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Abstract

Serotonin (5-hydroxytryptamine; C10H12N2O (5-HT)) is produced in the CNS and in some cells of peripheral tissues. In the mammalian

male reproductive system, both 5-HTand tryptophan hydroxylase (TPH) have been described in Leydig cells of the testis and in principal

cells of the caput epididymis. In capacitated hamster sperm, it has been shown that 5-HT promotes the acrosomal reaction. The aim

of this work was to explore the existence of components of the serotoninergic system and their relevance in human sperm physiology.

We used both immunocytochemistry and western blot to detect serotoninergic markers such as 5-HT, TPH1, MAOA, 5-HT1B, 5-HT3,

and 5HTT; HPLC for TPH enzymatic activity; Computer Assisted Semen Analysis assays to measure sperm motility parameters and

pharmacological approaches to show the effect of 5-HT in sperm motility and tyrosine phosphorylation was assessed by western blot.

We found the presence of serotoninergic markers (5-HT, TPH1, MAOA, 5-HT1B, 5-HT2A, 5-HT3, 5-HTT, and TPH enzymatic activity)

in human sperm. In addition, we observed a significant increase in tyrosine phosphorylation and changes in sperm motility after 5-HT

treatment. In conclusion, our data demonstrate the existence of components of a serotoninergic system in human sperm and support

the notion for a functional role of 5-HT in mammalian sperm physiology, which can be modulated pharmacologically.
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Introduction

Serotonin (5-hydroxytryptamine; C10H12N2O (5-HT)),
a highly conserved molecule in the evolution of
life, plays important role in almost all living organisms.
5-HT is synthesized from L-tryptophan by tryptophan
hydroxylase (TPH) enzyme (Walther & Bader 2003,
Adayev et al. 2005).

Walther et al. (2003) reported the existence of two
TPH isotypes; while TPH2 is present only in the brain
and TPH1 is present in peripheral organs (Walther &
Bader 2003, Walther et al. 2003, Zhang et al. 2004).
5-HT acts as a neurotransmitter in the brain and as
a neurohormone in peripheral tissues. This indoleamine
binds to more than 15 receptors that are pharma-
cologically classified into seven families, 5-HT1

through 5-HT7 (with their respective subtypes). With
the exception of the 5-HT3 receptor subfamily, all
the others are G protein-coupled receptors (Hannon &
Hoyer 2002, Adayev et al. 2005, Hannon & Hoyer
2008, Pytliaki et al. 2011).
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In peripheral organs, 5-HT is found mainly in mast
cells, platelet, and neuroendocrine cells, which can
reuptake serotonin and release it (Aguilar et al. 1995,
Fujita et al. 1995, Abrahamsson 1999, Mayerhofer et al.
1999, Arrighi et al. 2004). At the reproductive level,
5-HT controls libido and sexual behavior in mammals
through a hormonal mechanism induced by the neurons
of the preoptic area of the hypothalamus (Popova &
Amstislavskaya 2002, Hull et al. 2004).

5-HT also plays important roles in reproductive tissues
and some imbalances on its metabolism could affect
negatively the reproductive status of mammals (see
below). 5-HT induces the contraction of the vas deferens
(Hay & Wadsworth 1982) and regulates testicular blood
flow (Collin et al. 1996), testicular growth, cAMP
production, and testosterone production (Tinajero et al.
1993, Frungieri et al. 2002).

Additionally, the LH induces 5-HT release from Leydig
cells via a cAMP-dependent pathway, which promotes
the secretion of corticotropin-releasing factor, inhibiting
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androgen production in Leydig cells (Campos et al. 1990,
Dufau et al. 1993, Tinajero et al. 1993, Frungieri et al.
1999). Daily injections of 5-HT precursor (5-hydroxy-
tryptophan (5-HTP)) alter reproductive development
and age-dependent body weight gain in mice, accom-
panied by a low testosterone level and highly reduced
sperm counts, motility, and viability (Sethi & Chaturvedi
2009). In addition, studies in humans reported that
hyperserotonemia derives in azoospermia (Gonzales
et al. 1989, 1992). Furthermore, in reproductive patho-
logies such as varicocele, 5-HT blood levels are
elevated and it has also been proven that serotoninergic
neurotransmission dysfunctions are involved in prema-
ture ejaculation (de Jong et al. 2006, Chan et al. 2008,
Motofei 2008). In humans, 5-HT affects the ejaculatory
response and sperm transport (Tanrikut & Schlegel 2007,
Tanrikut et al. 2010). Even more, in adult rats, it has
been demonstrated that 5-HT has two distinct effects
on sexual function depending on the receptor subtype
that is activated: 5-HT1A agonists decrease intravaginal
ejaculatory latency and erection, whereas 5-HT2C

agonists increase both erection and ejaculatory latency
(Motofei 2008).

Werecently found thatboth5-HTconcentrationandTPH
activity increase in the epididymis during sexual maturation
and in breeding males when compared with naive ones
(Jiménez-Trejo et al. 2007) and also that epididymal
serotonin concentration correlated with reproductive
fitness, offspring number, mating success, and seminal
plug volume in copulatory males (Pichardo et al. 2011).

Mammalian sperm seem to express a parti-
cularly broad number of neuroreceptors, including
5-HT receptor subtypes (Meizel 2004). Additionally,
5-HT activates motility and increases the rate of ferti-
lization in invertebrate spermatozoa (Parisi et al. 1984).
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This increased motility induced by 5-HT might result
from the activation of flagella through a process of
cAMP-dependent dynein phosphorylation (Bandivdekar
et al. 1992, Stephens & Prior 1992). Meizel & Turner
(1983) have shown that either 5-HT or its agonist
5-methoxytryptamine induces the acrosomal reaction
in capacitated sperm, suggesting the existence of a
5-HT-mediated receptor effect in the hamster sperm.
In rabbit, binding to the 5-HT2 receptor group was
detected in flagella (Young & Laing 1990). We expanded
these observations and reported two distinct 5-HT
receptor subtypes (5-HT2A and 5-HT3) in immature rat
sperm of the caput epididymis (Jiménez-Trejo et al.
2007). Recently, Fujinoki (2011) has shown that 5-HT
promotes hyperactivation of hamster sperm through both
5-HT2 and 5-HT4 receptors.

Protein phosphorylation has been associated with
sperm capacitation and the acrosome reaction in several
species (Duncan & Fraser 1993, Visconti et al. 1995,
Pukazhenthi et al. 1998), so it is an interesting question
whether 5-HT could promote protein phosphorylation
in human sperm.

In the present work, we explored the hypothesis
that there is a serotonin system, independent of others,
in human sperm by identifying several serotonergic
components present in these cells. Furthermore, we
show that 5-HT increases motility and induces tyrosine
phosphorylation in human sperm.
Results

Expression of serotonergic markers

5-HT1B receptor (Fig. 1A) was observed intensely in
postacrosomal region in human sperm (arrows), while
Figure 1 Immunodetection of serotonin-related
elements in human sperm. (A) 5-HT1B receptor
was detected in postacrosomal region (arrows);
5-HTT transporter (B) was evident in both
postacrosomal and principal piece regions
(arrows); and the same distribution pattern was
found for the 5-HT3 receptor (C, arrows). MAOA

(D) were found scarcely in the sperm head
and strongly stained in the midpiece (arrows).
No staining for any of the antigens analyzed was
observed in control cells (insets) when incubated
with pre-immune serum or omitted primary
antibodies. Scale bar: 10 mm.
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5-HTT (Fig. 1B) was evident in both postacrosomal
and principal piece (arrows). 5-HT3 (Fig. 1C) receptor
immunoreactivity was detected in the entire length of
the sperm mainly in midpiece region and the principal
piece (arrows). Sperm cells showed immunoreactivity
to MAOA (Fig. 1D), which was evident in both acrosomal
zone and midpiece regions (arrows; nZ5). Inserts in
Fig. 1A, B, C and D show control experiments.

Using immunofluorescence, we detected immuno-
reactivity for 5-HT mainly in the midpiece (arrows,
Fig. 2A and B), while TPH was expressed in the
acrosomal region (arrows, Fig. 2C). Figure 2B and D
and insets therein show control smears. To further
validate the expression of these markers, western blots
against 5-HT1B (w47 kDa), 5-HT3 (w48 kDa), MAOA

(w61 kDa), TPH1 (w51 kDa), and 5-HTT (w64 kDa)
proteins were performed (Fig. 3A; nZ3); all proteins
were found in human smears. Representative Coomassie
blue stained gel image corresponding to western blots.
Although we found no presence of 5-HT2A receptor
using immunocytochemistry, a single band (w53 kDa)
using western blot was detected (Fig. 3A).
TPH activity

TPH activity was detected in human sperm homogen-
ates. We found that sperm convert L-tryptophan to 5-HTP
www.reproduction-online.org
(0.2715G0.052 nM/mg protein per h, nZ10) and
that this activity is reduced in human sperm treated
with 50 mM of para-cholorophenylalanine (pCPA) for
15 min (0.0332G0.005 nM/mg protein per h, nZ5;
P!0.01, Fig. 4).
Effects of 5-HT on sperm motility

Because progressive motility is an important condition to
achieve ovum fertilization in the female reproductive
tract during the capacitation (Visconti et al. 1995, Aitken
2006), we decided to evaluate the effect of 5-HT on
three parameters of progressive sperm motility using
Computer Assisted Semen Analysis (CASA) system. As
shown in Fig. 5A, VCL is slightly increased when 5-HT
is added to the medium at all concentrations used and
throughout time, being significant only in the group of
100 mM 5-HT. The VSL is also increased throughout all
the time points tested, being significant only in the
groups of 10 and 50 mM (Fig. 5B). As evidenced in
Fig. 5C, VAP behaves similar to the VSL (nZ5).
Effects of 5-HT on tyrosine phosphorylation

We used an antibody that identifies the phosphorylated
form of some proteins as a band of w97 kDa.
Figure 6A shows a representative image of the tyrosine
Figure 2 Immunodetection of both 5-HT (A) and
TPH in human sperm. Positive staining (arrows)
for 5-HT was found at midpiece level of human;
tryptophan hydroxylase (TPH) was found strongly
stained in the acrosomal zone and lighter in the
postacrosomal region of human sperm (C,
arrows). No staining for any of the antigens
analyzed was observed in control sperm (Cnt: B
and D, bright field in insets) when incubated with
pre-immune serum or omitted primary antibodies.
Scale bar: 10 mm.
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Figure 3 (A) Representative immunoblots of protein extracts from
sperm using antibodies related to serotoninergic system. As it can be
observed the single bands from different samples of donators per group
were positive for 5-HT1B, 5-HT2A, 5-HT3, MAOA, 5-HTT, and TPH1.
(B) Control gel showing the presence of sperm protein. Experiments
were performed by duplicate.
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phosphorylation in human sperm (nZ5); Fig. 6B
shows the densitometric analysis of five independent
western blot experiments. Sperm incubated with 50
and 100 mM show higher levels of tyrosine phosphoryl-
ation (P!0.05, Fig. 6B; nZ5). Coomassie blue stained
gel images, corresponding to western blots.
Figure 4 Tryptophan hydroxylase activity monitored through the
production of 5-hydroxytryptophan in human sperm using HPLC
technique. In vitro pCPA administration produced a drastic decrease
in such activity. Asterisk denotes a P!0.001 (Kruskal–Wallis one-way
ANOVA followed by Mann–Whitney U test).
Discussion

This study demonstrated that several serotonergic
components, including 5-HT receptors, MAOA, and
TPH1 enzymes, 5-HTT and 5-HT, are present in human
sperm. Furthermore, a significant increase induced by
5-HT in both sperm motility and tyrosine phosphoryl-
ation activity in human sperm was found.

The presence of 5-HT1B, 5-HT2A, and 5-HT3 receptors
in human sperm suggests that these cells may be capable
of inducing both second messenger cascades (5-HT1B

and 5-HT2A) and fast ionic responses through receptor
channels (5-HT3) as it occurs in neuronal tissues
(Hannon & Hoyer 2002, 2008, Adayev et al. 2005,
Pytliaki et al. 2011).

It has been established that 5-HT synthesis is mediated
by TPH1 activity in peripheral nervous tissues. This
observation is in agreement with our finding showing
that 1) TPH immunoreactivity was found in the sperm
head and 5-HT was found in the midpiece and 2) both
TPH activity and 5-HT were present in human sperm.
In addition, the activity of TPH in human sperm was
diminished with the inhibitory compound pCPA, which
was previously used to evaluate the function of 5-HT in
Reproduction (2012) 144 677–685
reproductive tissues (Naumenko & Shishkina 1978,
Shishkina & Dygalo 2000, Jiménez-Trejo et al. 2007).

Taken together anatomical, biochemical, and pharma-
cological approaches, our results strongly suggest that
at least some fraction of 5-HT present in the sperm is
synthesized directly on it and reinforce the idea that
5-HT should participate in sperm physiology.

Interestingly, 5-HT immunoreactivity was located
mainly in the midpiece, a region essential for oxidative
metabolism and for promoting sperm motility (Volpe
et al. 2009). It seems that 5-HT could activate principal
piece through a cAMP-dependent dynein phosphoryl-
ation process (Stephens & Prior 1992). In this respect,
there is growing evidence that ATP supporting sperm
motility is generated by glycolysis, which takes place
along the entire length of the principal piece (Mukai &
Okuno 2004, Miki 2007). It has been demonstrated
that the beat frequency of flagella is proportional to the
rate of ATP hydrolysis by dynein when the waveform is
kept constant (Okuno & Brokaw 1979). In erythrocytes,
5-HT enhances the glycolytic flux through activation of
6-phosphofructo-1-kinase (PFK), which occurs through
modulation of the enzyme binding to the membrane
cytoskeleton (Assouline-Cohen et al. 1998). In addition,
PFK activity correlates with a whole glycolytic pathway
in the muscle (Kemp & Foe 1993). 5-HT enhances
skeletal muscle glucose consumption and suggesting
that this neurohormone may regulate cell energy
metabolism (Coelho et al. 2007); thus, in human
sperm, it is probable that 5-HT may play a similar role.

5-HT induced an increase only for VCL at high
concentrations while it increases both VSL and VAP
but not VCL at lower concentrations. As VCL comprises
only the sperm head displacement but not the principal
piece movement rate (as VSL and VAP do), we reasoned
that a high concentration of 5-HT (50 mM) induces
abnormally fast sperm head movements, while our
www.reproduction-online.org
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Figure 5 Effect induced by 5-HT on several parameters of human sperm
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observations at lower concentrations suggest an increase
in the linearity of sperm displacement (data not show).
Because 50 mM 5-HT increases the tyrosine phosphoryl-
ation level, in our study, this observation is online with
a previous report, indicating that this indoleamine
induces hyperphosphorylation of dynein, in the mid-
piece, resulting in nonphysiological displacement of the
sperm (Bandivdekar et al. 1992, Stephens & Prior 1992).
However, the effects of 5-HT in different parameters
of sperm motility, at different concentrations observed
in our experiments, suggest that 5-HT may participate
modulating the sperm displacement at different molecu-
lar levels, but this aspect require further investigation.

Because the modulation of the intracellular calcium
concentration [Ca2C]i is fundamental for some specific
www.reproduction-online.org
aspects of sperm physiology, we explored the intra-
cellular calcium signaling induced by 5-HT in human
sperm to evaluate functionality of ion channels associ-
ated with some serotonergic receptors using spectro-
fluorometric methods as described in Torres-Flores et al.
(2008), but we did not find functional activity for any of
these that was able to induce changes in the opening of
calcium channels (data not shown).

5-HT (50 mM) or its analog 5a-methoxytryptamine
(5 mM) promotes an acrosomal reaction in hamster
sperm 15 min after its incubation (Meizel & Turner
1983). Recently, Fujinoki (2011) reported that 5-HT
promotes sperm hyperactivation when added to hamster
sperm at concentrations from 1 fmol/l to 1 mmol/l.
Furthermore, using agonists and antagonists of 5-HT
receptors (5-HT2 and 5-HT4), the sperm motility was
modified, supporting that 5-HT could alter sperm
physiology.

On the other hand, MAOA was expressed in both head
and midpiece of the sperm; this finding suggests that
degradation of 5-HT is potentially active in human
sperm, as it has been reported in neurons and principal
cells of the epididymis (Gaspar et al. 2003, Jiménez-
Trejo et al. 2007).

Moreover, it could be possible that 5-HT will be
present in the female genital tract, probably promoting
physiological responses in human sperm during their
transit through it, as suggested in vitro experiments
where the precursor-free amino acid L-tryptophan is the
natural chemoattractant for sperm of the red abalone
Haliotis rufescens (Riffell et al. 2002). This metabolite is
rapidly released from eggs at concentrations sufficient to
induce changes both in speed and in direction of sperm
swimming, whereas that the effect of 5-HTon directional
motility of human sperm under in vitro conditions is
possible. Because we found both receptors and MAOA, it
is tempting to postulate that 5-HT system could be a
sensing mechanism for the sperm in their way to the
oocyte through female tract.

As 5-HT is a molecule involved in many physiologi-
cal functions (Popova & Amstislavskaya 2002, Gaspar
et al. 2003, Hull et al. 2004, Adayev et al. 2005),
and because it is synthesized, degraded, and stored
directly in the human sperm, we postulate that 5-HT
may participate as a regulator of particular physio-
logical processes in animal sperm. Taken together, the
current findings support an important role of 5-HT on
the migration of sperm throughout the female tract. The
possibility that 5-HT plays a role in sperm physiology
may occur at 5-HT receptors and/or 5-HT transporters
located on the surface of sperm, responding to the
5-HT contained in the uterine or seminal fluid (Mann
et al. 1961, Amenta et al. 1992). However, the sur-
prising finding that some other serotoninergic elements
are intracellular remains unclear and requires further
investigation. A more precise knowledge of mecha-
nisms involved in serotonin role on mammalian sperm
Reproduction (2012) 144 677–685
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may be useful in the development of improved
contraceptives and in the treatment of motility-related
sperm infertility.
Materials and Methods

Sperm purification

Humansperm was obtained froma panelof12healthy volunteers
between the ages of 20 and 28 years old with 3–5 days of
sexual abstinence. All volunteers agreed to participate in this
study after reading and signing a letter of informed consent,
approved by the Ethics Committee of the Faculty of Medicine
(UNAM) in accordance with the principles of research involving
human subjects expressed in the Declaration of Helsinki.
Sperm cells (z100!106/ml) were separated from the seminal
plasma using isotonic Percoll gradients (75/50% Percoll;
Linares-Hernández et al. 1998). After this, they were washed
in Hepes-buffered human sperm medium for its conservation
and further assays (González-Martı́nez et al. 2002).
Immunocytochemistry

After separating human sperm from seminal liquid, smears
of sperm were mounted onto gelatin-coated slides and fixed in
4% paraformaldehyde dissolved in phosphate buffer (0.1 mol/l,
pH 7.4). Sperm preparations were used for detecting 5-HT,
TPH1, MAOA, 5-HTT, 5-HT1B, 5-HT2A, and 5-HT3 receptors as
described previously (Jiménez-Trejo et al. 2007). Commercial
antibodies used were 1) mouse monoclonal anti-5-HT (1:100,
Genetex, Irvine, CA, USA), 2) goat polyclonal anti-TPH (C-20;
Reproduction (2012) 144 677–685
1:100), 3) rabbit polyclonal anti-5-HT transporter (1:250,
Millipore, Billerica, MA, USA), 4) goat polyclonal anti-5-
HT1B receptor (1:200), 5) goat polyclonal anti-5-HT2A receptor
(1:100), 6) goat polyclonal anti-5-HT3 receptor antibody
(1:200), and 7) rabbit polyclonal anti-MAOA (1:200).
Antibodies for MAOA, TPH (C-20), 5-HT1B, and 5-HT3 subtype
receptors were supplied by Santa Cruz Biotechnology, Inc.
Control slides were incubated with pre-immune serum or
the incubation with primary antibodies was omitted.

The sections were visualized and images acquired using
an Olympus BX51 epifluorescence microscope equipped
with a digital camera Olympus DP70 (Olympus America,
Inc.). Images were digitized and figures elaborated using
Adobe Photoshop Software (Adobe Systems, Inc.).
Western blot

Sperm samples were processed for SDS–PAGE as described
previously (Torres-Flores et al. 2008). Samples were prepared for
western blot analysis and immunoblots were performed using the
following antibodies: rabbit monospecific polyclonal anti-TPH1
(1:500), which was produced by Dr D M Kuhn using peptides
corresponding to the sequence L435ARVSRWPSV444 in the
C-terminal region of TPH1, rabbit anti-5HTT, goat anti-5-HT1B,
goat anti-5HT2A, goat anti-5HT3, or rabbit anti-MAOA (nZ5 for
each treatment) whose characteristics were described earlier.
TPH activity

After identifying the presence of TPH on sperm cell, we
evaluated the physiological activity of this enzyme in vitro
www.reproduction-online.org
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using HPLC system. The activity of TPH in the human sperm
was estimated by measuring the production of 5-HTP
following the protocol described previously (Johansen et al.
1991, Jiménez-Trejo et al. 2007). Accordingly, an aliquot of
w85!106 sperms was used to measure the production of
5-HTP as described by Jiménez-Trejo et al. (2007). Results are
expressed in nanomoles of product/milligram of protein per
hour (nmol/mg protein per h). Chromatograms were recorded
online and the peak heights measured using Millennium
32 Software (Waters Co., Milford, MA, USA). In another set,
TPH activity was analyzed in sperm treated with 50 mM of
a competitive inhibitor of the serotonin (5-HT) synthesis
enzyme TPH, pCPA, incubated 15 min in culture medium
(Ham’s F-10), and immediately centrifuged and freezing until
use (nZ5 for each treatment).
Effects of 5-HT on sperm motility

Sperm samples were immersed in Ham’s F-10 medium
supplemented with 10% synthetic substitute serum. After 5 min
of stabilization, different concentrations (10, 50, and 100 mM) of
5-HT were added to the medium. The effect in sperm motility
was evaluated at different times (3, 6, 9, 12, and 15 min) with the
aid of CASA (Hamilton Thorne Motility Analyzer; HTM-IVOS
v.12; Hamilton Thorne, Inc., Beverly, MA, USA). We measured
three parameters: curvilinear velocity (VCL), straight-line
velocity (VSL), and average path velocity (VAP). After incubation,
the samples were processed to detect phosphotyrosine
proteins by western blot (nZ5 for each treatment).
Effects of 5-HT on tyrosine phosphorylation

Sperm were preincubated with different concentrations of
5-HT (0, 10, 50, and 100 mM, w4!107 cells) in Ham’s F-10
medium supplemented with 10% serum synthetic substitute.
Total proteins from human sperm were used to detect tyrosine
phosphorylation using western blot assays (Luconi et al. 1995,
Torres-Flores et al. 2008). The immunoblots were incubated
with primary antibody mouse anti-phosphotyrosine coupled
with peroxidase (Sigma Chemical Co.). A chemiluminescent
HRP substrate kit (ECL, Amersham-Pharmacia-Biotech) was
used to detect immunoreactivity. Images of these films were
captured, digitized, and analyzed in the same conditions
(Software Quantity One 4.4.1, Bio-Rad) using a computer-
based imaging analysis system (Fluor S Multimager, Bio-Rad).
All measurements were corrected based on the average
value of each film’s background (nZ5 for each treatment).
All assays were carried out by duplicated.
Statistical analysis

Normality tests (Shapiro–Wilk and Anderson–Darling test)
and variance homogeneity test (Levene’s test) were used
for all experimental data groups. For comparing the TPH1
activity, a Student’s t-test was used. Other compari-
sons were done using Kruskal–Wallis ANOVA followed by
Mann–Whitney U test. A value of P!0.05 was considered to
be statistically significant.
www.reproduction-online.org
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