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Abstract
• Key message The mean temperature from March to September affects the height-diameter relationship of many

tree species in France. For most of these species, the temperature effect is nonlinear, which makes the identification

of an optimal temperature possible. Increases in mean temperature could impact the volume supply of commercial

species by the end of the twenty-first century.

• Context Height-diameter (HD) relationships are central in forestry since they are essential to estimate tree volume and

biomass. Since the late 1960s, efforts have been made to generalize models of HD relationships through the inclusion of

plot- and tree-level explanatory variables. In some recent studies, climate variables such as mean annual temperature and

precipitation have been found to have a significant effect on HD allometry. However, in these studies, the effects were all

considered to be linear or almost linear, which supposes that there is no optimal temperature and no optimal precipitation.

• Aims In this study, we tested the hypothesis that an optimum effect of temperature and precipitation exists on tree heights.

• Methods We fitted generalized models of HD relationships to 44 tree species distributed across France. To make sure that

the climate variables would not hide some differences in terms of the local environment, the models included explanatory

variables accounting for competition, tree social status and other plot-level factors such as slope inclination and the

occurrence of harvesting in the last five years.

• Results It turned out that the temperature effect was significant for 33 out of 44 species and an optimum was found in 26

cases. The precipitation effect was linear and was found to be significant for only seven species. Although the two climate

variables did not contribute as much as the competition and the social status indices to the model fit, they were still important

contributors. Under the representative concentration pathway (RCP) 2.6 and the assumptions of constant form factors and

forest conditions in terms of competition and social statuses, it is expected that approximately two thirds of the species with

climate-sensitive HD relationships will generally be shorter. This would induce a decrease in volume ranging from 1 to 5%

for most of these species.

• Conclusion Forest practitioners should be aware that the volume supply of some commercial species could decrease by the

end of the twenty-first century. However, these losses could be partly compensated for by changes in the form factors and

the species distributions.

Keywords Generalized height-diameter relationship · Mean temperature · Mean precipitation · Linear mixed-effects

model · Climate change
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1 Introduction

Tree height is a critical variable in forestry because it is

required for tree volume and biomass estimation, but its

measurement is time-consuming. In most forest inventories,

tree height is actually measured on a subsample of trees

and not on all the trees in the sample plots. Traditionally,

foresters have relied on height-diameter (HD) relationships

in order to estimate missing heights. The idea consists of

using the subsample of heights to fit a statistical model

that relates tree height to its diameter, which is easier to

measure. Using the HD relationship, unobserved heights

http://crossmark.crossref.org/dialog/?doi=10.1007/s13595-018-0784-9&domain=pdf
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can be predicted and tree volume and biomass can then be

estimated. The use of such HD relationships has proved to

be convenient as it makes the estimation of volume and

biomass possible, while limiting the investment in terms of

resources and time.

Basic models of HD relationships can be fitted at the

local scale, typically the forest stand. However, this means

that a model fitted to a particular stand is subject to

biases when used in another stand. Refitting models of HD

relationships for each stand is tedious. Consequently, some

authors have attempted to generalize these models since the

late 1960s. The idea is to include additional tree- and plot-

level explanatory variables in models of HD relationships so

that they can adapt to different stand conditions.

Curtis (1967) was among the first who managed to

fit such generalized HD relationships by including stand

age in his model. Over the years, a large array of

explanatory variables expressing the local conditions in

terms of competition and fertility have been found to

have a significant effect on HD relationships. Bégin and

Raulier (1995) fitted HD relationships based on mean stand

diameter and mean stand height. López Sánchez et al.

(2003) used stand metrics such as site index, basal area,

dominant diameter and dominant height. Using a mixed-

model approach, Calama and Montero (2004) included

stand density and dominant height in their model of HD

relationships for stone pine (Pinus pinea L.).

Due to concerns related to climate change, the impact

of climate variables on HD relationships has recently

been studied. Changes in temperature and precipitation

are likely to impact tree growth (Oliver and Larson

1996, p. 21). Because the impact on diameter growth might

be different from that on height growth, this could affect HD

relationships. Fortin et al. (2009) and Auger (2016) found a

positive linear effect of the mean annual temperature on HD

relationships in the province of Quebec, Canada. Hulshof

et al. (2015) found a negative effect of temperature on the

HD relationships of broadleaved species in the USA. In

Spain, Lines et al. (2012) found a linear effect that was

positive for some species but negative for others. In tropical

forests, Feldpausch et al. (2011) fitted a general model of

HD relationships that included mean annual temperature.

Although the temperature effect was expressed through an

exponential function in the model, its coefficient was so

small that its actual representation was almost linear. In

a few studies, mean annual precipitation was also found

to affect HD relationships either positively or negatively

depending on the species (e.g., Lines et al. 2012; Chave et al.

2015; Hulshof et al. 2015).

In all of the aforementioned studies, the effect of the

climate variables was considered to be linear or nearly

linear. However, it can be reasonably assumed that these

effects are nonlinear (Lines et al. 2012). The HD allometry

is actually linked to carbon allocation. The physiological

processes underlying this allocation are dependent on

temperature and growth is known to reach a maximum at

temperature between 20◦ and 35◦C (Ericsson et al. 1996).

Depending on the species, leaf net photosynthesis also show

a maximum within the same range of temperature (Lin et al.

2012).

Likewise, optimal temperature and precipitation condi-

tions that maximize tree heights for a given diameter must

exist. Finding this optimum is not straightforward because

the effect of climate variables can actually hide that of dif-

ferent forest structures if other explanatory variables are not

accounted for in the model of HD relationships. To clearly

assess the effect of the climate variables, it is good prac-

tice to also take other factors into account in these models,

including competition, tree social status and other plot vari-

ables. This was precisely the objective of this study. Using

the height observations of the French National Forest Inven-

tory (NFI), we fitted models of HD relationships to 44

species. In addition to tree- and plot-level explanatory vari-

ables that accounted for the local environment, we tested

the temperature and precipitation effects in these 44 mod-

els under the assumption that an optimum existed. Given the

anticipated climate change, we also simulated what would

be the impact on tree volume at the end of the twenty-first

century if forest conditions remained the same.

2Material andmethods

2.1 Dataset

The data we used in this study were taken from the French

NFI, which is under the responsibility of the National

Geographical Institute (Institut national de l’information

géographique et forestière (IGN)). The methodology behind

the NFI is extensively described in IGN (2016). Since

2005, it follows a double-sampling scheme (Gregoire and

Valentine 2008). A systematic grid covers the whole

metropolitan territory with an annual sampling intensity of

one point every 10 km2. The grid is moved every year

in order to maintain a systematic grid design after 5 and

10 years. For each point, the land use is first determined

using aerial photographs. Each year, a subsample of the

points that are located in forested areas is randomly

selected for ground measurements. The field plots consist of

three concentric fixed-area subplots in which the trees are

measured according to their diameter at breast height (DBH,

1.3 m in height). Trees with DBH smaller than 22.5 cm but
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Table 1 Mean diameter at

breast height (DBH) and height

for the 44 species to which the

models of height-diameter

relationships were fitted, where

n is the number of trees

Species n DBH (cm) Height (m)

Abies alba Mill. 31 807 33.1 (7.6, 134.3) 19.9 (2.4, 45.3)

Acer campestre L. 7473 17.2 (7.6, 75.8) 13.1 (2.2, 32.2)

Acer monspessulanum L. 1116 13.3 (7.6, 56.7) 8.5 (2.5, 20.8)

Acer opalus Mill. 1370 16.8 (7.6, 61.1) 11.1 (3.2, 25.4)

Acer pseudoplatanus L. 7416 22.4 (7.6, 106.3) 16.9 (2.2, 42.9)

Alnus glutinosa Gaertn. 5875 23.4 (7.6, 136.9) 17.2 (1.8, 38.4)

Arbutus unedo L. 1144 10.0 (7.6, 31.2) 6.1 (2.6, 12.5)

Betula pendula Roth. 16 139 18.5 (7.6, 69.4) 15.6 (1.9, 34.3)

Carpinus betulus L. 36 494 17.3 (7.6, 82.1) 15.1 (1.4, 36.8)

Castanea sativa Mill. 29 875 25.4 (7.6, 262.9) 15.1 (2.2, 38.3)

Corylus avellana L. 5935 9.2 (7.6, 30.2) 8.9 (1.4, 20.6)

Crataegus monogyna Jacq. 3416 10.3 (7.6, 39.5) 7.5 (2.0, 18.8)

Fagus sylvatica L. 57 733 30.3 (7.6, 174.1) 19.1 (1.6, 47.1)

Fraxinus excelsior L. 24 388 24.5 (7.6, 122.2) 18.6 (1.4, 44.5)

Ilex aquifolium L. 1311 11.0 (7.6, 60.5) 7.5 (2.2, 16.0)

Larix decidua Mill. 4154 33.9 (7.6, 179.2) 18.6 (3.1, 42.0)

Picea abies H. Karst 30 117 31.4 (7.6, 110.5) 20.7 (1.6, 46.5)

Picea sitchensis Carrière 2052 32.3 (7.6, 85.0) 20.3 (3.2, 39.1)

Pinus halepensis Mill. 4833 29.8 (7.6, 99.6) 12.5 (3.0, 29.6)

Pinus nigra R. Legay 5597 26.8 (7.6, 85.6) 14.1 (1.8, 35.2)

Pinus nigra var. corsicana Hyl. 5835 28.3 (7.6, 175.7) 15.9 (2.7, 44.1)

Pinus pinaster Aiton 22 511 32.5 (7.6, 123.2) 17.4 (2.5, 39.1)

Pinus sylvestris L. 35 343 28.6 (7.6, 93.6) 14.9 (1.4, 43.9)

Pinus uncinata Ramond ex DC. 2690 25.4 (7.6, 85.6) 10.5 (2.3, 24.9)

Populus tremula L. 7417 21.4 (7.6, 87.2) 18.1 (2.9, 40.0)

Populus spp. 1448 38.3 (7.6, 122.5) 24.9 (2.1, 48.0)

Prunus avium L. 7360 20.4 (7.6, 96.8) 14.9 (2.4, 37.9)

Pseudotsuga menziesii Franco 15 373 30.9 (7.6, 140.7) 22.1 (4.0, 48.0)

Quercus ilex L. 7657 16.4 (7.6, 198.9) 7.6 (1.7, 24.5)

Quercus petraea Liebl. 56 481 34.2 (7.6, 149.6) 20.1 (1.5, 43.1)

Quercus pubescens Willd. 29 460 20.6 (7.6, 192.3) 11.5 (1.8, 33.9)

Quercus pyrenaica Willd. 1769 24.8 (7.6, 96.4) 14.1 (2.5, 34.5)

Quercus robur L. 61 379 34.9 (7.6, 143.9) 18.8 (1.4, 43.0)

Quercus rubra L. 1477 24.5 (7.6, 119.4) 17.8 (4.5, 40.6)

Quercus suber L. 1674 30.7 (7.6, 117.8) 8.1 (2.2, 20.8)

Robinia pseudoacacia L. 8004 19.6 (7.6, 181.8) 16.1 (2.6, 37.6)

Salix caprea L. 4458 16.2 (7.6, 96.1) 11.0 (1.5, 32.0)

Salix cinerea L. 1085 16.8 (7.6, 96.8) 9.8 (2.0, 25.9)

Sorbus aria Crantz 3775 12.6 (7.6, 63.0) 10.0 (3.6, 26.0)

Sorbus aucuparia L. 1391 12.6 (7.6, 70.7) 10.1 (3.5, 29.6)

Sorbus torminalis Crantz 3281 13.0 (7.6, 53.5) 11.1 (3.5, 27.5)

Tilia cordata Mill. 2802 21.6 (7.6, 95.5) 16.0 (1.9, 35.5)

Tilia platyphyllos Scop. 2393 22.6 (7.6, 101.2) 15.9 (3.2, 37.1)

Ulmus minor Mill. 2862 13.4 (7.6, 79.6) 11.2 (2.7, 34.8)

The minimum and maximum of the variables appear in parentheses. Populus spp. includes all poplar species

except Populus tremula
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Table 2 Summary of the plot-level variables that were used to fit the models of height-diameter relationships, where n is the number of plots

Species n Stem density Basal area Mean quadratic Slope Temperature Precipitation

(stems ha−1) (m2ha−1) diameter (cm) (%) (◦C) (mm)

Abies alba 5638 789 (14, 3910) 34.6 (0.5, 110.6) 26.5 (8.2, 85.3) 33 (0, 200) 10.9 (4.8, 15.9) 708 (330, 1494)

Acer campestre 4168 1006 (14, 5740) 25.5 (0.5, 117.6) 19.7 (8.2, 60.8) 18 (0, 184) 13.2 (8.5, 16.6) 511 (315, 1133)

Acer monspessulanum 613 1117 (14, 4244) 17.7 (0.4, 53.4) 14.8 (7.6, 51.8) 27 (0, 120) 14.3 (8.8, 17.0) 490 (295, 843)

Acer opalus 713 1222 (33, 4067) 26.4 (0.4, 76.1) 17.4 (7.6, 58.1) 54 (0, 120) 12.0 (7.4, 15.6) 664 (364, 1153)

Acer pseudoplatanus 3076 813 (14, 5586) 27.6 (0.4, 110.6) 23.2 (7.6, 83.6) 24 (0, 200) 11.9 (3.4, 16.9) 601 (272, 1714)

Alnus glutinosa 1601 879 (14, 4322) 26.7 (0.4, 131.9) 21.6 (7.6, 70.7) 9 (0, 90) 13.4 (8.8, 17.8) 521 (293, 1196)

Arbutus unedo 582 1339 (88, 4391) 21.3 (0.4, 102.7) 14.8 (7.6, 44.7) 37 (0, 100) 15.6 (10.2, 18.5) 399 (186, 726)

Betula pendula 6161 905 (14, 5586) 24.6 (0.4, 99.2) 20.3 (7.6, 72.3) 13 (0, 196) 12.7 (4.5, 15.9) 505 (322, 1282)

Carpinus betulus 11 998 863 (14, 5586) 25.8 (0.4, 117.6) 22.1 (7.6, 86.0) 10 (0, 200) 13.2 (8.3, 16.1) 492 (324, 1145)

Castanea sativa 7857 933 (14, 5901) 28.7 (0.4, 129.3) 22.5 (7.6, 139.0) 21 (0, 185) 13.8 (9.0, 17.6) 506 (273, 1009)

Corylus avellana 3343 928 (88, 6254) 24.4 (0.4, 93.3) 19.3 (7.6, 50.9) 21 (0, 184) 12.9 (4.9, 17.0) 542 (288, 1302)

Crataegus monogyna 2107 906 (39, 4360) 23.6 (0.4, 129.3) 18.7 (7.6, 116.7) 17 (0, 190) 13.5 (9.0, 18.2) 497 (232, 1121)

Fagus sylvatica 14 152 737 (14, 5694) 28.8 (0.4, 112.7) 26.3 (7.6, 156.9) 26 (0, 200) 12.0 (4.7, 16.2) 600 (325, 1714)

Fraxinus excelsior 8175 859 (14, 4322) 25.7 (0.4, 117.6) 21.6 (7.6, 82.6) 21 (0, 200) 12.9 (6.7, 17.9) 545 (319, 1494)

Ilex aquifolium 797 936 (62, 3573) 31.8 (0.6, 88.9) 22.4 (8.5, 57.0) 26 (0, 174) 13.2 (7.9, 16.2) 547 (303, 1221)

Larix decidua 842 656 (14, 3331) 28.0 (0.4, 116.8) 26.5 (7.6, 76.7) 46 (0, 110) 9.1 (3.0, 15.1) 574 (355, 1142)

Picea abies 5627 819 (14, 4155) 34.4 (0.4, 121.0) 25.8 (7.6, 84.0) 28 (0, 111) 10.9 (3.4, 15.6) 728 (324, 1619)

Picea sitchensis 339 723 (14, 2741) 35.0 (1.7, 88.3) 27.8 (9.0, 57.2) 11 (0, 72) 12.4 (7.8, 14.7) 516 (326, 1002)

Pinus halepensis 1134 680 (14, 3565) 16.9 (0.4, 58.4) 20.5 (7.6, 69.0) 26 (0, 175) 16.1 (12.5, 18.5) 383 (186, 619)

Pinus nigra 1271 803 (14, 3890) 23.1 (0.4, 108.3) 20.5 (7.6, 68.8) 30 (0, 184) 12.9 (7.5, 17.0) 512 (342, 881)

Pinus nigra var. corsicana 1081 776 (14, 3173) 27.1 (0.4, 97.9) 23.6 (7.6, 130.5) 18 (0, 90) 13.2 (7.2, 16.3) 466 (303, 989)

Pinus pinaster 4379 653 (14, 4106) 23.4 (0.4, 130.8) 24.7 (7.6, 103.6) 9 (0, 130) 14.9 (9.8, 18.2) 456 (223, 784)

Pinus sylvestris 7891 798 (14, 3890) 25.9 (0.4, 108.3) 22.2 (7.6, 72.8) 25 (0, 200) 12.4 (4.5, 16.8) 512 (324, 1218)

Pinus uncinata 511 721 (14, 4002) 25.3 (0.5, 72.7) 23.1 (8.6, 59.5) 44 (0, 110) 7.7 (2.8, 13.0) 592 (399, 1279)

Populus tremula 2938 975 (14, 5586) 25.0 (0.4, 99.2) 19.7 (7.6, 66.2) 10 (0, 115) 13.2 (6.5, 17.1) 488 (319, 1714)

Populus spp. 526 833 (14, 3282) 25.4 (0.5, 100.4) 22.4 (8.6, 121.0) 3 (0, 50) 13.7 (10.8, 16.3) 430 (319, 740)

Prunus avium 4058 896 (14, 5586) 26.3 (0.5, 101.9) 21.3 (7.8, 74.4) 19 (0, 184) 13.2 (7.7, 16.9) 516 (332, 1714)

Pseudotsuga menziesii 2619 738 (14, 3590) 30.2 (0.5, 130.8) 25.2 (7.9, 66.3) 19 (0, 154) 12.6 (8.5, 16.1) 553 (324, 1179)

Quercus ilex 2979 1177 (14, 5040) 18.4 (0.4, 104.2) 14.8 (7.6, 70.7) 33 (0, 175) 15.3 (7.6, 18.4) 438 (189, 817)

Quercus petraea 13 779 759 (14, 5740) 25.7 (0.4, 104.2) 24.7 (7.6, 91.2) 14 (0, 200) 13.1 (7.5, 16.3) 489 (321, 1045)

Quercus pubescens 7765 960 (14, 4360) 19.9 (0.4, 104.2) 17.5 (7.6, 85.8) 28 (0, 175) 14.3 (7.4, 18.2) 480 (263, 1003)

Quercus pyrenaica 713 693 (14, 4106) 22.7 (0.5, 70.6) 23.6 (8.6, 81.8) 12 (0, 92) 14.8 (12.4, 16.2) 484 (324, 869)

Quercus robur 17 579 745 (14, 4322) 25.1 (0.4, 111.7) 24.2 (7.6, 110.3) 11 (0, 190) 13.6 (7.6, 17.8) 482 (298, 1139)

Quercus rubra 421 820 (14, 3119) 23.5 (0.6, 88.9) 21.0 (8.2, 56.5) 7 (0, 68) 13.7 (10.4, 16.1) 483 (326, 989)

Quercus suber 436 667 (14, 3820) 19.0 (0.5, 102.7) 22.3 (8.0, 69.8) 30 (0, 80) 16.7 (14.1, 18.5) 373 (202, 611)

Robinia pseudoacacia 2082 931 (28, 3814) 24.5 (0.4, 90.9) 19.6 (7.8, 59.0) 16 (0, 141) 14.1 (9.7, 18.1) 490 (323, 983)

Salix caprea 2293 998 (14, 5737) 21.3 (0.4, 117.6) 17.5 (7.6, 55.6) 15 (0, 177) 12.5 (5.6, 17.3) 524 (321, 1340)

Salix cinerea 502 839 (53, 4123) 19.7 (0.4, 73.3) 18.4 (7.6, 55.9) 10 (0, 84) 13.9 (5.5, 16.7) 557 (317, 949)

Sorbus aria 1969 1109 (39, 4597) 26.1 (0.4, 95.3) 18.2 (8.0, 52.2) 38 (0, 132) 11.8 (4.9, 16.3) 616 (369, 1397)

Sorbus aucuparia 705 953 (79, 3716) 29.2 (0.4, 116.8) 20.8 (8.0, 47.4) 36 (0, 106) 9.9 (3.4, 16.4) 733 (339, 1376)

Sorbus torminalis 1968 945 (39, 3291) 25.7 (0.4, 101.9) 20.2 (8.0, 54.8) 12 (0, 185) 13.9 (10.3, 16.1) 457 (324, 915)

Tilia cordata 1006 843 (26, 3910) 27.0 (1.0, 81.5) 23.3 (8.6, 86.9) 18 (0, 141) 13.1 (9.2, 17.1) 501 (297, 986)

Tilia platyphyllos 908 947 (14, 4597) 29.4 (1.7, 90.5) 22.4 (8.5, 72.6) 35 (0, 185) 12.6 (7.6, 16.5) 648 (325, 1161)

Ulmus minor 1387 938 (14, 3993) 23.6 (0.4, 89.9) 19.0 (7.6, 62.5) 12 (0, 85) 14.0 (9.6, 17.9) 443 (239, 885)

The range of the variables appears in parentheses. Stem densities, mean quadratic diameters, and basal areas include all species in the plots.

Temperatures and precipitations are the 1961–1990 averages between the months of March and September. Populus spp. includes all poplar species

except Populus tremula
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greater than or equal to 7.5 cm are measured on a radius

of 6 m from the plot center. Trees with DBH greater than

or equal to 22.5 cm but smaller than 37.5 cm are measured

on a 9-m-radius subplot. Finally, trees with DBH greater

than or equal to 37.5 cm are measured on a radius of 15 m

from the plot center. For each tree, the circumference at

breast height was measured to the nearest centimeter. The

DBH was calculated by dividing the circumference by the

constant π under the assumption that the cross section at

1.3 m in height is perfectly circular.

Until 2008, the heights of all the trees located in the

field plots were measured. In 2009, a simplification of

the sampling procedure was undertaken and about 75%

of the heights were measured. We gathered all the height

measurements that were available from 2005 to 2015 in

order to create the dataset we used in this study for a total of

592 400 observed heights.

The dataset included more than 150 different tree species

with many of them being marginal. We discarded all

the species that had less than 1000 observations in the

dataset, which left 44 species. This screening left a total of

566 170 height observations distributed in 65 420 plots. It is

worth mentioning that poplar species were not distinguished

during the inventory, except for Populus tremula L. All other

species of poplar were grouped under the label Populus spp.

A summary of the dataset can be found in Tables 1 and 2.

In addition to tree metrics, the inventory protocol

included the measurement of many plot-level variables

such as slope inclination, soil texture, composition and

depth, as well as a vegetation survey. The occurrence of

natural and anthropogenic disturbances in the past five years

was also recorded. Natural disturbances included fires,

windstorms and droughts. The occurrence of anthropogenic

disturbance, namely harvesting, was recorded when stumps

could be observed within a 0.2-ha area around the plot

center. For both natural and anthropogenic disturbances,

the inventory protocol specified a class variable based on

the severity of the disturbance. However, the number of

observations in each class was largely unbalanced in both

cases, which could be a statistical issue. In order to facilitate

the statistical analysis, we grouped the different classes into

two categories: occurrence and non-occurrence.

As a complement to these tree- and plot-level variables,

we retrieved climate variables from existing national climate

maps that were generated in the context of another study

(Piedallu et al. 2013). These maps provide monthly mean

temperatures and precipitations as well as soil water balance

and evapotranspiration at a 1-km2 resolution for the 1961-

1990 period. The climate variables were modeled using

uninterrupted series provided by a set of 237 and 432

meteorological stations for temperatures and precipitations,

respectively. The explanatory variables in these models

were variables describing topography, solar radiation, land

use, and distances to the seas. The evaluation of these maps

against independent datasets proved to be satisfactory. The

reader is referred to Piedallu et al. (2013) for further details

about the methodology.

2.2 Statistical model

The model we used in this study was inspired by Fortin et al.

(2009). It relies on the following basic linear model:

hij = 1.3+Aij ln(DBHij +1)+Bij ln2(DBHij +1)+ǫij (1)

where hij is the height (m) of tree j in plot i, DBHij is

the diameter at breast height (1.3 m in height), Aij and

Bij are the parameters of the model and ǫij is the residual

error term, which is assumed to be normally distributed with

mean 0 and variance σ 2
res, i.e., ǫij ∼ N(0, σ 2

res). Although it

is linear, this model exhibits a nearly asymptotic pattern like

most common nonlinear models of HD relationships. The

reader can find many of these common nonlinear models in

López Sánchez et al. (2003).

A generalized model is obtained by substituting linear

functions of plot- and tree-level explanatory variables for

Aij and Bij in Eq. 1 (Mehtätalo et al. 2015). The term

“generalized model” refers to the inclusion of additional

explanatory variables in the model, which makes the HD

relationships generalizable over large areas rather than

having to fit individual relationships to different stands

(Temesgen and von Gadow 2004). This term is not to be

confused with generalized linear models used in statistics to

model non-Gaussian responses (see McCullagh and Nelder

1989).

Even if a model accounts for many plot-level variables,

the possibility still exists that some of them have been

omitted (Gregoire 1987). The combined effect of these

omitted variables can be represented as a plot random effect,

which leads to a mixed-effects (both random and fixed)

model. Gregoire (1987) and Lappi and Bailey (1988) are

among the first who used this approach in forestry. It is

widely used today and, consequently, it will only be briefly

described here within the aforementioned context. For

further details and a broader perspective of this approach,

the reader is referred to Pinheiro and Bates (2000).

The model shown in Eq. 1 can be converted into a mixed

model by adding a plot random effect as follows:

hij = 1.3 + (Aij + bi) ln(DBHij + 1)

+Bij ln2(DBHij + 1) + ǫij (2)

where bi is a random effect associated with plot i, which

is assumed to be normally distributed with mean 0 and

variance σ 2
plot, i.e. bi ∼ N(0, σ 2

plot).
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The model in Eq. 2 has two error terms, one at plot level

and one at tree level. Consequently, the variance of hij has

two components:

V(hij | xij ) = σ 2
res + σ 2

plot ln2(DBHij + 1) (3)

where xij is a row vector containing the explanatory

variables of the model. An interesting feature of such

a mixed-model approach is that it makes it possible to

distinguish the variance that stems from the unobserved plot

factors, i.e. σ 2
plot ln2(DBHij + 1), from that of the tree-level

Table 3 Explanatory variables included in the functions that replaced parameters Aij and Bij in the mixed model

Species Basal area of Social Slope Harvest Temperature Precipitation

other trees status inclination occurrence

Abies alba ◦ • ◦ ◦ • ◦

Acer campestre ◦ ◦ ◦ •

Acer monspessulanum ◦ ◦ •

Acer opalus ◦ ◦ ◦ ◦ ◦

Acer pseudoplatanus ◦ ◦ ◦ •

Alnus glutinosa ◦ • ◦ ◦ •

Arbutus unedo ◦

Betula pendula ◦ • ◦ ◦ •

Carpinus betulus ◦ • ◦ ◦ •

Castanea sativa ◦ ◦ ◦ •

Corylus avellana ◦ ◦ •

Crataegus monogyna ◦ • ◦

Fagus sylvatica ◦ • ◦ ◦ • ◦

Fraxinus excelsior ◦ ◦ ◦ ◦ •

Ilex aquifolium

Larix decidua ◦ ◦ ◦ ◦

Picea abies ◦ • ◦ ◦ •

Picea sitchensis ◦ ◦ ◦

Pinus halepensis ◦ •

Pinus nigra ◦ • ◦ ◦ •

Pinus nigra var. corsicana ◦ ◦ ◦ ◦ ◦

Pinus pinaster ◦ • ◦ ◦ • ◦

Pinus sylvestris ◦ ◦ ◦ ◦ •

Pinus uncinata ◦ • ◦ ◦

Populus tremula ◦ ◦ ◦ ◦ •

Populus spp. ◦ ◦

Prunus avium ◦ ◦ ◦ ◦ •

Pseudotsuga menziesii ◦ • ◦ •

Quercus ilex ◦ ◦ ◦

Quercus patraea ◦ • ◦ ◦ •

Quercus pubescens ◦ ◦ ◦ ◦ •

Quercus pyrenaica ◦ • •

Quercus robur ◦ ◦ ◦ ◦ •

Quercus rubra ◦ ◦

Quercus suber ◦ ◦ ◦ ◦ ◦

Robinia pseudoacacia ◦ ◦ ◦ •

Salix caprea ◦ ◦ •

Salix cinerea ◦

Sorbus aria ◦ ◦ ◦ ◦ •

Sorbus aucuparia ◦ ◦ ◦ ◦
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Table 3 (continued)

Species Basal area of Social Slope Harvest Temperature Precipitation

other trees status inclination occurrence

Sorbus torminalis ◦ ◦ ◦ ◦

Tilia cordata ◦ • ◦

Tilia platyphyllos ◦ ◦ ◦

Ulmus minor ◦ • ◦ ◦

Total 43 / 0 19 / 15 31 / 0 25 / 0 7 / 26 7 / 0

Circles (◦) and dots (•) indicate that the effect was entered into the model into a linear or quadratic fashion, respectively. The totals indicate the

number of linear effects over the number of quadratic effects. Populus spp. includes all poplar species except Populus tremula

residual errors, i.e. σ 2
res. On the basis of Eq. 3, it is clear

that term σ 2
plot ln2(DBHij + 1) increases along with tree

DBH, indicating that the contribution of the plot random

effect to the total variance of the prediction error increases

as well. Consequently, a DBH exists for which the plot

random effect and the residual error contribute equally to

the variance of the prediction error, i.e.

∃!DBH : σ 2
plot ln2(DBH + 1) = σ 2

res (4)

Beyond this threshold, the plot random effect contributes

more than the residual error and vice versa. This DBH,

hereafter referred to as the DBH for variance parity

(DBHparity), can be estimated from Eq. 4 as:

D̂BHparity = e

√
σ̂2res

σ̂2
plot − 1 (5)

where the hat denotes estimated parameters.

2.3 Model specifications and goodness of fit

The models included tree- and plot-level explanatory

variables in order to account for the local environment of

the trees. At the tree level, competition is known to impact

HD relationships (López Sánchez et al. 2003; Calama and

Montero 2004) since trees tend to be slender when they

grow in dense stands. We retained plot basal area as a

competition index, but we then modified this variable by

subtracting the basal area of the subject tree. The reason

behind this was that a given tree would not exert any

competition on itself. For the sake of simplicity, we will

refer to this variable as the basal area of other trees.

In addition to competition, it could be assumed that the

social status had an influence over the HD relationships. For

the same basal area, dominated trees tend to be more slender

in general than dominant trees (Pretzsch 2009, p. 189). We

tested a social status index, which was calculated as the

ratio between the DBH of the subject tree and the plot mean

quadratic diameter.

Regarding the plot-level explanatory variables, slope

inclination was considered to be a proxy for drainage since

water runs off faster when the slope is steep. The occurrence

of harvesting was also included in the model since it clearly

modified the effect of competition. For two plots with the

same basal area, trees should be mode slender in the one that

was just harvested because the competition level was higher

before harvesting.

After testing these tree- and plot-level explanatory

variables, we integrated the climate variables in the models.

More precisely, we tested the mean temperature and mean

precipitation between March and September over the 1961–

1990 period.

All the aforementioned explanatory variables were tested

in the mixed-effects model shown in Eq. 2 in the following

order: basal area of other trees, social status index, slope in-

clination, occurrence of harvesting, mean temperature, and

mean precipitation. The model was fitted for each species

independently, resulting in 44 fits. A particular explanatory

variable was kept in the model only if its effect was signifi-

cant and if it improved the model likelihood, as indicated

by the Akaike and Bayesian information criteria (AIC and

BIC, see Pinheiro and Bates 2000, p. 84). As suggested

by Burnham and Anderson (2002, p. 70) we considered

a decrease of 2 units in AIC and BIC as the minimal

improvement to keep the explanatory variable in the model.

When testing a particular explanatory variable, it was

first included in a linear fashion in the function that replaced

parameter Aij . In the case of lack of fit, two options

were successively tested. The first consisted of adding the

explanatory variable in a linear fashion in the function that

replaced parameter Bij . The second was the specification

of the square of the explanatory variable in addition to the

linear term in the function that replaced parameter Aij .

After testing each variable, we checked whether the

normalized residuals (Pinheiro and Bates 2000, p. 239)

were normally distributed with homogeneous variances. As

suggested in Fortin et al. (2008), an empirical Pearson

correlation coefficient was calculated to check if the plot

random effect associated with parameter Aij properly
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accounted for the covariance between the within-plot

residual error terms. Normalized residuals were also plotted

against the explanatory variable that was just tested to make

sure there was no unaccounted for trend left in the models.

All the fits and analyses were carried out using the

MIXED procedure available in SAS (Littell et al. 2006).

A cross-validation was also carried out in order to test the

performance of the 44 models. We performed an 11-fold

Table 4 Ranking of the explanatory variables in terms of AIC change and anticipated volume change (�̂v) if temperatures increased by 1.5◦C

compared to the 1961–1990 period

Species Basal area of Social Slope Harvest Temp. Prec. �̂v

other trees status inclination occurrence

Abies alba 3 1 5 4 2 6 + 4.5%

Acer campestre 4 1 2 3 − 5.5%

Acer monspessulanum 1 2 3 − 3.8%

Acer opalus 2 4 5 3 1 + 5.9%

Acer pseudoplatanus 2 1 4 3 + 0.4%

Alnus glutinosa 2 1 4 5 3 − 2.9%

Arbutus unedo 1

Betula pendula 1 2 3 5 4 − 0.3%

Carpinus betulus 3 1 2 5 4 − 1.3%

Castanea sativa 2 1 3 4 − 6.9%

Corylus avellana 3 2 1 + 2.1%

Crataegus monogyna 3 1 2

Fagus sylvatica 3 1 4 6 2 5 + 4.3%

Fraxinus excelsior 2 1 3 5 4 − 2.2%

Ilex aquifolium

Larix decidua 2 1 4 3 + 5.2%

Picea abies 3 1 5 4 2 + 4.0%

Picea sitchensis 1 2 3

Pinus halepensis 1 2 − 0.7%

Pinus nigra 1 2 5 4 3 − 0.8%

Pinus nigra var. corsicana 1 2 5 4 3 + 3.3%

Pinus pinaster 2 1 3 6 4 5 − 4.9%

Pinus sylvestris 1 2 3 5 4 + 2.6%

Pinus uncinata 1 2 4 3 + 7.5%

Populus tremula 2 1 3 5 4 − 2.9%

Populus spp. 1 2

Prunus avium 2 1 3 5 4 − 3.8%

Pseudotsuga menziesii 2 1 4 3 − 0.5%

Quercus ilex 1 2 3 0.0%

Quercus patraea 2 1 3 5 4 − 1.2%

Quercus pubescens 1 2 3 5 4 −4.0%

Quercus pyrenaica 1 3 2 − 22.2%

Quercus robur 2 1 3 5 4 − 3.1%

Quercus rubra 1 2

Quercus suber 1 2 3 4 5 − 4.4%

Robinia pseudoacacia 2 1 3 4 − 3.7%

Salix caprea 1 3 2 − 4.8%

Salix cinerea 1

Sorbus aria 2 3 1 5 4 − 0.1%

Sorbus aucuparia 1 4 3 2 + 3.7%

Sorbus torminalis 1 2 4 3 0.0%
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Table 4 (continued)

Species Basal area of Social Slope Harvest Temp. Prec. �̂v

other trees status inclination occurrence

Tilia cordata 2 1 3

Tilia platyphyllos 2 1 3

Ulmus minor 3 1 4 2 − 4.3%

Total 35 31 8 0 9 1

Temp.: mean temperature

Prec.: mean precipitation. A ranking of 1 indicates the greatest contribution in terms of AIC decrease. The totals indicate the number of times the

explanatory variable ranked first or second. Populus spp. includes all poplar species except Populus tremula

cross-validation in which the data for a particular year were

successively omitted in the model and then used as an

independent dataset for testing model predictions in terms

of biases and root mean square errors.

When the final models were obtained, we refitted them

and successively omitted the effects one by one in order to

assess their contribution to the model fit. Larger differences

in AIC between the simplified model and the final model

were interpreted as greater contributions to the model fit. We

therefore ranked the different effects and checked if there

were emerging patterns across species.

2.4 Impact of climate variables on tree volume

Once the models were fitted, they could be used to anticipate

the effect climate change would have on tree volume. Tree

volume (vij ) can be estimated as:

v̂ij = c · π · DBH2
ij ĥij (6)

where c is the form factor (Pretzsch 2009, p. 199) and ĥij is

the height prediction for tree j in plot i based on the fixed

effects only. If we assume that the forest conditions remain

the same and the form factor remains constant, then the

average relative change in volume (�v) can be estimated as:

�̂v =

∑
i

∑
j wij · DBH2

ij ĥ
∗
ij∑

i

∑
j wij · DBH2

ij ĥij

− 1 (7)

where wij is the sampling weight of tree j in plot i and ĥ∗
ij is

the height prediction under the anticipated climate change.

Note that form factor c and constant π have been factored

out and sampling weight wij needs to be included in Eq. 7

because the plot area changes depending on tree DBH.

In terms of anticipated climate change, we used the

representative concentration pathway (RCP) 2.6 of the

IPCC, which is in line with the Paris climate agreement

(Sanderson et al. 2016). RCP 2.6 is based on the forecasts of

32 models (IPCC 2013a, p. 1315). Compared to the 1986–

2005 reference period, it predicts that summer temperatures

will be 1.0 to 1.5◦C higher in 2081–2100 in France, while

summer precipitation is expected to remain stable (IPCC

2013b, p. 75). For the sake of simplicity, we assumed that

the temperature from March to September would increase

by 1.5◦C compared to the 1961–1990 period and that all

other explanatory variables would keep their current values.

3 Results

The summary of the explanatory variables that had a

significant effect on tree height is given in Table 3. The

basal area of other trees was entered into all of the models,

except that of Ilex aquifolium, in a linear manner. The social

status index was entered into the model for 34 out of 44

species, half of these being in a quadratic fashion. The mean

temperature was part of 33 models, with the quadratic form

being more frequent than the linear form. The slope came

next, being part of 31 out of 44 models, all in the linear

form. The harvest occurrence also had a significant effect

in 25 models. Finally, the mean precipitation was kept in

seven models. The parameter estimates are listed in the

Supplementary Material (Tables SM1 and SM2).

The cross-validation showed estimated biases that were

generally within the range of ± 4% and root mean square

errors below 30% (see Tables SM3 and SM4 in the

Supplementary Material). There was no evidence of lack of

fit as those biases that exceeded the range ± 4% could not

be associated with any species in particular. However, year

2005 was the one that counted more estimated biases out of

the ± 4% range.

The ranking of the different variables in terms of their

contribution to the model fit is shown in Table 4. The basal

area of the other trees and the social status index accounted

for the most or the second most important effect in 35 and 31

models, respectively. The slope inclination came next with

eight out of 44 models, followed by the temperature with

nine models. The precipitation counted among the two most

important effects in only one model.
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Fig. 1 Mean predicted heights

as a function of tree diameter at

breast height (DBH). Gray areas

delineate the 95% confidence

intervals. The dots indicate the

average DBH in the dataset. The

average, as observed in the

dataset, was used for the other

model variables, except for the

mean quadratic diameter that

was set to the DBH in order to

maintain a constant social status

For most species, the DBH for variance parity was

smaller than 20 cm (see SM5 in the Supplementary

Material). In other words, beyond this threshold the plot

random effect contributed more than the residual error to

the variance of the predictions. Abies alba, Larix decidua

and Picea abies were the only species that exceeded

this threshold, with DBH for variance parity estimated at

26.6 cm, 20.4 cm, and 21.0 cm, respectively.

In order to better determine the magnitude of the different

effects, model predictions were generated. Mean predicted

heights as a function of tree DBH are shown in Fig. 1

for the most abundant species in terms of volume (IGN

2017). Predictions were generated by varying tree DBH

while maintaining the other model variables at their average

values in the dataset. The mean quadratic diameter was

the only exception to this rule. It was set to the DBH to

ensure that the social status of the tree would not change.

For the same DBH, mediterranean and sub-Mediterranean

species generally tended to be shorter than the other species.

This was the case of Quercus pubescens, Castanea sativa,

Quercus pyrenaica, and Pinus halepensis (Fig. 1a, d, and

f). Coniferous species such as Abies alba, Picea abies, and

Pseudotsuga menziesii generally tended to be taller than

broadleaved species for a given DBH (Fig. 1e, f).

The effect of the basal area of other trees, which

represents the competition at the plot level, is shown in

Fig. 2 for the average trees of the most common species. All

other things considered, an increase in the basal area of other

trees induced an increase in tree height for all species. Some

species were less sensitive than others, such as Carpinus

betulus and Robinia pseudoacacia (Fig. 2b, d). In contrast,

Pinus sylvestris appeared to be one of the most sensitive

species to the basal area of other trees.

The effect of the social status on tree height is shown

in Fig. 3. All other things considered, dominant trees, i.e.,

trees with social status indices greater than 1, were more
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Fig. 2 Mean predicted heights

as a function of the basal area of

other trees. Gray areas delineate

the 95% confidence intervals.

The dots indicate the average

basal area of other trees in the

dataset. The average, as

observed in the dataset, was used

for the other model variables

tapered while dominated trees, as indicated by social status

indices smaller than 1, tended to be more slender. Some

species were less sensitive to social status than others. For

example, Castanea sativa and Quercus pyrenaica showed

small, but still significant, differences between dominant

and dominated trees (Fig. 3d).

The slope inclination had a negative effect on the height

of most species (Fig. 4). Abies alba and Picea abies were the

only notable exceptions with a slight increase in tree height

along the slope inclination. The effect of harvest occurrence

was positive in all the models where it was entered and

generally corrected for the decrease in basal area following

thinning (result not shown).

The effect of mean temperature from March to Septem-

ber over the 1961–1990 period is shown in Fig. 5 for the

major species with a quadratic effect. All other things con-

sidered, a change in the temperature could induce changes

of several meters in the mean predicted heights. For most

species, the observed average temperatures in the dataset

were close to the temperature that maximized tree heights.

The exceptions to this pattern were Fagus sylvatica, Abies

alba and Picea abies for which the current average temper-

ature was below the optimal temperature (Fig. 5b,e), and

Castanea sativa for which the current average temperature

was beyond the optimal temperature (Fig. 5d).

The precipitation effect was positive (Fig. 6). Some

species were less sensitive than others to changes in

precipitation. For example, Abies alba seemed less affected

than Pinus pinaster, Quercus suber, and Fagus sylvatica.

As shown in Table 4, the anticipated volume change

at the end of the twenty-first century under the RCP 2.6

climate change scenario and the assumptions of constant

forest conditions and constant form factors varied across

species. A total of 22 species showed a decrease in volume,

most of them being considered either as Mediterranean

species or as species typical of plains and hills (Rameau

et al. 1989). The species with the greatest decrease in

volume was Quercus pyrenaica, followed by Castanea

sativa and Acer campestre, with estimated changes of

−22.2%, −6.9%, and −5.5%, respectively. An increase in
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Fig. 3 Mean predicted heights

as a function of social status

index calculated as the ratio

between tree DBH and plot

mean quadratic diameter.

Positive and negative indices

indicate dominant and

dominated trees, respectively.

Gray areas delineate the 95%

confidence intervals. The dots

indicate that the social status

index is equal to 1, i.e., tree

DBH is equal to mean quadratic

diameter. The average, as

observed in the dataset, was used

for the other model variables

tree volume was predicted for 11 species that were mainly

considered as typical of mountain areas. Pinus uncinata,

Larix decidua, Abies alba, and Fagus sylvatica counted

among the species with the greatest increases, estimated at

+ 7.5%, + 5.2%, + 4.5% and + 4.3%, respectively. When

pooling the 44 species together, the models predicted a

decrease of 0.3%.

4 Discussion

The existing literature provides a large array of plot metrics

that have been tested in HD relationship models, including

stem density, basal area, dominant height, or diameter,

arithmetic or quadratic mean diameter, relative spacing

indices, and age (Castedo Dorado et al. 2006; Garber et al.

2009; Crecente Campo et al. 2014; Mehtätalo et al. 2015;

Sharma and Breidenbach 2015; Adamec and Drápela 2016;

Saud et al. 2016). However, climate variables have been

overlooked in most studies. With the concerns related to

climate change, evaluating the climate effects in generalized

HD relationships has become essential, especially if those

relationships are to be used in growth forecasts. Given

that climate variables are now available through maps

or software (e.g., Régnière et al. 2014)), we hardly see

any reason for not testing them in these HD relationship

models. Compared with previous studies, the originality of

our work lies in the fact that our HD relationship models

accounted for temperature and precipitation in addition to

tree competition, tree social status, and plot-level factors.

4.1 Temperature and precipitation effects

Our results show that the mean temperature from March

to September had a significant effect on the height of

most species, with this effect being quadratic in most cases

(Table 3). This effect could hardly be explained by different

forest conditions since the models already accounted for tree
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Fig. 4 Mean predicted heights

as a function of the slope

inclination. Gray areas delineate

the 95% confidence intervals.

The dots indicate the average

slope inclination in the dataset.

The average, as observed in the

dataset, was used for the other

model variables

size and social status, competition, slope inclination, and the

occurrence of harvesting. Moreover, the magnitude of the

effect was considerable, showing that the mean predicted

height can change by several meters depending on the mean

temperature (Fig. 5). We found either no significant effect

or only a linear effect of the temperature for many species

with less than 1000 plots, which suggests that the sample

size and the geographical scope are two critical factors to

capture this effect.

The results we obtained about temperature are in

accordance with those of previous studies. First, an optimal

temperature exists for photosynthesis and growth (Ericsson

et al. 1996; Lin et al. 2012). Secondly, temperature affects

height growth more than diameter growth (Way and Oren

2010). The predicted heights shown in Fig. 5 reflect these

two aforementioned trends: at the optimal temperature, trees

grow faster and they allocate the additional carbon to height

growth in priority.

A quadratic effect of temperature like the one we found

for 26 out of 44 species also supports the idea of a thermal

optimum for height growth (Way and Oren 2010). From

an ecological perspective, the temperature of the growing

season clearly contributes to the definition of the thermal

niche of a particular species. It was surprising to find that

the average temperatures observed in the dataset were close

to the optimal temperatures for most species, as shown in

Fig. 5. In other words, the trees of a particular species are

more likely to be found in areas where the temperature

effect on their heights is optimal. The optimal occurrence of

plant species has already been found to coincide with other

optimal features such as abundance (Van Couwenberghe

et al. 2013). This assertion seems logical, but considering

that nearly half the French forest is intensively managed

(Anonymous 2000), it can be further concluded that either

forest management has not greatly impacted the distribution

of most tree species or that it has favored the establishment

of these species under optimal conditions.

Site indices have traditionally been used as a proxy for

site fertility in models of HD relationships (e.g., López

Sánchez et al. 2003). However, some authors recently
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Fig. 5 Mean predicted heights

as a function of the 1961–1990

mean temperature from March

to September. Gray areas

delineate the 95% confidence

intervals. The dots indicate the

average temperature in the

dataset. The average, as

observed in the dataset, was used

for the other model variables

demonstrated that site index was not as stable over time

as was expected (Bontemps et al. 2009). As a response,

climate-sensitive site indices were developed (e.g., Seynave

et al. 2005). Whether they are climate sensitive or not, site

indices are never truly observed, but are predicted instead.

From a statistical point of view, integrating them in a

model of HD relationships makes uncertainty assessment

of predictions more complex. For this reason, it seemed

preferable to include these climate variables directly in the

models of HD relationships and not through a climate-

sensitive site index.

The identification of these optimal temperatures and the

fact that the average observed temperatures were close to

them can be a concern in the context of climate change.

Under the representative concentration pathway (RCP) 2.6

of the IPCC, summer temperatures are expected to increase

by 1.5◦C by the end of the twenty-first century in France

(IPCC 2013b, p. 75). This increase complies with the target

of the Paris climate agreement (UNFCCC 2015). As shown

in Table 4, this change in temperature is likely to affect

tree height, which in turn impacts tree volume. Under the

assumption that forest conditions, in terms of competition

and social status, remain the same and that the form factor

is constant, approximately two thirds of the species with

climate-sensitive HD relationships showed decreases in

volume. For some of these species, the decrease was close

to or even greater than 5% (Table 4). It must be stressed

that the assumptions behind these anticipated changes are

strong. First, forest conditions will probably be different at

the end of the twenty-first century. Actually, the decrease in

volume could be compensated for if the distribution of the

species shifted towards sites that are currently colder than

the optimum. It has been suggested that migration-assisted

strategies could be an effective means of mitigation against

climate change (Hof et al. 2017).

Secondly, the taper of some species was recently found

to be climate sensitive (Schneider et al. 2018), which means

that the form factor will probably change in the future.

Species with greater tolerance to shade and waterlogging

tend to decrease their taper and, consequently, to increase
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Fig. 6 Mean predicted heights as a function of the 1961-1990 mean

precipitation from March to September. Gray areas delineate the 95%

confidence intervals. The dots indicate the average precipitation in the

dataset. The average, as observed in the dataset, was used for the other

model variables

their volume for the same DBH and height (Schneider

et al. 2018). Depending on the species ecology, this

taper adaptation could either exacerbate or compensate the

change in volume that we found in this study. Because

they rely on these two strong assumptions, the anticipated

volume changes shown in Table 4 should be considered with

precaution. The true change should lie somewhere between

these predicted changes and no change at all, which means

perfect adaptation. This remains to be investigated.

In order to identify this optimal temperature, the territory

under study must show a diversity of temperatures and these

temperatures must include the optimal temperature of the

thermal niche. France has a wide variability in terms of

climate influences and topography. Oceanic and degraded

oceanic influences meet in Northern France, the south

is mainly under a Mediterranean climate and mountain

climatic influences are present in the Alps, Pyrenees, and

Massif Central (Joly et al. 2010).

A reason that would explain why the quadratic effect

of temperature was not revealed in previous studies (Fortin

et al. 2009; Feldpausch et al. 2011; Lines et al. 2012;

Hulshof et al. 2015; Auger 2016) could be due to the

fact that the geographical scope of the data did not cover

a sufficient gradient of temperature or that the optimal

temperature was not located within this geographical scope.

This could be especially true for the study of Fortin

et al. (2009) and Auger (2016). Most species in these

studies have native ranges that extend further south so that

the optimal temperatures may lie somewhere beyond the

southern border of Quebec. This might also be the case for

some of the seven species that showed a linear temperature

effect in this study.

In our data, mean temperature and precipitation from

March to September were correlated at − 0.52. Although

this was a moderate level of correlation, it could be argued

that the effect is not one of temperature but rather one of

precipitation. In all our models, we alternatively tested the

temperature and the precipitation when it came to including

the climate variables. The idea was to identify which climate

variable resulted in the greatest improvement of the model

fit before testing the other variable. In the vast majority

of cases, including temperature resulted in a greater

improvement than including precipitation, with Quercus ilex

and Sorbus torminalis being the two exceptions (Table 3).

This result pleads for a greater effect of temperature on

tree height when compared to the effect of precipitation.

In Spain, the magnitude of the precipitation effect was

also found to be smaller than that of the temperature for

most species (Lines et al. 2012). On the contrary, Hulshof

et al. (2015) found that the height of conifers was more

impacted by precipitation than temperature in the USA.

However, their models did not account for tree social status

or competition from other trees and it can be argued that

the significant climate effect they found was partly due

to different competition levels and social status along the

climate gradient. In our study, we disentangled these effects

by including a competition index and a social status index

before testing the climate variables.

4.2 Competition effect

The competition has an obvious effect on tree allometry,

as shown in Fig. 2. The greater this competition level is,

the mode slender the trees will be. This effect is a direct

consequence of the carbon allocation strategy, which favors

height growth before diameter growth (Oliver and Larson

1996, p. 75). Many authors identified this competition

effect and took it into account in their models, either

through plot basal area or the basal area of larger trees

(BAL) (e.g., Temesgen and von Gadow 2004; Garber et al.

2009; Feldpausch et al. 2011; Crecente Campo et al. 2014;

Forrester et al. 2017).

In our study, we considered the basal area of other trees

since it could hardly be assumed that a particular tree would

be competing with itself. More precisely, we wanted to

make sure that trees growing alone in their plot would have

a competition index of 0, something that is impossible when

using plot basal area. During some preliminary trials, we

compared the basal area of other trees with plot basal area

in terms of model fit. Excluding the target tree from the

basal area did not make a big difference in the model fits.

However, we decided to keep this competition index since it

made more sense from a biological point of view.

The other option would have been to use the BAL com-

petition index. Temesgen and von Gadow (2004) presented

the BAL as a convenient index that simultaneously accounts

for social status and competition. We rejected this option
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because neighbor trees, even if they are smaller in diameter

than the target tree, affect crown development through side

shading (Oliver and Larson 1996, p. 71). Since the volume

increment usually increases from the top of the tree to the

base of the live crown (Smith et al. 1997, p. 49), these com-

petitors necessarily affect stem taper and, consequently, the

HD relationship. Moreover, there was no reason to assume

that social status and competition had a joint effect, so we

decided to model them independently.

During preliminary trials, we also tested stem density

alone or in interaction with basal area. In either case, this

variable did not improve the model fit and, consequently, it

was not retained in the model. Some relative density indices

also exist (Jack and Long 1996) and could have been used

to characterize the competition effect. However, there are

two constraints related to the use of those indices: they are

usually designed for pure stands and they are not available

for all the species we had in this study.

4.3 Social status effect

The social status index was calculated as the ratio between

the DBH of the target tree and the mean quadratic diameter

(MQD) of its plot. The inclusion of plot MQD in HD

relationship models was already found to substantially

improve their fit (Saud et al. 2016). In all the models that

included this effect, our results showed that the dominant

trees tended to be more tapered than trees with a diameter

close to the MQD while dominated trees were more slender,

a pattern that is typically observed in even-aged stands

(Pretzsch 2009, p. 189). For a few species, however, the

effect of the social status on tree height was relatively small.

This was the case of Castanea sativa and Quercus pyrenaica

(Fig. 3).

Fortin et al. (2009) also found an effect of the social

status in their general model of HD relationships in Quebec,

Canada. However, their social status index was calculated

as the difference between tree DBH and plot MQD and not

the ratio between these two variables. Moreover, they did

not manage to find an interaction between the social status

and the species. In her revision of the model, Auger (2016)

found that the social status index based on the DBH:MQD

ratio outperformed the difference-based index and had a

negative effect on tree height for many species.

During preliminary trials, we compared the two indices

and we found out that the ratio was better for some species

but worse for others. Globally, the ratio was slightly better

than the difference and for this reason, we finally chose

to use it. However, there are some issues related to this

ratio. First, it is asymmetrical in the sense that dominant

trees can exhibit values that are much greater than 1

while dominated trees are by definition bounded between

0 and 1. From a statistical point of view, those dominant

trees growing over a large number of small trees can turn

out to be influential observations because of their high

leverage. In practice, dominated trees are those that can

lose their epinastic control and may expand horizontally

instead (Larson 1992). This decrease in apical dominance

combined with the development of lateral branches leads to

a plagiotropic architecture (Kunstler et al. 2005) that could

be overlooked with the ratio-based social index.

Secondly, the ratio-based index assumes that the effect of

the social status has nothing to do with tree size. In other

words, a tree of 20 cm in DBH growing in a plot with a

MQD of 10 cm has the same social status index than a

80-cm tree growing in a plot with a MQD of 40 cm. This

assumption is subject to debate and the objective of our

study was not to provide a clear answer as to which social

index is the best. A thorough comparison between these two

social status indices would clearly bring new insights into

the morphology of the difference species.

4.4 Slope effect

In their studies, Fortin et al. (2009) and Auger (2016) found

a significant effect of the drainage class over tree height,

where trees growing in xeric conditions were generally

shorter. In this study, we did not have access to the drainage

class. However, we found a negative effect of the slope

inclination for 31 out of 44 species. The slope and the

drainage are dependent. Although the location along the

slope plays an important role, the greater the inclination

is, the faster the drainage will generally be. Moreover,

trees growing on steep slopes have been found to be less

sensitive to wind damage (Klaus et al. 2011; Hanewinkel

et al. 2014), which could be explained by an acclimation

to greater wind stress. Meng et al. (2008) highlighted the

negative effect of mean wind speed in the height-diameter

relationship of lodgepole pine (Pinus contorta Engelm.). In

response to the mechanical stress induced by wind bursts,

trees usually allocate more resources to diameter growth in

order to prevent stem breakage (Bonnesoeur et al. 2016).

Unfortunately, we did not have access to wind speeds in

our data and, consequently, it was impossible to distinguish

this effect from that of the drainage. Information about the

topographic location of the plot, such as upper slope, lower

slope or flat land, could also be variables of interest for

expressing both the wind and the drainage effects. This

remains to be investigated.

It could also be argued that the slope inclination is

correlated with the temperature since steeper slopes are

observed in mountain areas where the temperature is

lower. We further investigated the relationship between

slope inclination and temperature and obtained a Pearson

correlation coefficient of −0.307, which can be considered

as a weak negative correlation.
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4.5 Modeling approach

Even though our models included a large array of

explanatory variables, a large prediction error remained. As

a matter of fact, the root mean square error was larger than

2.0 m for most species (see SM4 in the Supplementary

Material). The mixed-model approach we used made it

possible to assess the relative contribution of the plot

random effect to the total variance of the prediction error.

It turned out that this contribution was greater than that

of the residual error for trees larger than 20 cm in most

cases (see SM5 in the Supplementary Material). The mixed-

model approach has been widely used in the context of HD

relationships (e.g., Castedo Dorado et al. 2006; Feldpausch

et al. 2011; Lu and Zhang 2013; Adamec and Drápela 2016;

Kearsley et al. 2017), and the importance of the plot random

effects that we found in this study is in accordance with

the results of previous studies. For example, Hulshof et al.

(2015) showed that R2 conditional on the random effects

predictors were much higher than marginal R2. Feldpausch

et al. (2011) also outlined the strong influence of the plot

random effect on HD allometry.

Plot random effects can be interpreted as one or many

unobserved plot-level variables that have a significant effect

on the response (Gregoire 1987). Even though our mod-

els included plot-level variables such as slope inclination

and harvest occurrence, it appeared that they were still far

from explaining all of the between-plot variability. Dur-

ing preliminary trials, we tested additional plot-level vari-

ables such as soil type and texture but none of them was

found to have a significant effect on tree height. Kroon

et al. (2008) found a significant effect of the genetic ori-

gin on the HD relationships, which could partly explain the

between-plot variability we observed. The history of distur-

bances, whether they be natural or anthropogenic, probably

impacts tree allometry as well. However, the availability of

the data to account for this history is a major issue.

In this study, we only had access to recent disturbances.

When it occurs in the last five years, harvesting can have a

significant effect on tree height. However, this effect must be

interpreted as a correction for the basal area effect. In spite

of our efforts, we did not manage to quantify the impact

of natural disturbances on tree height in our models. Fortin

et al. (2009) showed that the effect of recent natural distur-

bances is significant, but smaller than that of recent harves-

ting in terms of magnitude. Our data covered the 2005–2015

period and only a few large-scale disturbances occurred

within this interval. This could explain why our attempts

were unsuccessful. We expect that future inventory cam-

paigns will provide additional observations and make the

quantification of the effect of natural disturbances possible.

The plot random effect specification in our models

is subject to debate. Theoretically, each parameter could

be associated with a plot random effect as suggested by

Hall and Bailey (2001). In our study, this means that an

additional plot random effect could have been associated

with parameter Bij in Eq. 2. However, in practice, this often

leads to convergence problems when maximizing the model

likelihood (Hall and Bailey 2001). This is precisely what

happened for many species in this study and, consequently,

we kept the simpler random effect specification shown in

Eq. 2. Another option would have been to set the random

effect on the model intercept. However, such a random

effect specification assumes that the average difference in

tree height between two plots is the same regardless of the

tree diameters. Actually, it can reasonably be assumed that

smaller trees are more alike across the plots than larger trees,

which is precisely the reason why we set the plot random

effect on parameter Aij . To make sure that this assumption

hold, we refitted all the models, but this time with the plot

random effect on the intercept. This resulted in a worst fit

for all 44 models.

Compared to previous studies on the topic, our study is

based on a different model. Many studies relied on the gen-

eral model y = A · DBHB + ǫ. This model is nonlinear and

convergence is usually harder to achieve when the model

includes random effects. An appealing alternative that was

used by some authors consists of linearizing the model as

follows: ln(y) = ln(A)+B · ln(DBH)+ ǫ (e.g., Feldpausch

et al. 2011; Chave et al. 2015; Hulshof et al. 2015). The

model can then be fitted using a regular linear mixed-effects

model. Although this linearized form has some advantages

in terms of fitting, it implies a back transformation in order

to obtain height predictions on the original scale. A naı̈ve

back transformation of log-transformed responses implies

a bias and some correction factors are required to obtain

unbiased predictions (Duan 1983; Végiard and Ung 1993).

Since our model is purely linear, it does not suffer from this

back-transformation bias. Moreover, the link between the

response variable and the explanatory variables is easier to

interpret: the parameters actually represent the change in

the response variable caused by a one-unit increase in the

explanatory variables.

Our model also makes it possible to test quadratic effects

such as those shown in Fig. 5. With the original nonlinear

model y = A · DBHB + ǫ, this is still possible: parameter

A can be replaced by a linear function involving the

temperature and the square of the temperature. However,

with the log-transformed version ln(y) = ln(A) + B ·

ln(DBH) + ǫ, the effects are assumed to be multiplicative

(Draper and Smith 1998, p. 278). Quadratic effects such as

those shown in Fig. 5 could only be achieved by specifying

the temperature and the logarithm of the temperature in the

model, which makes the model formulation more complex.

This being said, this linear model of ours is not perfect,

and during preliminary trials, we observed that inconsistent
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predictions could be obtained when the models of some

species were used to generate predictions for trees with

diameters below the minimum diameter, i.e., DBH <

7.5 cm. Some predictions were actually smaller than 1.3 m.

This model misspecification could be corrected by linearly

interpolating between the intercept of 1.3 m and the

predicted height when DBH = 7.5 cm. This remains to be

tested and implemented. In the meantime, we recommend

not using the models with trees smaller than 7.5 cm in DBH.

We chose to use the temperature and precipitation

from March to September because it provided a better

fit during preliminary trials. The climate influence could

be further refined through a thorough comparison of the

available climate variables such as monthly temperatures

and precipitations, as well as degree-days. Variables

representing the water availability for trees such as soil

water balance (Piedallu et al. 2013) could perform better

than precipitation. During the preliminary trials, this was

not the case, but this might be due to the fact that the spatial

distribution of soil water balance remains imprecise.

We did not test stand metrics such as stand age,

dominant height, or dominant diameter in our models

for several reasons. Age measurements were taken on a

very small subsample. Consequently, there was a great

deal of uncertainty in the stand age estimates. Dominant

heights were also tricky to calculate with the data we

had because some heights were unobserved in the 2009

inventory campaign and after. Moreover, testing dominant

height in a model of HD relationships when it is calculated

with the same height observations that are used to fit the

model is a concern from a statistical point of view. In

such a context, tree height is both the response variable

and an explanatory variable in the model, which leads to

overestimate the precision of the predictions (Perron et al.

2009, p. 614). Dominant diameter could have been tested in

the model. However, many plots had a mixed composition

and some species were only represented by one or a few

trees in each plot. The meaning of dominant diameter is

questionable in such a context.

5 Conclusions

On the basis of the results of this study, we reached the

following conclusions:

• The mean temperature from March to September

affected the height-diameter relationship of most

species. Although the competition as represented by the

basal area of other trees and social status contributed

more to the model fit, temperature was not a marginal

effect that can be overlooked. It ranked first or second

in terms of contribution to the model fit for almost a

quarter of the species (Table 4) and the mean predicted

height could change by several meters depending on its

values (Fig. 5).

• From a statistical perspective, the temperature effect

had a stronger signal than that of precipitation for most

species. It was also quadratic, which made it possible

to estimate an optimal temperature, i.e., the temperature

that maximized tree height, all other things being equal.

In most cases of quadratic effects, the average observed

temperature from March to September was close to the

optimal temperature.

• Under the climate scenario RCP 2.6 and the strong

assumptions of stable species distribution, constant

form factors and constant forest conditions in terms

of competition and social status, two thirds of the

species with a climate-sensitive HD relationship would

have a reduced height and volume by the end of the

twenty-first century.

While the decreases in volume remain relatively small at

the local scale, it could have greater impacts at the regional

level. Unless these changes are compensated for by the form

factors, forest managers should be aware that the volume

supply for some valuable species such as Quercus robur and

Pinus pinaster could drop by 3 to 5%, while that of Fagus

sylvatica, Picea abies, and Abies alba could increase by 4%

by the end of the twenty-first century.
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Dumé G (2005) Picea abies site index prediction by environmental

factors and understorey vegetation: a two-scale approach based on

survey databases. Can J Forest Res 35:1669–1678
Sharma RP, Breidenbach J (2015) Modeling height-diameter rela-

tionships for Norway spruce, Scots pine, and downy birch using

Norwegian national forest inventory data. For Sci Technol 11:44–

53
Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The Practice of

Silviculture Applied Forest Ecology, 9th edn. Wiley, New York
Temesgen H, von Gadow K (2004) Generalized height-diameter

models – an application for major tree species in complex stands

of interior British Columbia. Eur J For Res 123:45–51
UNFCCC (2015) Adoption of the Paris agreement. Techni-

cal report, United nations framework convention on climate

change (UNFCCC). http://unfccc.int/resource/docs/2015/cop21/

eng/l09r01.pdf
Van Couwenberghe R, Collet C, Pierrat J-C, Verheyen K, Gégout J-C

(2013) Can species distribution models be used to describe plant

abundance patterns? Ecography 36:665–674
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