
Evidence of a Large Novel Gene Pool
Associated with Prokaryotic Genomic Islands
William W. L. Hsiao

1
, Korine Ung

1
, Dana Aeschliman

2
, Jenny Bryan

2
, B. Brett Finlay

3
, Fiona S. L. Brinkman

1*

1 Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada, 2 Department of Statistics, University of British Columbia,

Vancouver, British Columbia, Canada, 3 Michael Smith Laboratory, University of British Columbia, Vancouver, British Columbia, Canada

Microbial genes that are ‘‘novel’’ (no detectable homologs in other species) have become of increasing interest as
environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms.
By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of
putative genomic islands (clusters of genes of probable horizontal origin in a prokaryotic genome) in 63 prokaryotic
genomes, and then characterized the distribution of novel genes and other features. All but a few of the genomes
examined contained significantly higher proportions of novel genes in their predicted genomic islands compared with
the rest of their genome (Paired t test ¼ 4.43E-14 to 1.27E-18, depending on method). Moreover, the reverse
observation (i.e., higher proportions of novel genes outside of islands) never reached statistical significance in any
organism examined. We show that this higher proportion of novel genes in predicted genomic islands is not due to less
accurate gene prediction in genomic island regions, but likely reflects a genuine increase in novel genes in these
regions for both bacteria and archaea. This represents the first comprehensive analysis of novel genes in prokaryotic
genomic islands and provides clues regarding the origin of novel genes. Our collective results imply that there are
different gene pools associated with recently horizontally transmitted genomic regions versus regions that are
primarily vertically inherited. Moreover, there are more novel genes within the gene pool associated with genomic
islands. Since genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic
resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger ‘‘arsenal’’
of novel genes for adaptation than previously thought.
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Introduction

Since the publication of the first bacterial genome [1], a
consistent observation made by biologists is that a significant
portion of a prokaryotic genome encodes putative proteins
with no known functions. Even in well-studied free-living
microbes such as Escherichia coli and Bacillus subtilis, more than
35% of their predicted proteomes do not have functional
assignment [2,3]. Peer Bork and others have observed that the
functions of less than 70% of proteins in unicellular genomes
can be predicted with reasonable confidence, a phenomenon
which he termed ‘‘the 70% hurdle’’ [4]. Despite the ever
increasing number of genomes becoming available, this
observation still holds true in the majority of the genomes
sequenced. Moreover, the total number of hypothetical genes
is steadily increasing as more genomes are sequenced [5]. This
suggests that there may be a genetic pool that is being
neglected in functional studies of genes to date. With the
exploration of sequence data from environmental samples
[6,7], scientists have begun to further appreciate the vast
number of novel genes in the environment (in particular
those with no detectable homologs versus ‘‘conserved hypo-
thetical’’ genes) that appear to be harbored by yet uncultur-
able and unstudied organisms.

In our studies of selected genomic islands (GIs), defined as
horizontally acquired genomic regions that may have
mutated to obfuscate or destroy their modes of transmission
and integration, we anecdotally observed that the distribu-
tion of genes annotated as hypothetical in prokaryotic
genomes is non-random. The name genomic island is derived

from the term pathogenicity island (PAI), originally coined to
describe a cluster of virulence genes identified in uropatho-
genic E. coli [8] but not found in closely related strains or
species. PAIs have been noted for their important roles in
bacterial pathogenesis. For example, the pathogenicity island
SPI-2 of Salmonella typhimurium encodes a type III secretion
system required for intracellular proliferation and systemic
infection in a mouse model [9,10]. Mutants of the SPI-2-
encoded genes result in attenuation of virulence suggesting
that these genes are intricately involved in the infection
process [11,12]. Subsequently, genetic elements, which share
the same structural features of PAIs, were found in non-
pathogenic microorganisms to serve other adaptive func-
tions; these PAI-like elements are collectively referred to as
GIs [13]. In the few short years since their discovery, GIs have
already been associated with many important adaptive
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functions that contribute to different microbes’ unique life
styles. For instance, nitrogen fixation in Rhizobiaceae species is
encoded by ‘‘symbiosis islands’’[14], genes for phenolic
compound degradation in Pseudomonas putida are found on
‘‘metabolic islands’’[15], and the iron-uptake ability of many
pathogens are conveyed by ‘‘adaptive islands’’ [16]. Since GIs
have been noted to contribute to a microorganism’s fitness,
metabolic versatility, and adaptability, we decided to develop
a method to computationally identify microbial GIs in a large
dataset of completely sequenced microbial genomes and to
investigate further what features are noted in these agents of
microbial innovation. GIs have been previously detected by
the genetic features reported to be associated with them [17]
and by comparative genomic and phylogenetic approaches
[18,19]. Features reported to be associated with GIs include
the presence of flanking repeats, mobility genes (e.g.,
integrases and transposases), proximal transfer RNAs
(tRNAs), and atypical guanine and cytosine content [20].
More recently, we and others have used additional species-
specific DNA signatures such as oligonucleotide biases and
codon adaptation index to identify GIs [21–25]. However,
there is a need to better quantify exactly which features and
methods best identify GIs. Then we can use more objective
criteria to investigate additional features and properties of
these important genomic regions.

In this study, we performed a comprehensive analysis of a
dataset of 95 known GIs and related prophages to determine
which features best identify these genomic regions. We then
used sets of objective criteria based on these features to
predict putative GIs on a genome-wide scale for 63
prokaryotic organisms. Through analysis of additional fea-
tures associated with islands, we found that novel hypo-
thetical genes (genes with no detectable homologs using two
independent sequence similarity search methodologies, as
discussed below) are significantly more prevalent in GIs
versus the rest of the genome, irrespective of what method of
novel gene identification is used. From this and additional

analyses, we propose that there is a large, separate gene pool
associated with such horizontally transferred genomic re-
gions; and this gene pool is a more notable source of
innovation in a wide range of taxa involving both bacteria
and archaea.

Results/Discussion

Prevalence of Features Associated with Reported GIs:
Dinucleotide Bias and Associated Mobility Genes Are the
Best Predictors
As part of our analysis of features associated with GIs, we

created a curated dataset of 95 previously reported horizon-
tally acquired genetic elements (containing 4,553 genes) that
we collectively refer to as ‘‘known islands’’ (see Materials and
Methods, Table S1). The number of genes in each of these
islands ranges from four to 579, reflecting the diversity of
these elements. We then inspected each of these known
islands for the presence of four GI-associated features (Table
1). This analysis, plus additional analyses of the degree to
which each feature overlaps an island (Table S2), indicates
that dinucleotide bias is much more sensitive versus conven-
tional %GþC analysis in identifying putative GIs. Using our
dataset, the dinucleotide bias approach detected almost three
times more of the known islands than the %GþC approach
(59 of the islands contain dinucleotide bias versus 23 with
%GþC bias). In fact, less than a quarter of the islands
examined have abnormal %GþC according to a previously
developed cutoff suggesting that by using %GþC alone, many
potential GIs may be missed. Only two of the 95 islands
examined have abnormally high %GþC, while low %GþC
islands are ten times more common. This is in agreement with
the observation by Daubin et al. [26,27] that AþT rich genes
are preferentially acquired.
Highly expressed genes such as ribosomal proteins have

been found to exhibit anomalous sequence compositions [28]
and can be a source of false positives in dinucleotide bias
analysis. We therefore examined the possibility of incorpo-
rating other features into our methodology for island
detection. Mobility genes and structural RNA (tRNA and
tmRNA) genes also appear to be good indicators of horizontal
gene transfer (HGT). Of the 41 GIs inspected, 19 have tRNAs
suggesting that phage or phage-like elements may be the

Table 1. List of GI-Associated Features and the Number and
Percentage of Islands Meeting Each Criterion

Feature Number of Islands

Met the Criteria

% of Islands

Met the Criteriaa

High %GþC 2 2.1

Low %GþC 20 21

Normal %GþC 45 47

Dinucleotide bias 59 62

Mobility gene 71 75

Both dinucleotide bias

and mobility gene

47 50

RNA genes 42 44

aSee Materials and Methods section for the definition of the criteria. We expect that islands obtained from closely

related organisms would not show dinucleotide or %GþC biases and therefore not all islands are expected to exhibit

these features.

DOI: 10.1371/journal.pgen.0010062.t001
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Synopsis

More than 250 microbial genomes have been sequenced to date. A
significant proportion of the genes in these genomes have no
apparent similarity to known genes and their functions are unknown
(i.e., they appear to be novel). As the number of sequenced
genomes increases, the number of these novel genes continues to
increase. In this paper, the authors now show, through an analysis of
a diverse range of prokaryotic genomes, that novel genes are more
prevalent in regions called genomic islands. Genomic islands are
clusters of genes in genomes that show evidence of horizontal
origins. This study is notable since genomic islands disproportion-
ately contain many genes of medical, agricultural, and environ-
mental importance (e.g., animal and plant pathogen virulence
factors, antibiotic resistance genes, phenolic degradation genes,
etc.). The observation that high proportions of novel genes are also
localized to genomic islands suggests that microbes may have
access to a larger ‘‘arsenal’’ of novel genes for important
adaptations than previously thought. These results also imply that
there are different gene pools associated with recently horizontally
transmitted genomic regions versus regions that are primarily
vertically inherited. The authors suggest that further studies
involving large-scale environmental genomic sampling are required
to help characterize this understudied gene pool.



precursor for these GIs since some phages are noted for using
tRNAs as preferred sites for integration [29]. Three-quarters
of the islands inspected contain one or more mobility genes
making it the most prevalent feature in our dataset. By
combining the two best predictors (mobility genes and
dinucleotide bias), approximately 50% of the islands satisfy
both criteria. Moreover, among approximately 300 predicted
islands in our ORF_ALL dataset (see Materials and Methods)
we detected only four potential false positives (i.e., ribosomal
protein operons with associated mobility genes that may not
be HGT).

In subsequent systematic analyses, we predicted islands
using criteria that utilized both a dinucleotide bias-based
approach alone (the DINUC dataset with higher sensitivity,
also referred to as recall in computer science) and a
combined dinucleotide bias method and mobility gene
identification (the DIMOB dataset with higher specificity,
also referred to as precision). By examining our data using
both methods, we were able to assess whether trends we
examined held true regardless of whether the method favors
sensitivity or specificity.

Overview of Analysis of Predicted GIs: Prevalence of
Islands in a Given Microorganism Reflects the Life Styles of
the Organism

Our island prediction results are listed in Table S3 (DINUC
dataset) and Table S4 (DIMOB dataset). The number of
islands and the number of genes in the islands for each of the
organisms examined are summarized in Table S5. According
to the more precise DIMOB criteria (see Table 2 for
summary), 12 organisms did not contain GIs. Most of these
organisms are strict intracellular organisms that have

restricted access to external gene pools and little or no
proposed HGT [30–34], or these organisms appear to be
undergoing genome reduction [35]. This supports past
statements that HGT occurs more commonly in bacteria that
have access to a horizontal gene pool [36].
There are some notable limitations to this analysis. Our

examination of known islands demonstrates that the DIMOB
criterion, though more accurate, does under-identify islands.
Furthermore, if a horizontally acquired region shares similar
sequence composition features with the host sequence, no
composition-based approaches will detect such GIs. This may
explain why there were few islands detected in Neisseria
meningitidis despite their natural competency for DNA uptake
and exchange and their lack of clonality. Neisseriaceae are
noted for horizontal DNA exchange [37]; however, this
exchange occurs primarily between Neisseria species, which
have similar genome sequence compositions. Our analysis
represents an examination of HGT between more distantly
related organisms (or gene sources) that have different
sequence compositions.

Comparative Analysis of GIs versus Non-GIs: Distributions
of Gene Function Categories Differ
It has been proposed that certain types of genes are more

likely to be horizontally transferred. For example, based on a
phylogenetic analysis, Jain et al. observed that informational
genes (translation and transcription) are far less likely to be
horizontally transferred than operational (housekeeping)
genes [38]. A recent paper by Nakamura et al. [24] also found
cell surface, DNA binding, and pathogenicity-related genes to
be more prevalent in horizontally acquired regions. We
analyzed all organisms in our dataset to see if the distribu-

Table 2. Summary of Organisms without Genomic Islands Based on the DIMOB Criterion

Species Name Possible Reasons for Lack of DIMOB-Predicted Genomic Islands, or

Previous Evidence of No HGT

References

Aeropyrum pernix K1 (A)a Possible ancient horizontal gene transfer but lack of any clear evidence of recent

horizontal gene transfer. A potentially basal organism (deeply diverging lineage).

[33], [59], [60]

Borrelia burgdorferi B31 Clonal. HGT appears to be rare. [30], [44]

Buchnera sp. APS A strict endosymbiotic bacterium of aphids and lives in a limited niche. [61], [31]

Campylobacter jejuni NCTC11168 The genome is unusual in that there are virtually no insertion sequences or

phage-associated sequences and very few repeat sequences; no known genomic

islands.

[62], [63]

Methanobacterium thermoautotrophicum deltaH (A) One region previously reported as potential HGT. The region has low GþC and

dinucleotide bias but no mobility genes.

[64]

Methanopyrus kandleri AV19 (A) Possible ancient horizontal gene transfer from bacterial sources, but this archae-

bacterium is noted to have fewer genes acquired via lateral transfer than other

archaea.

[34]

Mycobacterium leprae Highly degenerated genome; obligate intracellular pathogen with limited access

to horizontal gene pool.

[35]

Mycoplasma genitalium G37 Small, reductionist genome; no apparent horizontally acquired genes. [65], [44]

Pyrobaculum aerophilum (A) A potentially basal organism (deeply diverging lineage) with no reported horizon-

tal gene transfer.

[60]

Rickettsia conorii Malish 7 Obligate intracellular parasite with limited access to horizontal gene pool and has

a reductionist genome. No report of recent horizontal gene transfer.

[66]

Rickettsia prowazekii MadridE Obligate intracellular parasite with limited access to horizontal gene pool and has

a reductionist genome. No report of recent horizontal gene transfer.

[66], [44]

Thermotoga maritima MSB8 The genome sequencing paper reported high proportion of horizontally acquired

genes from bacteria based on a BLAST-based similarity search, but similarities

suggest ancient HGT or reflect basal position on the Tree of Life.

[67], [59]

aArchaebacteria are denoted with (A)

DOI: 10.1371/journal.pgen.0010062.t002
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tions of protein function categories differ for proteins
encoded by genes in islands versus those outside of islands.
Genes were classified into 22 clusters of orthologous groups
of proteins (COG) functional categories plus a ‘‘none’’
category for proteins without COG assignments (i.e., the
‘‘none’’ category implies that the protein does not have three
or more orthologs in other species and so is a relatively
‘‘novel’’ gene).

The most striking observation was that the proportion of
genes in the ‘‘none’’ category, which, for readability, we refer
to as ‘‘proportion of novel genes,’’ was higher in islands than
outside for almost all organisms. On average, 42% of the
genes in islands are novel compared to 26% of the genes
outside of islands for an organism using the DINUC criteria.
The result for the DIMOB dataset is also consistent (53% for
islands genes and 28% for outside genes). The actual
proportions do vary widely between organisms (though the
general trend is consistent) so caution is required when
interpreting the means. Figure 1 shows the pair-wise
comparison for each organism in the DIMOB dataset and

Table S6 tabulates the results for all criteria examined. This
observation of a higher proportion of novel genes in islands
was statistically significant regardless of whether the DINUC
(Paired t test, p-value ¼ 1.27E-18) or the DIMOB (p-value ¼
1.20E-18; Figure 1) criterion was used to define putative GIs.
Since this observation has not been rigorously validated in
the past, we decided to characterize and validate this
observation further. The other category of genes that is
over-represented within islands in both sets of predicted
islands (DINUC and DIMOB) is the genes involved in DNA
replication, recombination, and repair. Conversely, genes
involved in macromolecule biosynthesis (transport and
metabolism genes for lipid, amino acid, nucleotide, carbohy-
drate, and co-enzymes) are present in significantly lower
proportions in the predicted islands versus outside of islands.
We also found that there is no difference in the proportion of
transcriptional genes in islands versus outside of islands. This
result may appear to contradict observations made by Jain et
al. [38]; however, the differences are likely due more to
differences in the type of HGT being detected. Their dataset

Figure 1. Proportion of Novel Genes in Genomic Islands (Red Bars) versus the Rest of the Genome (Blue Bars) according to a COG-Based Analysis

Proportions of novel genes are calculated as a percentage of all genes within islands or outside of islands, respectively, for each genome (listed on the x
axis). A paired t test indicates that significantly more genes in islands versus non-islands do not have a COG classification (p ¼ 1.20E-18). This
phenomenon is uniform across prokaryotic lineages and domains. Similar results are also observed if different datasets are analyzed, or different
methods for identifying novel genes are used (Table 3).
DOI: 10.1371/journal.pgen.0010062.g001
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from six organisms consisted of a rather small set of
homologous genes which were more likely to be subject to
orthologous displacement than to de novo acquisition. Since
sequence compositional approaches are less able to detect
orthologous displacement from organisms with similar
compositions, our results suggest that if these genes have
indeed undergone HGT, the mode of transfer is likely to be
homologous recombination between closely related species
or ancient HGT that has been subject to amelioration. See
Protocol S1 for details regarding this analysis and Table S7
for the tabulated results.

Notably, unlike the ‘‘none’’ category, there is no difference
in the proportions of genes in the ‘‘general function
prediction’’ and ‘‘unknown function’’ COG categories. These
two categories primarily consist of genes encoding conserved
hypothetical proteins (i.e., proteins of unknown function that
are not ‘‘novel’’ to a given species). This implies that there is
not necessarily a bias in terms of what conserved genes have
been functionally studied in GIs versus non-GIs to date. The
increase in hypothetical genes in GIs is primarily due to the
increased occurrence of novel, relatively unconserved genes
in these genomic regions.

Higher Proportions of Novel Genes in Predicted GIs Are
Independent of the Method Used to Identify Novel Genes

COG analysis is suitable for detecting orthologous genes
but may fail to identify more ‘‘distant’’ homologs that have
complex evolution histories (e.g., multiple duplications and
deletions among lineages). To complement the COG-based
analysis of novel genes in GIs, we adapted another independ-
ent method to detect novel hypothetical proteins called
SUPERFAMILY analysis [39]. We chose this method because
of its reported accuracy and its ability to detect more remote
homologs based on structurally conserved similarities [40].
Genes that cannot be assigned to a SUPERFAMILY do not
have detectable structural domain homologs in the SCOP
database, and therefore are more likely to be novel genes. In
both the DINUC and DIMOB datasets, we observed that the
proportion of such novel genes is significantly higher in
islands compared with outside of islands (see Table 3 for a list
of p-values from paired t tests). Pair-wise comparison for the
DIMOB dataset is illustrated in Figure 2 and tabulated in
Table S6 together with the other datasets. This SUPER-
FAMILY analysis, like the COG-based analysis, indicates that
the vast majority of microbes examined have more novel
genes in GIs. The SUPERFAMILY analysis, however, may be

considered to be more rigorous and subject to less sampling
bias in the Tree of Life than the COG-based analysis, because
it can detect more distantly related homologs. Notably, the
proportion of novel genes outside of islands according to the
SUPERFAMILY analysis is remarkably consistent regardless
of the lineages of the organisms. Any variability in novel gene
content between organisms does appear to primarily occur in
GI regions.

Higher Proportions of Novel Genes in Predicted GIs Are
Not Due to Less Accurate Gene Prediction in GI Regions
One possible explanation for the higher proportion of

novel genes in GIs is that genes in GI regions are more
frequently mispredicted. Most commonly used gene predic-
tion algorithms today incorporate genomic composition
measures such as codon usage to aid in the identification of
genes. They also require training with a subset of known
genes in an organism in order to become familiar with that
organism’s genomic composition [41,42]. Gene prediction
could presumably be failing more frequently in GI regions
because of their differing genomic compositions that lead to
more false predictions of genes and consequently more
predicted ‘‘novel’’ genes in these regions. Also, since our
method of calculating dinucleotide bias uses gene clusters
rather than sliding windows of a fixed size (in base pairs),
shorter genes may reduce the sampling size to the point of
increasing the chance of biased sampling. We addressed this
issue by re-examining our data after removal of open reading
frames (ORFs) less than 300 bps from our gene sets for each
organism. Since longer ORFs are more likely to encode truly
functional genes (see Materials and Methods), this reduces the
probability that a novel gene is falsely predicted. We used the
same two criteria for GI identification, namely dinucleotide
bias alone and dinucleotide bias plus mobility gene identi-
fication, to generate two lists of islands, which we called the
‘‘DINUC_300’’ and ‘‘DIMOB_300’’ datasets respectively.
Because the island detection process was carried out after
genes less than 300 bps were removed, this resulted in slightly
different lists of the number of islands (see Table S5), as well
as which genes were present in each island. Despite these
adjustments, the proportion of novel genes in islands was still
statistically significantly higher (compared to outside of
islands) for both the COG- and SUPERFAMILY-based
analyses using either the DINUC or DIMOB dataset (results
tabulated in Table S8). Pair-wise t tests for these analyses
ranged from a p-value of 2.04E-10 to 1.05E-17 (for complete
list, see Table 3). These p-values, while still highly significant,
are slightly higher than the ones derived from full gene set.
This variation suggests that the ORFs less than 300 bps in
length do influence the analysis, but that the contribution is
very minor since the p-value is still very significant. We
therefore conclude that the over-representation of novel
genes in GIs is not predominantly due to more falsely
predicted genes in such regions. There appears to be a
genuine increase in the number of novel genes in GIs.

Higher Proportions of Novel Genes in Islands Are Not Due
to Domain Coverage Bias of COG and SUPERFAMILY
COGs are constructed from fully sequenced microbial

genomes which contain prophages and phage-like elements,
but exclude plasmids, phages, and other extrachromosomal
elements. Therefore COG may have better coverage of the

Table 3. Summary of p-Values Using Different Datasets and
Methods

Island Datasets Novelty Methods Paired t Test p-Values

DINUC_ALL COG 1.27E-18

DIMOB_ALL COG 1.20E-18

DINUC_ALL SUPERFAMILY 1.13E-18

DIMOB_ALL SUPERFAMILY 4.43E-14

DINUC_300 COG 1.05E-17

DIMOB_300 COG 7.65E-16

DINUC_300 SUPERFAMILY 3.01E-16

DIMOB_300 SUPERFAMILY 2.04E-10

DOI: 10.1371/journal.pgen.0010062.t003
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domain comprising prokaryotic chromosomal proteins ver-
sus phage and plasmid-associated proteins. SUPERFAMILY,
which is based on the SCOP structural classification database,
and therefore includes proteins from all domains of life,
albeit at different ratios, may be less subject to this bias. Since
phage and plasmid mobile elements are potential sources of
HGT, higher proportions of novel genes in our DINUC and
DIMOB islands may be due to the coverage bias of the
methodologies. To investigate this, we searched all of the
translated products of the novel genes in and outside of
islands against proteins encoded by prokaryotic plasmids and
phage genomes using BLAST. With the criteria and database
we used, we would expect some novel genes to encode
homologs of plasmid and phage-associated proteins, but we
wished to discover whether they would be disproportionately
associated with genomic islands or not. The results showed
that while some of the novel genes did indeed have detectable
homologs in our plasmid and phage dataset (Table 4), the
majority do not. Moreover, the proportions of novel coding
genes with similarity to plasmid and phage proteins are
almost identical in the DINUC islands and outside of islands

(;30%, see Table 4). For the DIMOB islands, since the dataset
is enriched with elements that are more likely to have phage
and plasmid origins (by incorporating transposases and
integrases as part of the definition of islands and by reducing
the number of potential false positives, such as highly
expressed genes not associated with these mobile elements),
we would expect to see an enrichment of genes with phage
and plasmid homologs. Indeed, this is what we observed
(Table 4). However, even after taking this potential bias into
account by down-adjusting the novel gene counts in DIMOB
islands by 11.5% (40.47% minus 28.98%), the proportion of
novel genes in islands is still significantly higher than outside
(the paired t test p value is 4.76E-16). Therefore, we can
conclude that while COG and SUPERFAMILY searches
missed some phage or plasmid encoded genes, this omission
does not significantly contribute to the observation of higher
proportion of novel genes in islands. Notably, the observation
suggests that the current sampling of plasmids and phage
genomes, which are mostly from culturable prokaryotic hosts,
does not account for most of the horizontal gene pool
contributing to islands.

Figure 2. Proportion of Novel Genes in Genomic Islands (Red Bars) versus the Rest of the Genome (Blue Bars) according to a SUPERFAMILY-Based

Analysis

Proportions of novel genes are calculated as a percentage of all genes within islands or outside of islands, respectively, for each genome (listed on the x
axis). A paired t test indicates that significantly higher proportions of genes in islands (red bars) versus outside islands (non-islands; purple bars) do not
have a SUPERFAMILY prediction (potential novel genes; p¼ 4.43E-14).
DOI: 10.1371/journal.pgen.0010062.g002
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Higher Proportion of Novel Genes in Islands Is Statistically
Significant in Many Organisms while the Reverse Is Never
Observed

We further assessed the proportion of novel genes at the
level of an individual organism (for organisms with more than
one chromosome, though each chromosome was analyzed
independently). We used a chi-square test of independence or
Fisher’s exact test (when the number of novel genes in islands
is small) to see whether the proportion of novel genes is the
same for the within-GI gene pool and for the outside-GI gene
pool. Our results (summarized in Table 5) showed that
regardless of the GI prediction criteria (DINUC or DIMOB)
or the novel gene prediction method (COG or SUPER-
FAMILY) used the majority of organisms show significantly
higher proportion of novel genes in islands. Even after taking
multiple testing into account by drastically adjusting the p-
values upward using the Bonferroni correction, the observa-
tion still holds true. While this biased occurrence of novel
genes in GIs is relatively independent of the prokaryotic
lineage examined, certain organisms do not exhibit statisti-
cally higher proportions of novel genes in islands. This may
reflect a genuine reduced access to our described novel gene
pool (e.g., hyperthermophilic microorganisms at the base of
the Tree of Life may have reduced access to the relevant
phage, which as we discuss below, is a probable source of
HGT), or it may simply reflect a bias in analysis of organisms
with few close relatives. In the latter case, however, one would

expect that the proportion of novel genes in non-island
regions to be higher, reflecting a lack of similarity to genes in
other organisms. However, visual examination of both Fig-
ures 1 and 2 indicates that the proportion of novel genes in
non-island regions is not notably higher for those organisms
with insignificant novel gene bias. It is intriguing to note that
organisms with an observed lower proportion of novel genes
in islands never achieved statistical significance. This further
confirms that the source of genetic material for the GIs
analyzed is different and less well characterized than the
source of the more stable ‘‘core’’ genome.

Further Analysis of the Proteins Encoded in Islands
Indicates that Their Subcellular Localization Distribution Is
Different, and Similar to Phage
We used PSORTb version 2.0 [43] for de novo prediction of

bacterial protein subcellular localization in order to gain
insight into whether genes in islands encode proteins with
preferential localizations. PSORTb currently generates the
most precise predictions available (more than 95% precision)
with similar recall as other methods. Biases toward particular
predicted subcellular localizations could provide further
clues regarding the origin and function of these novel
predicted proteins. We found (Table 6) that proteins encoded
in islands are less often predicted to be localized to the
cytoplasmic membrane (CM) of both Gram-negative and
Gram-positive bacteria (Paired t tests ;5.0E-7 and 8.7E-9,

Table 4. Proportions of Novel Genes with BLAST Hits in the Phage and Plasmid Database at Expect Value Cutoff of 1E-5

Island Method Novel Gene Method Number of Genes with Hits Total Number of Novel Genes Percent with Hits

DINUC_ALL COG 2,827 9,754 28.98%

DINUC_ALL SFAM 3,239 10,689 30.30%

DIMOB_ALL COG 1,443 3,566 40.47%

DIMOB_ALL SFAM 1,391 3,468 40.11%

See Materials and Methods for details.

DOI: 10.1371/journal.pgen.0010062.t004

Table 5. Number of Organisms Distributed by Proportion of Novel Genes and Statistical Test Significance

Dataset COG SUPERFAMILY

Statistically

Significant

Number of

Organisms with

Statistically

Significant

Number of

Organisms with

Higher Novel

outsidea
Higher Novel

in Islandb
Higher Novel

outside

Higher Novel

in Island

DINUC_ALL (n ¼ 67) No 4 9 No 3 18

Yes 0 54 Yes 0 46

DIMOB_ALL (n ¼ 55) No 2 10 No 5 16

Yes 0 43 Yes 0 34

DINUC_300 (n ¼ 67) No 4 13 No 3 20

Yes 0 50 Yes 0 43

DIMOB_300 (n ¼ 59) No 4 13 No 7 21

Yes 0 42 Yes 0 31

a‘‘Higher novel outside’’ means higher proportion of novel genes as determined by the specific method (COG or SUPERFAMILY) outside of islands for a given dataset (DINUC_ALL, DIMOB_ALL, DINUC_300, or DIMOB_300).
b‘‘Higher novel in island’’ means higher proportion of novel genes as determined by the specific method (COG or SUPERFAMILY) in islands for a given dataset (DINUC_ALL, DIMOB_ALL, DINUC_300, or DIMOB_300).

DOI: 10.1371/journal.pgen.0010062.t005
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respectively). This is notable, because CM proteins can be
predicted with very high accuracy (more than 95% precision
and recall). There have been indications that some GIs are of
phage origin [26], therefore we performed an additional
analysis of CM proteins associated with phage by examining
the subcellular localization of deduced proteins from
annotated phage or phage-associated genes in E. coli and B.
subtilus genomes. We found that the proportion of integrated
phage proteins predicted to be in the CM is lower versus
other proteins for such organisms. Only 4–5% of phage-
associated proteins are predicted to target the CM compared
to 15–20% of bacterial genes. These observations further
support proposals that phages may be the source of HGT in
prokaryotic organisms.

Implication of Higher Proportions of Novel Genes in
Islands: The Big Picture

HGT has been found to be a formidable force in
prokaryotic innovation [44]. In this study, we first evaluated
several GI-associated features and determined that dinucleo-
tide bias and mobility genes are more sensitive indictors of
HGT than the more commonly used %GþC anomaly. Using
these indicators, we then constructed a couple of objective
criteria to define putative GIs. We have now shown through
the largest, most comprehensive analysis of its kind, that
novel genes are more likely to be present in GIs and related
horizontally acquired regions, than in the rest of a prokary-
otic genome. This biased distribution is observed on the
majority of taxa examined to date and does not appear to be
an artifact of false gene prediction. Moreover, we have shown
that the reverse (i.e., higher proportions of novel genes
outside of islands) does not reach statistical significance. Also,
conserved hypothetical genes do not have a similar distribu-
tion bias, suggesting that this observation is not more
generally associated with genes of unknown function, but
rather is specific to genes that are relatively novel, or specific,
to a lineage. Clearly our analysis only detects and examines a
subset of horizontally acquired genes as horizontal acquis-
ition from organisms with similar genome sequence compo-
sitions and ancient HGT would not be detected by our
methods. However, significant implications can still be drawn
from our observations.

First, the gene content associated with GIs and related
regions is significantly different from gene content in other
regions. This implies that the gene pool associated with such

GI elements have different composition and characteristics.
Furthermore, the increased prevalence of novel genes in such
regions suggests that the associated gene pool may be larger,
or otherwise subject to more innovation, than in the vertical
gene pool. In a recent study by Lerat et al. [45], they took a
phylogenetic approach to look at genomic repertoires of
gamma-proteobacteria and noticed that single unique genes
within the phyla are predominately most parsimoniously
explained by HGT from distant sources rather than gene
duplication and loss. Based on this and other observations,
Lerat et al. also suggested a large pool of available genes for
gamma-proteobacteria. Our study indicates that this obser-
vation is universal to a wide range of prokaryotes—both from
the Bacteria and Archaea domains of life. In this context it is
therefore perhaps ominous that GIs are noted for their
association with particular adaptations of a microbe, such as
antibiotic resistance or pathogen virulence. Significantly
higher proportion of novel genes in GIs therefore cautions
us that microbes may have a larger ‘‘arsenal’’ of novel genes
for adaptation to environments, including resistance to anti-
microbial approaches, than previously thought.
We also noted that other biased features of genes in GIs,

such as the subcellular localization of their deduced proteins,
were consistent with phage. There is increasing evidence that
phage and GIs are related [26,46]. While transformation,
transduction, and conjugation all have been implicated as
mechanisms for HGT, recent analyses have indicated that
phage transduction is the predominant force in cross-taxa
transfer [29]. With phage diversity approximately ten times
that of the prokaryotic diversity, several researchers have
proposed that phage can contribute to the genetic individ-
uality of bacterial strains at a much higher level than
previously believed [47]. Our results support this, and further
support that there is a gene pool with considerable diversity,
potentially related to phage, that affects a wide diversity of
bacteria of medical and economic importance, as well as
archaea. Furthermore, our results pointed out that sampling
phages, commonly associated with culturable prokaryotes, are
insufficient to elucidate this diverse gene pool and that
additional sources still need to be characterized. Metage-
nomic approaches of environmental samples may provide
further clues regarding the nature of these sources.
This work is consistent with the hypothesis that genomes

are composed of a more stable set of ‘‘core’’ genes and
adaptive ‘‘life style’’ genes [48]. Since genomic sequences only

Table 6. Distribution of Predicted Subcellular Localization of Proteins in Islands Compared to Outside of Islands

Gram Stain Subcellular Localization

CY CM PE OM CW EX Unknown Unknown (Multi-loc)

Gram � H-Out (2.0E-3) H-Out (4.9E-7) NS NS NA NS H-Isl (5.3E-6) H-Isl (2.1E-18)

Gram � (no unknown) H-Isl (2.0E-3) H-Out (9.9E-6) NS NS NA NS NA NA

Gram þ NS H-Out (8.7E-9) NA NA NS NS H-Isl (8.1E-7) NS

Gram þ (no unknown) H-Isl (7.8E-5) H-Out (7.0E-8) NA NA NS NS NA NA

Numbers in parentheses are paired t test p-values for subcellular localizations with significant differences.

We excluded unknowns in our second set of calculations because there are consistently higher proportions of proteins with unknown subcellular localization in islands that may bias the results of other localizations. The results for CM are

consistent and significant across all four conditions; therefore, we discuss the CM results further in text.

CY, cytoplasmic; CM, cytoplasmic membrane; PE, periplasmic; OM, outer membrane; EX, extracellular; CW, cell wall; Unknown, no prediction; Unknown (multi-loc), proteins predicted to have more than one subcellular localizations; H-out,

proportions of proteins in that particular localization (as a percentage of all proteins in or outside of islands) is significantly higher outside of islands; H-Isl, proportions of proteins in that particular localization (as a percentage of all proteins in

or outside of islands) is significantly higher in islands; NS, not significant; NA, not applicable.

DOI: 10.1371/journal.pgen.0010062.t006
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provide snapshots of an organism’s evolutionary history, the
fate of these ‘‘life style’’ genes is largely unknown. Some
evidence suggests that at least some of these life style genes
are maintained and have become useful to the hosts [27,45].
Having the ability to draw novel genes from the environment
to satisfy short-term needs provides an economical and
effective strategy for survival. By characterizing these genes,
we can gain new insights into what makes an organism unique
and able to adapt to its current environment. While headway
has been made in the characterization of conserved hypo-
thetical proteins [49], our most valuable in silico tools for
protein characterization are still predominantly based on
sequence similarity. Little success has been achieved in de
novo characterization of hypothetical proteins. As a result,
studying novel hypothetical genes in silico or at the bench
provides a significant challenge to researchers. Our inability
to effectively functionally characterize these novel hypo-
thetical genes may hamper our ability to devise tailored
strategies to combat different microbial pathogens and
resistance mechanisms.

Recent efforts focused on environmental genomic sam-
pling and metagenomic projects [6,50,51] will help us obtain
sequences that may elucidate the sources of these novel
hypothetical genes from organisms whose genomes have yet
to be sequenced. Our results provide a strong rationale for
the continuation of these efforts. Regardless of the source of
this innovation, it appears that novel genes are being
acquired by prokaryotes disproportionately through GIs. A
wide range of microbial research areas are impacted by this
adaptation strategy due to the association between GIs and
microbial adaptations of importance.

Materials and Methods

Genome sequence data and organisms examined. Sequence and
annotation of each ORF of completely sequenced prokaryotic
genomes were downloaded from the National Center for Biotechnol-
ogy Information (NCBI) FTP site in April, 2004. We limited our final
dataset to the 63 organisms used in the most recent publication that
analyzed COG [52] because we wished to adopt the most consistent
and accurate COG dataset in our analysis. The selection of 63
organisms, nevertheless, represents a wide range of taxa [52]. We
examined only chromosomal sequences, not plasmid data. To reduce
the number of falsely predicted ORFs and to avoid sequence
compositional bias due to short ORFs, we also constructed a separate
dataset by excluding any ORFs smaller than 300 bps. We labeled the
first set of ORFs containing all the predicted ORFs, ‘‘ORF_ALL,’’
and the second set ‘‘ORF_300.’’

GI dataset development and validation of GI features. We
constructed a verified dataset of 41 known GIs and 54 prophages
from 14 well-studied organisms (ten species) through a manual
literature research (Tables S1 and S2). We then examined the
prevalence of four sequence and annotation features commonly
reported with GIs. These four features (%GþC bias, dinucleotide bias
[53], presence of tRNA genes, and presence of mobility genes) were
identified using our previously developed IslandPath software [21].
For each available prokaryotic genome, IslandPath generates a
graphic representation of the genome and superimposes these
features on the image. The genetic elements in our dataset were
inspected manually, using the IslandPath analysis, for the presence or
absence of the four GI-associated features. For mobility and tRNA
genes, an island is scored positively if it contains at least one gene
annotated as such. An island is considered to exhibit %GþC or
dinucleotide bias if more than half of the ORFs in that island have
these biases as determined by IslandPath [21]. ORFs with %GþC more
than 4.62% above or below the genome average are marked as ‘‘High
%GþC’’ or ‘‘Low %GþC’’, respectively. All the other ORFs are noted
as ‘‘Normal %GþC.’’ We derived this cutoff from a previous study of
genome %GþC variation in obligate intracellular bacteria that are
thought to be subject to little horizontal gene transfer [36]. This

cutoff is thought to reflect the inherent %GþC variation of an
organism due to other factors such as gene expression level [36].

GI prediction. Based on our GI feature validation results, we
defined a putative GI as eight or more consecutive ORFs with
dinucleotide bias (DINUC dataset), or eight or more consecutive
ORFs with dinucleotide bias plus at least one mobility gene present in
the region (DIMOB dataset). Mobility genes were identified using the
NCBI annotation and PFAM hidden Markov models (HMMs)
searches. The PFAM HMM search was conducted as follows: in order
to identify putative mobility genes in a large number of genomes in a
reasonable amount of time, we used the Paracel GeneMatcher system,
a hardware-based solution for carrying out similarity search in
parallel. To further speed up the search, instead of searching all of
the predicted ORFs against all of the PFAM HMMs, we identified and
searched against 46 PFAM HMMs representing mobility genes (e.g.,
integrases and transposases). Results with expect values (similar to
BLAST E-value) smaller than 0.01 were retained. Manual inspection
of results from a randomly selected set of five species did not reveal
any obvious false positives using this cutoff. Genomic regions that
satisfied the above criteria were extracted and the genes in these
regions were labeled as ‘‘islands.’’ The rest of the genes were labeled
as ‘‘outside of islands.’’

We also performed a prediction of GIs after removal of all genes
that are less than 300 bps in length (ORF_300) to reduce the possible
impact of incorrectly predicted small genes on our analysis. We chose
a 300-bps cutoff (corresponding to 100 amino acids) because we and
others have previously found, through comparisons of the genome-
wide gene predictions of closely related organisms not subject to
much HGT, that annotation of genes shorter than this cutoff by
separate groups becomes more inconsistent [36]. In addition, a 300-
bps cutoff has been commonly used for some genome annotation
processes [33].

Functional characterization of genes in GIs. To avoid inconsisten-
cies in genome annotation from different sequencing projects, we
used two independent bioinformatic tools to assign ORFs to different
functional categories. We chose COG and SUPERFAMILY [54]
because of their complementarities. COG is suitable for predicting
‘‘closely related’’ homologs which are likely to be orthologous because
a COG is defined as three or more proteins that all share the highest
sequence similarity with each other. Detailed description of how a
COG was constructed and subsequently updated can be found in [55]
and [52] SUPERFAMILY, on the other hand, provides functional
assignments to protein sequences at the superfamily level of the
SCOP protein structural classification system [56]. Proteins in a SCOP
superfamily are likely to share a common evolutionary origin based
on their structural similarities. As a result, the SUPERFAMILY
predictors are useful in detecting more remote homologs that have
similar structural features. Both programs have been shown to make
reliable assignments and have been widely used [40,57,58]. COG
assignment results were obtained from the NCBI FTP site. We used
the dataset published with the updated COG paper rather than the
subsequent assignments associated with the NCBI genome ‘‘ptt’’ files
since there appears to be some inconsistency and omissions of COG
assignments in these files. Pre-computed SUPERFAMILY genome
assignment results (Version ass_09 May, 2004) were obtained, with
permission, from Julian Gould, the original lead author of the
SUPERFAMILY database. With both COG and SUPERFAMILY
assignments, we used the cutoffs set by the respective authors for
filtering out non-significant hits. For SUPERFAMILY, the expect
value cutoff used was 0.02 (provided by the authors of the database).
Since we are not trying to identify specific functions using SUPER-
FAMILY and can tolerate some false assignments, this more relaxed
cutoff seems adequate. For COG, the cutoff(s) used is not reported
and as argued by the authors of the COG database, the absolute cutoff
is not crucial since all COGs have to satisfy the ‘‘best BLAST hit to
multiple other organisms’’ constraint.

The phage genome and plasmid records were obtained from the
NCBI Entrez Genome site (http://www.ncbi.nih.gov/entrez/query.
fcgi?db¼Genome) in September, 2005. There are 284 phage genomes
and 716 plasmids records. Protein FASTA records associated with
these genomic sequences were downloaded by following the NCBI
Protein Linkouts of these records. These protein records were
converted into a local BLAST database and searched against using the
NCBI BLASTP program. Queries (translated products of either COG-
based or SUPERFAMILY-based novel genes) that have database
matches with an expect value less than 1E-5 were considered to have
homologs in this phage and plasmid database.

PSORTb version 2.0 [43] was used to predict protein subcellular
localization for deduced proteins from all complete genomes
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analyzed. Custom Perl scripts were used to combine records obtained
from various sources and to link annotations.

Statistical analyses. Each COG functional category was assessed for
over- and under-representation in predicted GIs across all species.
This was done by first expressing the number of genes in a category as
a percentage of all the genes in islands for a given organism. The
percentage of genes outside of islands for the same category was
likewise calculated. We calculated the two percentages for each
organism and for each category including a ‘‘none’’ category into
which we assigned genes without a COG category. For each category,
we could then determine if the genes in that category are over- or
under-represented in islands through a paired t test analysis (in island
versus outside island) across all organisms. We carried out the same t
test analysis to determine whether genes lacking a SUPERFAMILY
prediction are over-represented in island across all organisms. For
each organism, we also determined if the proportions of ‘‘novel
hypothetical’’ genes (genes without COG or SUPERFAMILY assign-
ments) in islands are significantly different from those outside of
islands using chi-square test of independence. In a few cases where
the numbers of these novel hypothetical genes are small in islands, we
used Fisher Exact test instead. We considered p-values smaller than
0.05 to be significant. Statistical analyses were done using R statistics
package.
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