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Evidence of a liver–alpha cell axis in humans: hepatic insulin resistance
attenuates relationship between fasting plasma glucagon
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Abstract
Aims/hypothesis The secretion of glucagon is controlled by blood glucose and inappropriate secretion of glucagon contributes to
hyperglycaemia in diabetes. Besides its role in glucose regulation, glucagon regulates amino acid metabolism in hepatocytes by
increasing ureagenesis. Disruption of this mechanism causes hyperaminoacidaemia, which in turn increases glucagon secretion. We
hypothesised that hepatic insulin resistance (secondary to hepatic steatosis) via defective glucagon signalling/glucagon resistancewould
lead to impaired ureagenesis and, hence, increased plasma concentrations of glucagonotropic amino acids and, subsequently, glucagon.
Methods To examine the association between glucagon and amino acids, and to explore whether this relationship was modified by
hepatic insulin resistance, we studied a well-characterised cohort of 1408 individuals with normal and impaired glucose regulation. In
this cohort, we have previously reported insulin resistance to be accompanied by increased plasma concentrations of glucagon. We
now measure plasma levels of amino acids in the same cohort. HOMA-IR was calculated as a marker of hepatic insulin resistance.
Results Fasting levels of glucagonotropic amino acids and glucagon were significantly and inversely associated in linear regres-
sion models (persisting after adjustment for age, sex and BMI). Increasing levels of hepatic, but not peripheral insulin resistance
(p > 0.166) attenuated the association between glucagon and circulating levels of alanine, glutamine and tyrosine, and was
significantly associated with hyperaminoacidaemia and hyperglucagonaemia. A doubling of the calculated glucagon–alanine
index was significantly associated with a 30% increase in hepatic insulin resistance, a 7% increase in plasma alanine amino-
transferase levels, and a 14% increase in plasma γ-glutamyltransferase levels.
Conclusions/interpretation This cross-sectional study supports the existence of a liver–alpha cell axis in humans: glucagon
regulates plasma levels of amino acids, which in turn feedback to regulate the secretion of glucagon. With hepatic insulin
resistance, reflecting hepatic steatosis, the feedback cycle is disrupted, leading to hyperaminoacidaemia and
hyperglucagonaemia. The glucagon–alanine index is suggested as a relevant marker for hepatic glucagon signalling.
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Abbreviations
ALT Alanine aminotransferase
BCCA Branched-chain amino acid
GGT γ-Glutamyltransferase
ISI0–120min Peripheral insulin sensitivity as calculated

based on the first 120 min of OGTT
NAFLD Non-alcoholic fatty liver disease

Introduction

Glucagon is an important glucose-regulatory hormone, which
via a feedback cycle regulates hepatic glucose production,
while the resulting glucose levels regulate the secretion of
glucagon from the pancreatic alpha cells [1]. With the use of
glucagon receptor antagonists in rodents and in individuals
with type 2 diabetes, it has finally been agreed that inappro-
priate glucagon secretion makes an important contribution to
hyperglycaemia in diabetes [2–4]. However, in addition to its
glucose-regulatory effects, glucagon also regulates amino acid
metabolism (ureagenesis) in the liver [5] and, conversely, ami-
no acids stimulate the secretion of glucagon [6], forming a
feedback loop between the liver and the pancreatic alpha cells
[7, 8]—a liver–alpha cell axis. This glucagon–amino acid
feedback loop may be as important for metabolism as the
glucagon–glucose loop [9]. In line with this, individuals with
complete disruption of glucagon signalling develop not
hypoglycaemia but increasing amino acid levels, leading to
severe alpha cell hypersecretion and hyperplasia [7, 10]. In

addition, hyperglucagonaemia (as in individuals with
glucagon-producing tumours) does not always cause diabetes,
but it severely decreases amino acid levels, resulting in mus-
cular wasting and decreased cellular proliferation in the skin
[11, 12].

Apart from these extremes, however, it is not clear how the
feedback loop between amino acids and glucagon operates in
healthy individuals, and in particular in individuals with im-
paired liver function, for example due to non-alcoholic fatty
liver disease (NAFLD) [13]. Hypothetically, even slightly im-
paired liver function (appearing as hepatic insulin resistance)
might attenuate glucagon-induced amino acid turnover (glu-
cagon resistance), resulting in increased plasma levels of ami-
no acids and hence increased glucagon secretion. In order to
address this hypothesis, we studied whether fasting plasma
glucagon concentrations were associated with fasting plasma
concentrations of branched-chain amino acids (BCAAs) as
well as four non-BCAAs (alanine, histidine, tyrosine and glu-
tamine) and phenylalanine in a cross-sectional study including
1408 individuals with progressive stages of risk of type 2
diabetes. Furthermore, we examined whether hepatic insulin
resistance (reflected by an increased HOMA-IR [14]) would
modify glucagon-induced amino acid turnover.

Methods

Study population The study was based on data from the
Danish ADDITION-PRO study [15], a risk-stratified cohort
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of individuals with low to high risk of developing type 2
diabetes that is nested within the ADDITION-Denmark study
[16]. Individuals with impaired glucose regulation as well as a
random subsample of individuals found at the ADDITION-
Denmark screening (2001–2006) to have a lower risk of dia-
betes were invited to a follow-up health examination (2009–
2011), and 2082 participants (50% of those invited) attended
[15]. The study was approved by the Ethics Committee of the
Central Denmark Region (reference no. 20080229) and was
conducted in accordance with the Declaration of Helsinki. All
participants provided oral and written informed consent before
participating in the study.

Examination and measurements Full details on the health
examination and measurements as part of the ADDITION-
PRO study have previously been described [15]. In brief, at
the examination in 2009–2011, participants without known
diabetes underwent a standard 75 g OGTT after an overnight
fast of 8 h or longer. Blood samples were drawn at 0, 30 and
120 min to assess serum concentrations of insulin, and plasma
concentrations of glucose, glucagon and amino acids. Using a
Tanita Body Composition Analyser (Tokyo, Japan), body
weight was measured to the nearest 0.1 kg with participants
wearing light indoor clothing without shoes, and height was
measured to the nearest millimetre using a fixed rigid
stadiometer (Seca, Hamburg, Germany). As this was a sec-
ondary analysis, we included data on metabolites that had
already been measured, but also included new measurements
of liver enzymes and urea.

Plasma alanine aminotransferase (ALT) and plasma glu-
cose concentrations were determined using the Hitachi 912
system (Roche Diagnostics, Mannheim, Germany) or the
Vitros 5600 system (Ortho Clinical Diagnostics, Illkirch,
France). Values measured by the Vitros 5600 system were
converted to correspond to values from the Hitachi 912 sys-
tem using a validated regression equation [15, 17].

Serum insulin concentrations were measured by immuno-
assay (AutoDELFIA; PerkinElmer, Waltham, MA, USA).
Blood samples for the measurement of glucagon, urea and
γ-glutamyltransferase (GGT) were obtained in tubes contain-
ing EDTA, immediately put on ice and centrifuged, and the
plasma was stored at −80°C.

Radio-immunological determinations of glucagon were
performed as previously described [18] using a C-terminus-
specific antibody (codename 4305), which reliably measures
pancreatic glucagon as validated by sandwich ELISA and
mass spectrometry [19]. The analytical detection limit was
1 pmol/l, and the intra-assay and inter-assay CVs were <6%
and <15%, respectively. All samples for determination of glu-
cagon were analysed consecutively over 2 months using iden-
tical quality controls and identical batches of all reagents.

A targeted NMR spectroscopy-based approach was used to
measure plasma amino acid levels. This method, including

CVs, has previously been described in detail [20]. A total of
four non-BCAAs (alanine, histidine, tyrosine and glutamine),
phenylalanine and three BCAAs (isoleucine, leucine and va-
line) were measured. We calculated ‘total non-BCAA’ as the
sum of the concentrations of alanine, histidine, tyrosine and
glutamine, and ‘total BCAA’ as the sum of isoleucine, leucine
and valine (not including phenylalanine).

GGT and urea were measured in plasma on a Cobas 8000
instrument, c802 module (Roche, Mannheim, Germany)
using Cobas calibrators and reagents according to the manu-
facturer’s instructions.

Calculations and statistical analyses Participants with known
diabetes (n = 336) and those who had fasted for less than 8 h
prior to the health examination (n = 20) were excluded from
the analysis. We further excluded participants who had not
had blood samples taken for measurement of plasma glucagon
(n = 281), those in whom no amino acids were measured (n =
26) and those without data on fasting serum insulin (n = 11),
leaving 1408 (68%) individuals for analysis.

Insulin resistance was calculated according to the HOMA-
IR [21]. As the model is based on glucose and insulin concen-
trations measured in the fasting state, HOMA-IR predomi-
nantly reflects hepatic insulin resistance [14, 22]. The
HOMA-IR values for the study population are presented as
tertiles of HOMA-IR: lower tertile, 0.10–1.06; middle tertile,
1.07–1.84; upper tertile, 1.85–24.05.

Plasma concentrations of glucagon and alanine during the
OGTT are presented as geometric means. Associations be-
tween fasting plasma glucagon (exposure) and fasting plasma
levels of amino acids (outcome) were assessed using linear
regression analysis. All analyses were adjusted for age and
sex (model 1). We further adjusted the analyses for BMI
(model 2) and HOMA-IR (model 3). In model 3, we first
tested for deviation from linearity by including a quadratic
term of glucagon. We next tested for a modifying effect of
HOMA-IR on the associations between plasma amino acids
and plasma glucagon concentrations. In case of a modifying
effect of HOMA-IR, the associations are shown for the medi-
an, lower quartile and upper quartile of HOMA-IR. In a sen-
sitivity analysis, we substituted, in model 3, HOMA-IR with
peripheral insulin sensitivity (calculated based on the first
120 min of OGTT [ISI0–120min]), which is an estimate of
whole-body/peripheral insulin sensitivity [23].

To facilitate direct comparisons of the strength of associa-
tion between the eight amino acids and fasting glucagon, plas-
ma levels of amino acids were standardised prior to analysis.
The 1408 participants had complete data on all eight amino
acids. Fasting glucagonwas log2-transformed prior to analysis
because the requirement for a normal distribution of model
residuals was not met.

Because of the possible bidirectional relationship between
amino acids and glucagon, we also performed analyses with
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fasting plasma glucagon as outcome and the different amino
acids as explanatory factors in linear regressionmodels adjust-
ed for age, sex and HOMA-IR. Additionally, we combined the
eight measured amino acids in order to assess the proportion
of residual variance in fasting plasma glucagon explained by
these amino acids after adjustment for age and sex. For com-
parison, we also calculated the proportion explained by
HOMA-IR and by the amino acids in combination with
HOMA-IR.

Finally, to generate a potential surrogate marker for the
hepatic actions of glucagon on ureagenesis, we calculated a
glucagon–alanine index using the following formula:

glucagon – alanine index ¼ fasting plasma glucagon pmol=lð Þ

� fasting plasma alanine mmol=lð Þ

Scatter plots of fasting concentrations of plasma glucagon
and alanine were plotted, together with estimated levels of the
new index for tertiles of HOMA-IR, plasma ALTand GGT. In
addition, linear regression analysis adjusting for age and sex
was used to assess the associations between the new index and
HOMA-IR, ALT and GGT in separate analyses. Again, be-
cause the data did not meet the requirement for a normal
distribution of model residuals, HOMA-IR, ALT and GGT
were loge-transformed prior to analysis, and, similarly, the
glucagon–alanine index was log2-transformed.

Statistical analyses were performed in R version 3.2.3 (R
Foundation for Statistical Computing, www.R-project.org)
and SAS version 9.4 (SAS Institute, Cary, NC, USA).

Results

Characteristics of the study participants The characteristics of
the 1408 study participants according to tertiles of insulin resis-
tance (HOMA-IR) are presented in Table 1. The mean fasting
plasma glucagon concentration was significantly higher in indi-
viduals in the upper tertile compared with those in the middle
and lower tertiles. Higher mean plasma levels of all BCAAs and
alanine, tyrosine and glutamine, but not histidine, were also ob-
served in individuals with higher levels of HOMA-IR.

HOMA-IR modifies circulating glucagon and alanine re-
sponses during an OGTT Plasma concentrations of glucagon
and alanine decreased during the OGTT (Fig. 1a, b); however,
the absolute concentrations of alanine differed by tertile of
HOMA-IR. The 75 g glucose intake did not significantly af-
fect the plasma concentration of alanine for individuals in the
lower tertile of HOMA-IR (fasting: 0.26 ± 0.06 mmol/l;
change in alanine 120 min after the OGTT: −0.003 mmol/l
[95%CI −0.007, 0.000 mmol/l], p = 0.076). However, for the

middle and upper tertiles of HOMA-IR, fasting plasma con-
centrations of alanine were higher (0.27 ± 0.06 and 0.28 ±
0.06 mmol/l, respectively), and in these two tertiles alanine
concentration decreased in response to glucose intake (change
in alanine 120 min after the OGTT: −0.010 [95% CI −0.014,
−0.007] and −0.018 mmol/l [95%CI −0.022, −0.015 mmol/l],
respectively; p < 0.001 for both) (Fig. 1b).

A proposed index for estimating the hepatic actions of glu-
cagon Tertiles of HOMA-IR were significantly associated with
higher levels of the glucagon–alanine index (Fig. 1c; p< 0.001),
with the highest levels of the index in the upper tertiles. The
glucagon–alanine index also differed significantly between the
tertiles of ALT and GGT (p< 0.001), although the differences
were small. In linear regression analyses, we observed that a
doubling of the glucagon–alanine index was associated with a
30% (95% CI 25%, 35%; R2 = 0.14) increase in HOMA-IR
(p< 0.001), a 7% (95%CI 5%, 10%; R2 = 0.09) increase in plas-
ma ALT (p< 0.001), and a 14% (95% CI 10%, 19%; R2 = 0.09)
increase in GGT concentration after adjustment for age and sex.

The association between fasting plasma concentrations of
glucagon and alanine is modified by HOMA-IR For phenylal-
anine, isoleucine, leucine and valine, we found statistically
significant non-linear associations with fasting glucagon con-
centration (p ≤ 0.049). However, we found the deviations
from linearity to be small and probably clinically irrelevant
(data not shown), and therefore the following results are based
on linear associations only.

For alanine, tyrosine, phenylalanine, ‘total non-BCAA’ (ala-
nine, tyrosine, histidine and glutamine), isoleucine, leucine and
total BCAA, we found a modifying effect of hepatic insulin
resistance on the associations with fasting plasma glucagon
(p ≤ 0.040). Hence, an interaction between fasting plasma gluca-
gon and HOMA-IR was included in the models for these amino
acids, and results are shown for different levels of HOMA-IR
(the median and interquartile limits). As the estimated effects of
glucagonwere similar for models 1–3, only results from the fully
adjusted model are shown (model 3; Fig. 2).

The standardised effects on fasting plasma amino acids
levels from increasing fasting plasma glucagon levels were
comparable for alanine, tyrosine, isoleucine, leucine and va-
line (Fig. 2), whereas histidine and glutamine were not signif-
icantly associated with fasting glucagon levels (p ≥ 0.127).

For the two non-BCAAs alanine and tyrosine a twofold
increase in plasma glucagon was significantly associated with
lower plasma concentrations of the amino acids. These inverse
associations of glucagon with alanine and tyrosine were sig-
nificantly impaired by increasing levels of HOMA-IR (p ≤
0.025) (Fig. 2a).

In contrast to the findings for the non-BCAAs, glucagon
concentrations were significantly associated with higher plas-
ma concentrations of the three BCAAs (isoleucine, leucine
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and valine) and phenylalanine, and these associations were
amplified by increasing levels of HOMA-IR, except for valine
(p ≤ 0.040) (Fig. 2b).

In the sensitivity analysis substituting HOMA-IR with
ISI0–120min, we found no modifying effect of ISI0–120min on
the association between plasma glucagon and plasma

Table 1 Characteristics of the
study participants in the
ADDITION-PRO cohort by
tertiles of insulin resistance
(HOMA-IR)

Variable Lower tertile
(0.10–1.06)

Middle tertile
(1.07–1.84)

Upper tertile
(1.85–24.05)

p valuea

n 469 470 469

Age (years) 66.8 (7.4) 65.9 (7.0) 66.0 (6.7) 0.073

Women (%) 49.7 (45.1, 54.3) 50.6 (46.0, 55.2) 40.7 (36.2, 45.3)*† 0.003

BMI (kg/m2) 24.4 (3.2) 26.8 (3.8)* 29.9 (4.6)*† <0.001

HbA1c (mmol/mol) 43.3 (4.0) 43.9 (4.0) 46.1 (6.0)*† <0.001

HbA1c (%) 5.6 (0.3) 5.6 (0.3) 5.8 (0.5)*† <0.001

Fasting plasma glucose (mmol/l) 5.6 (0.5) 5.9 (0.5)* 6.5 (0.9)*† <0.001

120 min plasma glucose (mmol/l) 5.9 (1.7) 6.5 (1.8)* 8.0 (2.8)* <0.001

Fasting serum insulin (pmol/l) 21.0 (17.0–25.0) 37.0 (32.0–42.0)* 69.0 (55.0–90.0)*† <0.001

HOMA-IR 0.77 (0.59–0.91) 1.39 (1.22–1.60)* 2.75 (2.25–3.77)*† <0.001

HOMA-β 28.0 (22.1–35.0) 44.4 (35.6–54.7)† 73.1 (54.9–94.1)*† <0.001

Fasting plasma glucagon (pmol/l) 8.0 (6.0–11.0) 9.0 (6.0–12.0) 13.0 (9.0–17.0)*† <0.001

Glucagon–alanine index 2.1 (1.5–2.9) 2.3 (1.6–3.2)* 3.5 (2.5–5.2)*† <0.001

GGT (U/l) 22.0 (16.0–33.0) 25.0 (17.0–40.0)* 35.0 (23.0–57.0)*† <0.001

Plasma alanine (mmol/l) 0.26 (0.06) 0.27 (0.06)* 0.28 (0.06)*† <0.001

Plasma histidine (mmol/l) 0.068 (0.011) 0.066 (0.012) 0.067 (0.024) 0.264

Plasma tyrosine (mmol/l) 0.059 (0.010) 0.060 (0.011) 0.065 (0.011)*† <0.001

Plasma glutamine (mmol/l) 0.059 (0.010) 0.060 (0.011) 0.065 (0.011)*† <0.001

Plasma phenyl alanine (mmol/l) 0.038 (0.005) 0.038 (0.006) 0.040 (0.006)*† <0.001

Plasma isoleucine (mmol/l) 0.038 (0.011) 0.041 (0.014)* 0.049 (0.016)*† <0.001

Plasma leucine (mmol/l) 0.050 (0.010) 0.050 (0.012) 0.055 (0.013)*† <0.001

Plasma valine (mmol/l) 0.14 (0.03) 0.15 (0.03) 0.16 (0.03)*† <0.001

Urea (mmol/l) 5.5 (1.5) 5.5 (1.7) 5.7 (2.2) 0.086

Data are shown as means (SD), medians (interquartile range) or percentages (95% CI)
a Level of significance for the overall test of difference between groups of tertiles of insulin resistance

*p < 0.05 vs lower tertile; † p < 0.05 vs middle tertile

Fig. 1 Plasma concentrations of glucagon and alanine may reflect
fasting HOMA-IR. (a) Plasma glucagon and (b) alanine concentrations
during an OGTT by tertiles of HOMA-IR: lower tertile (light grey), mid-
dle tertile (dark grey) and upper tertile (black). Data are geometric means
with 95%CI for glucagon, andmeans with 95%CI for alanine. (c) Scatter
plots of fasting plasma glucagon as a function of fasting plasma alanine,

stratified by tertiles of HOMA-IR. Curves with 95% CI (dotted lines) are
plotted within the range of observed fasting plasma alanine and shown for
the lower tertile (thick light grey line), middle tertile (thick dark grey line)
and upper tertile (thick black) line. The thin grey lines illustrate different
levels of the (multiplicative) product: fasting plasma glucagon × fasting
plasma alanine (hyperbolic function)
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concentrations of ‘non-BCAAs’ (p > 0.166 for all), but
ISI0–120min modified the association between glucagon and
total BCAAs (p = 0.036), with decreasing effect size of gluca-
gon for higher levels of ISI0–120min. Assuming that
ureagenesis would be the outcome of glucagon action on ami-
no acid metabolism, we also measured plasma urea levels in
all samples. The results showed that a twofold increase in
plasma glucagon was associated with a significant increase
in plasma urea (p < 0.001); however, HOMA-IR did not have
a significantly modifying effect (p = 0.621) (Fig. 2c).

Plasma amino acids and insulin resistance explain the vari-
ance in fasting plasma glucagon concentration As shown in
Fig. 3, the eight amino acids and HOMA-IR explained an
equal proportion (approximately 10%) of the total residual
variance in fasting plasma glucagon, but there was also an
overlap due to an association between HOMA-IR and plasma
amino acid concentrations, supporting the relationship be-
tween liver function, amino acids and glucagon secretion.

Fig. 2 Differential effect of glucagon on non-BCAAs and BCAAs.
Difference (SD units) in plasma concentrations of (a) non-BCAAs, (b)
BCAAs and (c) urea by a doubling of fasting plasma glucagon, adjusting
for age, sex, BMI and insulin resistance (HOMA-IR). For plasma con-
centrations of alanine, tyrosine, total non-BCAAs, isoleucine, leucine,
total BCAAs and phenylalanine, results are shown for three different

levels of HOMA-IR: median quartile, dark blue (1.39); lower quartile,
light blue (0.91); upper quartile, red (2.25). For histidine, glutamine,
valine and urea, results are shown as a grey line. Total non-BCAAs is
defined as the sum of alanine, histidine, tyrosine and glutamine concen-
trations. Total BCAAs is defined as the sum of isoleucine, leucine and
valine (and does not include phenylalanine)

Fig. 3 Plasma concentrations of amino acids may explain variance in
plasma glucagon concentrations. Proportion of variance in fasting plasma
glucagon explained by all eight plasma amino acids, HOMA-IR, and
plasma amino acids and HOMA-IR combined. In the ‘Combined’ bar,
the light grey and black areas indicate the proportion of variance ex-
plained independently by plasma concentrations of amino acids and
HOMA-IR, respectively, whilst the dark grey area indicates the propor-
tion of variance explained by either HOMA-IR or plasma amino acids
concentration owing to the correlation between them

676 Diabetologia (2018) 61:671–680



Discussion

The data presented here support that a feedback loop exists in
humans between glucagon and certain glucagonotropic (ala-
nine, tyrosine and glutamine) amino acids, and when this is
disrupted due to hepatic abnormalities (reflected here as ele-
vated HOMA-IR levels), the lowering effect of glucagon on
the plasma concentration of amino acids may be gradually
impaired. This leads to increased amino acid concentrations,
and eventually increased glucagon concentrations, as illustrat-
ed by increases in the new, proposed ‘glucagon–alanine in-
dex’. Specifically, we found in 1408 individuals with normal
and impaired glucose regulation that the fasting plasma levels
of four glucagonotropic amino acids were inversely associated
with fasting glucagon levels independent of age, sex, BMI and
peripheral insulin resistance (ISI0–120), and that the associa-
tions were modified by hepatic insulin resistance (HOMA-
IR). Plasma concentrations of both glucagon and non-
BCCAs (e.g. alanine) during an OGTT were affected by in-
creasing HOMA-IR; the BCAAs were also affected but in the
opposite direction, as previously reported [24–26]. These ob-
servations support our hypothesis that impaired hepatic gluca-
gon signalling, potentially due to fat accumulation in the liver
and resulting hepatic insulin resistance [14], impairs gluca-
gon’s ability to lower plasma levels of non-BCAAs. Taken
together, the current findings support the proposed existence
and importance of a liver–alpha cell axis in humans [8].

Alanine and other non-BCAAs, including tyrosine and glu-
tamine, have previously been shown to increase glucagon se-
cretion in humans and dogs, whereas this is not the case for
BCAAs [27, 28]. In addition, prolonged administration of
non-BCAAs to rodents results in alpha cell hyperplasia and
hyperglucagonaemia [7, 29]. These observations have led to
the proposal of the existence of a hitherto neglected feedback
loop between the pancreatic alpha cells and the liver [8, 30].
Consistent with this proposed feedback loop, individuals with
glucagon-producing tumours have decreased levels of plasma
amino acids [11, 31], and, conversely, individuals with gluca-
gon receptor mutations [10, 32, 33] and mice with glucagon
receptor deficiency [30, 34] exhibit increased levels of plasma
amino acids. Hyperglucagonaemia has also been reported in
individuals with fatty liver disease independent of their
glycaemic status [35], and this has recently been linked to an
increased plasma pool of amino acids including alanine, but
excluding the BCAAs isoleucine, leucine and valine [36].

In this study, only eight amino acids, including three
BCAAs, were measured, which obviously limits the interpre-
tation of our results. Measurement of all circulating amino
acids would have been ideal but was unfeasible based on the
current NMR-based platform. We may therefore have under-
or overestimated the association between glucagon and sever-
al of the additional non-BCAAs. Glutamine, although known
to spontaneously degrade in solution [37], was included in the

study because in particular this amino acid has been suggested
to be of importance for amino acid-induced alpha cell prolif-
eration [7] and glucagon secretion [38]. The importance of the
measured amino acids for determining plasma levels of glu-
cagon clearly needs further investigation given that only
around 10% of the variance in plasma glucagon could be
accounted for. Therefore, our results cannot be extrapolated
to general hyperaminoacidaemia, but they do show that a link
seems to exist between certain glucagonotropic amino acids
and plasma levels of glucagon. Indeed, the non-BCAAs in-
cluded in our analysis have recently been linked to alpha cell
proliferation in animal models [39, 40]. Assuming that
ureagenesis would be the outcome of glucagon action on ami-
no acid metabolism, we also measured plasma urea levels in
all samples. The results showed that a twofold increase in
plasma glucagon was associated with a significant increase
in plasma urea, therefore further supporting the hepatic actions
of glucagon on amino acid metabolism. Finally, as the data
shown here rely on a cross-sectional study design, it is impor-
tant to note that causality cannot be implied.

In addition, disturbances of glucagon secretion at fasting or
during intake of carbohydrates may be related to imbalances
of insulin secretion and insulin sensitivity [41, 42], the latter
having been associated with increased plasma concentrations
of BCAAs and phenylalanine [26, 43]. This may also explain
why we observed increasing plasma concentrations of
BCAAs with increasing plasma concentrations of glucagon,
and may reflect a glucose-related interaction of glucagon and
insulin, as recently reported [44].

Interestingly, we recently demonstrated that glucose regu-
lation during development of insulin resistance was associated
not also with hypersecretion of insulin, but also with a reduced
ability to acutely suppress glucagon after glucose intake [45].
The hypersecretion of glucagon from the pancreatic alpha
cells may stem from an impairment of hepatic glucagon sig-
nalling (potentially caused by excessive food intake that may
result in NAFLD and insulin resistance), which then, due to
decreased glucagon-induced amino acid turnover, would re-
su l t in hyperaminoac idaemia [36] . F ina l ly, the
hyperaminoacidaemia, and in particular the increased plasma
concentrations of the glucagon-stimulatory amino acids [27,
28] alanine and tyrosine, may, as suggested by Solloway et al
[7], result in hyperglucagonaemia, counteracting the NAFLD-
induced impairment of glucagon-induced ureagenesis.
Indeed, in the current study we found that elevations in plasma
glucagon concentrations were associated with increased
ureagenesis, as reflected by increased plasma concentrations
of urea. However, this association was not significantly mod-
ified by HOMA-IR.

A major strength of this study is the large number of study
participants encompassing a wide range of glycaemia from
normal glucose tolerance to screen-detected and, hence, un-
treated type 2 diabetes. Importantly the measurement of
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glucagon, which is demanding when it comes to analysing the
subtle effects of small changes in fasting glycaemia on gluca-
gon concentration, was carried out using a validated, highly
sensitive radioimmunoassay, thus diminishing the risk of in-
cluding erroneous glucagon measures, as may occur with
some commercial glucagon assays [46]. Because of the size
of the study, hepatic insulin resistance was evaluated by the
relatively simple HOMA-IR model, which is often used in
epidemiological studies, and not by hyperinsulinaemic–
euglycaemic clamp, which is the gold standard in smaller
but in-depth physiological studies. Nevertheless, HOMA-IR
shows a fairly good correlation with hepatic insulin resistance
measured by hyperinsulinaemic–euglycaemic clamp com-
bined with tracer techniques to estimate hepatic glucose pro-
duction [22], and is therefore a useful surrogate marker of
hepatic insulin resistance. Moreover, we did not observe the
same modifying effect of ISI0–120 as of HOMA-IR on the
associations between fasting plasma levels of glucagon and
non-BCAAs, which supports the notion of HOMA-IR being
mainly related to insulin resistance in the liver. In addition,
GGT, a liver-related enzyme that contributes to the transfer of
γ-glutamyl groups to other amino acids and which has been
suggested to be a potential surrogate marker of hepatic
steatosis [47], was here coupled to changes in plasma gluca-
gon and HOMA-IR, thereby supporting the suggestion that
the increases in glucagon concentrations might be due to in-
creased hepatic fat. HOMA-IR was recently demonstrated to
be closely linked to hepatic steatosis [14].

Taken together, our findings suggest that hyperglucagonaemia
may reflect disturbances in the physiological feedback loop
between amino acid metabolism and the pancreatic alpha
cells, rather than abnormalities of glucose metabolism.
Observations of elevated fasting concentrations of plasma glu-
cagon levels in humans should therefore direct attention to the
functional status of the liver. Since hyperglucagonaemia is
likely to be coupled to impaired amino acid metabolism, a
combination of these two entities in the form of a product is
likely to be a more sensitive measure of the abnormality than
is either variable alone. The proposed glucagon–alanine index
may provide an early indication of any abnormality of the
feedback cycle. Whereas failures of alpha cell secretion are
not well characterised, disturbances of liver function are com-
mon. However, based on our novel findings and partly as a
consequence of improved assays for glucagon measurement
[48], disturbances in alpha cell secretion may now begin to
be uncovered. The usefulness of exploring such defects by
use of our proposed glucagon–alanine index needs further
studies. For instance, it will be interesting to see whether
changes in hepatic insulin and glucagon sensitivity (HOMA-
IR and the glucagon–alanine index) move in parallel or follow
distinct trajectories over time. Moreover, recent research has
suggested that disruption of the glucagon–liver cycle (with
glucagon receptor antagonists) may also lead to disturbances

in lipid metabolism [49]. This has not been addressed in the
present study, but needs to be investigated.

In conclusion, higher fasting plasma glucagon concentra-
tions were associated with lower concentrations of certain
non-BCAAs including alanine, tyrosine and glutamine, and
with higher concentrations of BCAAs, in a large study popula-
tion covering a broad glycaemic range from normal glucose
tolerance to screen-detected type 2 diabetes. A liver–alpha cell
axis may therefore exist in humans by which glucagon controls
plasma levels of amino acid through hepatic gluconeogenesis
and ureagenesis. Importantly, impaired liver function (increased
HOMA-IR) weakened this relationship, resulting in higher ami-
no acid levels and ensuing hyperglucagonaemia. If validated in
other studies, a glucagon–alanine index may be a useful surro-
gate marker of glucagon receptor signalling in humans.
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