PO = F|R = L, A = M, V = H)·m(R = L, A = M, V = H)
+m(PO = F|R = M, A = M, V = H)·m(R = M, A = M, V = H)
= 0.2556

Bel(PO = Y) = m(PO = Y|R = L, A = M, V = H)·m(R = L, A = M, V = H)
+m(PO = Y|R = M, A = M, V = H)·m(R = M, A = M, V = H)
+m(PO = Y|R = M, A = L, V = H)·m(R = M, A = L, V = H)
= 0.0213

Bel(PO = P) = m(PO = P|R = M, A = L, V = H)·m(R = M, A = L, V = H)
= 0.0047

After pignistic transformation, the belief degree of the PO single factor is obtained:

Bel(PO′ = F) = 0.8457, Bel(PO′ = Y) = 0.1266, Bel(PO′ = Y) = 0.0277

(3) Reasoning target intention TI according to entity action PO and electromagnetic
action EO

Bel(TI = A) = m(TI = A|PO = F, EO = H)·m(PO = F, EO = H)
+m(TI = A|PO = Y, EO = H)·m(PO = Y, EO = H) = 0.6648

Bel(TI = C) = m(TI = C|PO = Y, EO = H)·m(PO = Y, EO = H)
+m(TI = C|PO = P, EO = L)·m(PO = P, EO = L) = 0.0137

Bel(TI = L) = m(TI = L|PO = P, EO = L)·m(PO = P, EO = L)
= 0.0042

According to the above reasoning and pignistic transformation, it can be concluded
that the target intention TI at this time is A, C, and L, respectively, and the reliability is
0.9516, 0.0409, 0.0075, Bel(TI′ = A) � Bel(TI′ = C) � Bel(TI′ = L), where it can be
concluded that the target intention is A.

The prior belief distribution m(R), m(A), m(V), and m(W) of parent nodes R, A, V, and
W can be generated through the cloud model. By using hierarchical evidential reasoning,
we can obtain the belief values of different target intentions, and the one with the highest
belief value is the target intention. As can be seen from this example, the maximum
belief obtained by reasoning is 0.9516, and the corresponding target intention TI is finally
determined to be A.

4.5. Comparative Experimental Analysis
4.5.1. Analysis of Accuracy

The evidence network has the ability to deal with uncertain information and incom-
plete information and can better deal with the noise in the original sensor data. Considering
that the current evidence network structure modeling methods are lacking and cannot
compare and verify the rationality of the evidence network structure shown in Figure 4
with other modeling methods, the main purpose of this paper is to better verify the effect
of an evidence network on target intention recognition, where the network structure is only
an intermediate link in the process of target intention recognition. Therefore, this section
intends to use the network node and structure model shown in Figure 4 as the benchmark
framework for target intent recognition and then select other models for comparative
analysis and verification. Considering the similarity between the Bayesian network and
evidence network as well as the wide application of the Bayesian network model in target
intention recognition, this section introduces the Bayesian network model as the bench-
mark and measures the effect of the evidence network by comparing the accuracy of target
intention recognition results of the two models. In order to compare the effectiveness of the
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evidence network reasoning method more comprehensively, the evidence network model
is compared with the common support vector machine (SVM) model.

The experimental data set mainly includes four attribute information points of the
target, which are the distance, azimuth, velocity, and warning information, respectively.
The target intention includes A, C, and L. Using the K-fold cross-validation method, the data
set was randomly divided into K subsets of almost equal size. A single subset was retained
as test data, and the other K-1 subsets were used as training data. The cross-validation
was repeated K times, once for each subset. In this experiment, a five-fold cross-validation
was used to test the accuracy of intention recognition, and the accuracy of the recognition
results is shown in Table 5.

Table 5. Comparison of target intention recognition accuracy.

Estimation Model EN Model BN Model SVM

Accuracy rate 92.36% 89.72% 87.59%

As can be seen from Table 5, the accuracy rate of the evidence network is higher than
that of the other two models. The SVM model has the lowest accuracy rate, while the
accuracy rate of the Bayesian network is between the two models. In the experiment, the
accuracy of the evidence network model is higher than that of the Bayesian network model.
On the one hand, it can be explained that the evidence network model also has the ability
of target intention reasoning and recognition; on the other hand, it also indirectly verifies
the accuracy of the established evidence network structure. As a classical target recognition
algorithm, SVM has a relatively simple structure, but its parameters have a great impact
on the recognition performance, and it is difficult to select the appropriate parameters. In
addition, for target intention recognition, SVM directly uses the target attribute data and
cannot effectively use the correlation structure information between target attributes such
as in the evidence network model. Thus, its recognition accuracy is low.

In order to further study the impact of data size on target intent recognition results,
Figure 7 shows the change in recognition accuracy under different training data set sizes.
The horizontal axis represents the size of the data, that is, the proportion of the experimental
data set (training data and test data) used to the total data. For example, scales = 0.6 indi-
cates that 60% of the data are randomly selected as cross-training data, and the remaining
data are used as test data. The vertical axis shows the accuracy of the intention recognition.
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As can be seen from Figure 7, with the increase in training data set size, the curve
presents an overall upward trend, indicating that the accuracy of all identification methods
presents an overall trend of improvement, and the results are gradually consistent in the
region. However, when the scale of training data is small, the identification accuracy of
the evidence network is better than the other two types of models. It is found that the
identification effect of the evidence network model is obviously better than the SVM model.
Compared with the Bayesian network model, the evidence network model also has some
advantages as the intention recognition method based on the evidence network model does
not need to make accurate probabilistic judgment on uncertain evidence, avoids the loss of
uncertain information, and obtains more accurate recognition results.

4.5.2. Analysis of Sensitivity

In order to verify the effectiveness of the algorithm proposed in this paper, noise is
added to the feature data of the target, and the noise level is varied according to 10%, 15%
and 20% to obtain the belief results of the target intention recognition; the consistency
with the known results is compared. Figure 8 shows the recognition belief levels of target
intention A, C, and L under three different noise levels. It can be seen that although the
noise levels greatly vary, the belief levels corresponding to each element in the framework
of target intention identification remain relatively stable, which proves that the proposed
intention recognition method is insensitive to noise changes and has good stability and
reliability. The proposed method can correctly identify the target intention.
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5. Conclusions

Aiming at the practical problems of target recognition such as it being hierarchical
and data-driven, this paper proposes a target recognition method based on evidence
network reasoning, which realizes the effective recognition of target intention. DS theory
can represent probabilistic uncertainty and cognitive uncertainty, and EN provides an
expression framework to identify the relationship between nodes of the target. The MIC
is used to measure the degree of correlation between nodes, determine the existence
of edges, and establish the evidence network structure, which can effectively make up
for the shortcomings of the original evidence network structure, which was constructed
in a subjective way. The Gaussian cloud model was used to describe the membership
distribution of the training samples in each attribute, and the BPA of the target attribute
was obtained according to the measurement data of the sensor, which provided the front-
end input for the evidence network reasoning. The method based on information entropy is
used to determine the conditional reliability table of non-root nodes, which provides a new
way to obtain the parameters of the evidence network. Simulation results show that the
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proposed method can effectively construct a multi-level target intent recognition network
model, obtain the target feature belief by using data samples, and realize the target intent
recognition by evidential reasoning based on conditional reliability parameters. In the next
step, the relative importance of different experts should be considered in the acquisition of
the conditional reliability of the evidence network to assign different weights. In addition,
due to the different network structures presented by different data sets in practice, research
should be carried out on the generation method of the evidence network model based on
the characteristics of data sets.
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