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Abstract

Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting
that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known
to generally perform C3 photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may
also perform C4 photosynthesis, so C4 photosynthesis might be more wide-spread than previously anticipated. Both C3 and
C4 photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C4

metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate
carboxylase (PEPC), and phosphoenolpyruvate carboxykinase (PCK). To investigate whether the alga operates a C4-like
pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of
stress (differing levels of salinity, light intensity, and temperature). The expression of rbcL and PPDK and their enzyme
activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and
ribulose-1, 5-biphosphate carboxylase (RuBPCase) activity was lower, whereas that of PPDK was higher. These results
suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C4-type carbon
metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea.
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Introduction

Carbon fixation is an important biological process in all

photosynthetic organisms. C4 plants are characterized by high

rates of photosynthesis and efficient use of water and nitrogen

resources [1]. High photosynthetic rates are achieved by addition

of a new metabolic pathway, the C4 cycle, in which the initial

product of CO2 fixation is a four-carbon (C) organic acid rather

than a three-carbon (C) acid. C4 plants show drastically reduced

rates of photorespiration because CO2 is concentrated at the site of

Rubisco and is able to outcompete molecular oxygen, which, when

used by Rubisco, results in photorespiration [2]. The C4

photosynthetic carbon cycle is an elaborated addition to the C3

photosynthetic pathway, which ensures high rates of photosyn-

thesis even when CO2 concentrations are low. C4 photosynthesis

evolved several times independently during the evolution of higher

plants. It originated at least 32 times in eudicots and 16 times in

monocots [3]. It had evolved from ancestral C3 plants via a series

of anatomical and physiological adaptations to high light

intensities, high temperatures, low pCO2, and dryness [4].

In aquatic environments, [CO2] can be a primary limitation for

photosynthesis because of the low capacity of water to hold

gaseous CO2 and the slow diffusion rate of dissolved molecules

[5,6]. It has been demonstrated that many aquatic photosynthetic

organisms can take up both CO2 and HCO3
2 from the

surrounding media, and this capacity is greatly strengthened

under CO2-limiting conditions, including the atmospheric pres-

sure of CO2. This system is generally known as the inorganic

carbon-concentrating mechanism (CCM) [7]. Cyanobacteria,

algae, and some angiosperms evolved multiple mechanisms to

actively accumulate inorganic carbon around Rubisco by use of

membrane transporters and carbonic anhydrases [8]. The aquatic

environment is home to as great a diversity of photosynthetic

pathways as terrestrial environments, and there exist C3, C4,

CAM, and C3–C4 photosynthetic pathways [9]. Although

apparently lacking Kranz anatomy, aquatic Orcuttia californica (an

aquatic embryophyte) could also conduct C4 photosynthesis [9].

Some species, such as Chara contraria (a charophyte green algae),

Marsilea vestita (an embryophyte), Eleocharis acicularis (an embryo-

phyte) and Pilularia Americana (an embryophyte), have both C3 and

C4 fixation in aquatic habitats [9]. Alterations of photosynthetic

pathways under environmental stress have been suggested to

contribute to the adaptation of plants to environmental stress [10].

For example, Hydrilla verticillata, a submerged aquatic plant,
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changes its photosynthetic pathway from C3 to C4 under

conditions of CO2 deficiency [11]. Therefore, environmental

factors are of critical importance in the change of photosynthetic

pathways.

From many studies on primary photosynthetic carbon metab-

olism, it is believed that the operation of the Calvin–Benson cycle

(C3 cycle) is predominant in algae [12,13]. However, recent papers

have reported evidence for the operation of C4 photosynthesis as

an alternative CCM in the marine diatom Thalassiosira weissflogii

[14–17]. The case for C4 photosynthesis has been further

strengthened by the occurrence of relevant genes in recently

sequenced marine phytoplankton genomes, including the diatoms

Thalassiosira pseudonana and Phaeodactylum tricornutum and the green

alga Ostreococcus tauri and Micromonas [18–22]. Ostreococcus has all the

machinery necessary to perform C4 photosynthesis. This includes

a plastid-targeted NADP(1)-dependent malic enzyme and a

phosphoenolpyruvate carboxylase [22]. However, conflicting

experimental data shedding doubt on C4 photosynthesis in

diatoms have been reported [16,17], and genomic data do not

fully clarify the presence and localization of the enzymes that may

drive this mechanism [23,24]. No clear evidence for such C4-like

processes have been found in the marine diatoms P. tricornutum and

T. pseudonana, for which whole genome sequences are available

[25]. The general occurrence of C4-like mechanisms in diatoms is

therefore still in question [7,16].

As a special type of harmful algal blooms (HABs), green tides

have been increasing in severity and geographic range and are

now of growing concern globally. Green tides are vast accumu-

lations of unattached green macroalgae usually associated with

eutrophied marine environments [26,27]. The great majority of

green tides are reported to consist of members of just one genus,

Ulva (some of the species formerly known as Enteromorpha) [28,29].

Ulva prolifera, a representative green-tide-forming macroalga [26],

is the dominant Ulva species along the coastline of the Yellow Sea

between June and August [30,31]. U. prolifera, as an intertidal

macroalga, can tolerate various kinds of abiotic stresses, including

desiccation, changes in temperature and salinity, and exposure to

high levels of solar radiation during low tide [32]. Furthermore,

the evolutionary status of intertidal pluricellular green algae is

between the unicellular green algae and lower land plants, which is

an important stage during evolution [33].

It has been proved that marine algae contain C4-Pathway,

including Ulva species [34]. Kremer and Küppers (1977) found

that the percentage of malate and aspartate usually accounts for

distinctly less than 10% of the total 14C-labelling in three Ulva

species, and these findings were consistent with data from

enzymatic analyses, since 86–90% of the carboxylation capacity

was due to ribulose-l.5-biphosphate carboxylase in those green

algae [34]. Moreover, the occurrence of PEP-C besides RubP-C

has been reported from Ulva using 14C-labelling technique [35,36].

One of the most standard comparisons of differences in isotopic

ratios is the comparison of 13C to 12C in plants to determine

photosynthetic pathway of plants. C3 and C4 plants have different

d13C values, 228.162.5%, 213.561.5% respectively [37].

Among C3 and C4 plants, d13C variation can range from 2–5%.

Previous research approved that Ulva are C4 species since there

d13C values are in the range of 21464% [38,39].

In this study we used next generation sequencing (NGS)

technology confirmed the existence of genes necessary for a C4

pathway in U. prolifera, and we then chose to compare transcript

abundance of U. prolifera with that of the closest relative, U. linza,

which has been confirmed to possess the C4 pathway (unpublished

data). Subsequently, we focused on the expression profile of two

key enzymes, namely RuBPCase and PPDK. Ribulose-1, 5-

biphosphate carboxylase, a key enzyme of the C3 pathway,

catalyzes the first major step in carbon fixation. Pyruvate

orthophosphate dikinase, a cardinal enzyme of the C4 pathway,

catalyzes the regeneration of phosphoenolpyruvate (PEP), the

primary carboxylation substrate from pyruvate, Pi, and ATP [40].

The rate of PEP formation by PPDK is the lowest in the C4

pathway; therefore, this reaction is considered to be the rate-

limiting step in the C4 pathway [41]. Our results demonstrate that

U. prolifera may be either a C3–C4 intermediate species or a C3

species displaying C4 metabolic characteristics. The involvement

of C4 metabolism in U. prolifera might account for the boom of

green tide.

Materials and Methods

Sample collection and culture conditions
Floating specimens of U. prolifera were collected in the Yellow

Sea during the green tide bloom in 2011. In the laboratory, the

intact samples were washed several times with sterile seawater,

sterilized with 1% sodium hypochlorite for 2 min, and then rinsed

with autoclaved seawater. The sterilized material was then placed

into an aquarium (d = 40 cm, h = 30 cm) containing enriched and

continually aerated seawater (500 mM NaNO3 and 50 mM

NaH2PO4) and maintained at 15uC under a 12:12 h LD

photoperiod with 50 mmol photons m22 s21 provided by cool-

white fluorescent tubes.

Stress treatments
U. prolifera was exposed to different kinds of stress, namely

desiccation and differing levels of salinity, light intensity, and

temperature. For desiccation stress, the alga were cultured at

50 mmol photons m22 s21 for different durations (0, 1, 2, 3, 4, and

5 h). Salinity stress consisted of subjecting the organism for 3 h to

different salt concentrations (0%, 15%, 30%, 45%, and 60%); In

light intensity treatment, the samples were exposure to 0, 50, 100,

300, 600, 1000, and 2000 mmol photons m22 s21 for 3 h. For the

three forms of stress, temperature was constant at 15uC, and light

intensity during the salinity treatment and the temperature

treatment was maintained at 50 mmol photons m22 s21. For

temperature stress, the materials were cultured at 5, 10, 15, 20, 25,

30 and 35uC for 3 h. Following each stress treatment, rbcL and

PPDK mRNA expression level was measured using qPCR,

RuBPCase and PPDK activity assessed, and Fv/Fm and Y(II)

determined using Dual-PAM-100 (Walz GmbH, Germany).

Light and transmission electron microscopy
The sample preparation was finished according to the methods

mentioned by Chen et al. [42] It consisted of the following steps:

collecting the algal; fixing with 1% (v/v) glutaraldehyde and

postfixing with 1%(v/v) osmium tetroxide both in sterilizing

seawater; dehydration in a series of acetone solutions; suspension

in the mixture of epoxy resin (Epon812) and acetone; embedded in

100% Epon812; polymerized and sectioned using a LeicaUC6

ultra microtome; picked up on 200-mesh copper grids and post-

stained with urinal acetate. Finally, the sections were examined

under an optical microscope (Nikon Eclipse 80i) and a transmis-

sion electron microscopy (Hitachi H-7650) at an accelerating

voltage of 60 kv.

Transcriptome sequencing
The alga were treated with different stress conditions, such as

low temperature (6uC, 2 h), high temperature (42uC, 1 h), high

light (1000 mmol photons m22 s21, 1 h), high salt (93%, 3 h) and

UV-B stress (60 mw cm22, 3 h). Total RNA of all treated samples

C3 and C4 Pathways in Ulva prolifera
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was extracted and purified, followed by synthesis and purification

of double-stranded cDNA and sequencing of cDNA using a Roche

GS FLX Titanium platform. To reconstruct the metabolic

pathways in U. prolifera, high-quality reads were assigned to the

Kyoto Encyclopedia of Genes and Genomes (KEGG) using the

software package MEGAN (version 4.0) [43].

Sequence Analysis
The partial rbcL cDNA sequence acquired from GenBank and

the cDNA open reading frame (ORF) sequence of PPDK obtained

from transcriptome sequencing, were examined for homology with

other known sequences using the BLAST X program available at

the website of the National Center for Biotechnology Information

,www.ncbi.nlm.nih.gov/blast.. We used the Six Frame Trans-

lation of Sequence system ,http://searchlauncher.bcm.tmc.edu/

seq-util/Options/sixframe.html. analyzing deduced amino acid

sequence. Multiple sequence alignments were generated using the

program CLUSTAL X and then analyzed using the program

BioEdit [44,45]. A phylogenetic tree was constructed using the

neighbor-joining algorithm of the MEGA 4.0 program [46,47].

Real-time quantitative PCR
Total RNA of U. prolifera exposed to each form and level of

stress was extracted using TRIzol reagent (Invitrogen, Carlsbad,

CA, USA) as specified in the user manual and dissolved in

diethypyrocarbonate (DEPC)-treated water. The cDNA used for

real-time quantitative PCR was synthesized from the total RNA

using Moloney murine leukemia virus reverse transcriptase

(Promega Biotech Co., Madison, Wisconsin, USA).

The real-time quantitative PCR reactions were performed with

the ABI StepOne Plus Real-Time PCR System (Applied

Biosystems, USA) using SYBR Green fluorescence (TaKaRa)

according to the manufacturer’s instructions. To normalize the

relative expression of the selected genes, an 18S rDNA gene was

used as reference. Three pairs of gene-specific primers (Table 1)

were designed according to the rbcL cDNA, PPDK cDNA, and

18S rDNA sequences using Primer Express 3.0. For each selected

gene, three biological replicates were assayed independently. The

qPCR amplifications were carried out in a total volume of 20 mL

containing 10 ml of 26 SYBR Premix Ex TaqTM II (TaKaRa

Biotech Co., Dalian, China), 0.6 ml (10 mM) of each primer, 2.0 ml

of the diluted cDNA mix, and 6.8 ml de-ionized water. The qPCR

amplification profile was obtained as follows: 95uC for 30 s

followed by 40 cycles of 95uC for 5 s, 60uC for 10 s, and 72uC for

40 s. The 22DDCT method [48] was used to analyze the

quantitative real-time PCR data.

Enzyme assays
The activity of RuBP carboxylase and PPDK in U. prolifera

exposed to the treatments was measured, RuBP carboxylase

activity by the method described by Gerard and Driscoll and

PPDK activity by that described by Sayre et al. [49,50]; both

methods were modified as required.

For measuring RuBP carboxylase activity, each sample was

ground to a fine powder in liquid nitrogen and homogenized in

pre-cooled rubisco extraction solution (1 ml g21 fresh weight),

pH 7.6, containing 40 mM Tris-HCl buffer with 10 mM MgCl2,

0.25 mM EDTA, and 5 mM reduced glutathione. The homog-

enate was centrifuged at 10 000 g for 10 min at 4uC. The activity

was measured in a 4.5 ml cuvette by adding 3 ml of a reaction

mixture containing 0.2 ml NADH (5 mM), 0.2 ml ATP (50 mM),

0.1 ml enzyme extract, 0.2 ml creatine phosphate (50 mM),

0.2 ml NaHCO3 (0.2 mM), 1.4 ml reaction buffer (0.1 M Tris-

HCl buffer, pH 7.8, with 12 mM MgCl2 and 0.4 mM EDTA),

0.1 ml creatinephosphokinase (160 units ml21), 0.1 ml phospho-

glycerate kinase (160 units ml21), 0.1 ml glyceraldehyde-3-

phosphate dehydrogenase (160 units ml21), and 0.3 ml distilled

water. The reaction was initiated by adding 0.1 mL ribulose-1, 5-

bisphosphate (RuBP) to the reaction cuvette and OD values were

recorded every 20 seconds for 3 min by a spectrophotometer at

340 nm. The enzyme activity was expressed in terms of

micromoles per gram of fresh weight per minute (mmol g21 FW

min21).

For measuring PPDK activity, the samples were ground to a

fine powder in liquid nitrogen and homogenized in pre-cooled

PPDK extraction solution at pH 8.3 (1 ml g21 fresh weight)

containing 100 mM Tris-HCl buffer with 5 mM mercaptoethanol

and 2 mM EDTA. The homogenate was centrifuged at 10 000 g

for 10 min at 4uC. The activity was measured in a 4.5 ml cuvette

by adding 3 ml of a reaction mixture containing 0.1 ml Tris-HCl

buffer (150 mM, pH 8.3, with 18 mM MgSO4), 0.1 ml DTT

(300 mM), 0.1 ml PEP (30 mM), 0.1 ml NADH (4.5 mM), 0.1 ml

AMP (30 mM), 0.1 ml lactic dehydrogenase (60 units ml21),

0.1 ml enzyme extract, and 1.3 ml distilled water. The reaction

was initiated by adding 0.1 mL pyrophosphate natrium to the

reaction cuvette and the OD values were recorded every

20 seconds for 3 min at 340 nm. The PPDK activity was also

expressed in terms of micromoles per gram of fresh weight per

minute (mmol g21 FW min21).

Chlorophyll uorescence measurements
Photosynthetic performance of U. prolifera subjected to the

different treatments was measured using Dual-PAM-100. The

maximal photochemical efficiency of PS II (Fv/Fm) and the

effective PS II quantum yield (Y II) were measured by the method

of Fleming et al. [51]. Before measurement, samples were dark

adapted for 20 min. Optimal chlorophyll fluorescence quantum

yield was calculated according to the following equation: Fv/

Fm = (Fm2F0)/Fm. Fo and Fm refer to the minimal fluorescence

and the maximal fluorescence from dark adapted samples,

respectively. Fv is the difference between Fm and Fo. The culture

experiments were repeated four times.

Results

Transcriptome sequencing
We analyzed the carbon fixation pathway in detail and

discovered some key genes of enzymes involved in the carbon

fixation pathway in U. prolifera, such as phosphoenolpyruvate

carboxylase, aspartate aminotransferase, ribulose bisphosphate

carboxylase, phosphoglycerate kinase, phosphoribulokinase, phos-

phoenolpyruvate carboxykinase, alanine transaminase, malate

dehydrogenase (NADP+), pyruvate orthophosphate dikinase, and

pyruvate kinase (Fig. 1), which provided unequivocal molecular

Table 1. Primers used in the qPCR assay.

Name Primers Sequence (59-39)

rbcL F TACAAATCTCAAGCCGAAACTG

R AATCTTTAGCAAATTGACCACG

PPDK F CACGAACGACCTTACGCAGA

R ACGGATCAAACGCCATCAC

18S rDNA F ATTAGATACCGTCGTAGTCTCAACC

R TCTGTCAATCCTTCCTATGTCTGG

doi:10.1371/journal.pone.0037438.t001

C3 and C4 Pathways in Ulva prolifera
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evidence that most of the C3 pathway, C4 pathway, and CAM

pathway genes were actively transcribed in U. prolifera. Figure 1

shows that both U. linza (unpublished) and U. prolifera have most of

the genes that are indispensable to C3 and C4 pathways, and the

relative enzymes are all the same in both algae. However, the

abundances of C3 and C4 pathway genes in U. linza and U. prolifera

are different. The results suggest the possibility of the existence of

two photosynthetic pathways in U. prolifera, the Calvin cycle (C3)

and the Hatch-Slack (C4) carbon fixation pathway.

cDNA Sequence Analysis
The partial rbcL cDNA sequence (FJ042888) was acquired from

GenBank with a 1305 bp sequence encoding 435 amino acid

residues. The PPDK cDNA sequence (JN936854) of ORF was

obtained from the U. prolifera transcriptome database with a

2700 bp sequence encoding 889 amino acid residues. Phylogenetic

analysis was conducted using the amino acid sequences of rbcL and

PPDK (Fig. 2). The phylogenetic tree of rbcL indicated a species

clustering that was basically consistent with the evolution of the

species, and that of PPDK revealed that the C4 pathway had

multiple independent origins. In the phylogenetic tree of rbcL, the

clade of green algae diverged into two clusters: a C3–C4 cluster

including both U. prolifera and O. tauri, which have all the genes

involved in the C4 pathway, and a C3 cluster including C. reinhardtii

and V. carteri. However, PPDK of O. tauri was clustered with the

genes from land plants, and PPDK of O. tauri and E. vivipara

appears to be more ancient than that of higher land plants. PPDK

in U. prolifera was clustered with the genes found in the C3 green

algae (C. reinhardtii and V. carteri.) and in the C3–C4 brown alga T.

pseudonana, and PPDK in T. pseudonana appears to be more ancient

than that in green algae. Overall, PPDK in green algae also has

multiple independent origins as that in land plants.

Analysis of rbcL and PPDK gene expression under various
forms of stress

Relative quantitative PCR were carried out to determine the

differences in expression levels of rbcL and PPDK genes under the

different stress treatments. Figures 3A and 3B show the profiles of

expression of rbcL and PPDK as affected by desiccation for varying

lengths of time. The expression levels of rbcL and PPDK under

normal conditions were taken as 1. The expression levels of rbcL

decreased slowly with time, whereas those of PPDK increased

steadily at first, peaking (a 4.9-fold increase) at 2 h, and decreased

thereafter. Levels of salinity affected the expression markedly

compared to that under normal salinity (30%), which was taken as

1. The transcript levels of both rbcL and PPDK increased at lower

and higher levels of salinity but then decreased at very high and

very low salinity (Fig. 3C and 3D). Changes in expression levels

under different light intensities are shown in Figures 3E and 3F.

For each gene, the expression under 50 mmol m22 s21 was taken

as 1. The expression level of rbcL in the dark was similar to that

under normal light intensity, whereas that of PPDK was up-

regulated 1.5-fold in the dark. The expression level of rbcL peaked

at 300 mmol photons m22 s21, while that of PPDK peaked at

600 mmol photons m22 s21. Although the expression of PPDK

decreased under high light intensity, it was still higher than it was

under normal light intensity. Moreover, the effect of light

intensities on PPDK was significantly higher than it was on rbcL.

The expression of rbcL and PPDK at normal temperature (15uC)

was taken as 1. The expression levels of rbcL reached the lowest

point at 20uC, whereas those of PPDK were reached at 25uC. The

Figure 1. Carbon fixation pathway in U. linza and U. prolifera generated by KEGG. The numbers within the small boxes are enzyme codes.
doi:10.1371/journal.pone.0037438.g001
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expression of both rose at both higher and lower temperatures

(Fig. 3G and 3H).

Activity of RuBP carboxylase and PPDK
The activity of RuBP carboxylase decreased significantly with

the duration of desiccation, whereas that of PPDK increased with

the duration up to 2 h, the peak value being 1.4 times the normal

value, and decreased thereafter (Fig. 4A). The effects of salinity

level on RuBP carboxylase activity and PPDK activity were

consistent (Fig. 4B): enzyme activity increased at low and high

levels of salinity but then decreased at very low and very high

values. Different light intensities clearly influenced the activity of

both enzymes in a similar direction: the activity began to rise

initially, peaked at 300 or 600 mmol photons m22 s21, and

decreased thereafter as light intensity increased further (Fig. 4C).

There was almost no difference in the activity of RuBP

carboxylase and PPDK between the level under darkness and

that under normal light intensity. Temperature also affected both

enzymes significantly and similarly (Fig. 4D): RuBP carboxylase

reached minimum activity at 20uC and PPDK at 25uC. The

activity of both rose with increasing and decreasing temperatures.

Assay of photosynthetic rate
The optimum quantum yield (Fv/Fm) and effective PSII

quantum yield (Y II) reached higher levels under normal

conditions (15uC, 50 mmol photons m22 s21) and achieved the

maximum values at 25uC, 100 mmol photons m22 s21 (Fig. 5).

Neither was markedly affected by salinity or temperature, but both

decreased rapidly under prolonged desiccation and high light

intensities.

Discussion

Studies of photosynthetic pathways of marine macroalgae are

scanty, and we have a very limited understanding of the

mechanisms controlling the altered cell biology and morphology

associated with C4 Ulva species. In the present study, we found that

almost all transcripts encoding the proteins required for the core

C4 cycle have higher steady-state mRNA levels, suggesting that the

C4 pathway does exist and that the activity of the C4 cycle

enzymes is controlled at least partially at the level of transcript

abundance (Fig. 1). The different expression profiles and product

accumulations of rbcL and PPDK indicated that these two genes

had respectively taken part in C3 and C4 core cycles under

different conditions. We acquired a full-length cDNA sequence of

PPDK, a key enzyme of the C4 pathway, to gain insights into the

evolutionary optimization of C4 biochemistry in Ulva. The

combination of photosynthetic, anatomical, and molecular

datasets enabled us to isolate some of the steps in C4 evolution

and provides fertile new ground for developing hypotheses about

anatomical and ecological conditions that promote the evolution

of this complex trait.

C4 photosynthesis is a series of anatomical and biochemical

modifications that concentrate CO2 around the carboxylating

enzyme Rubisco, thereby increasing photosynthetic efficiency in

conditions promoting high rates of photorespiration. C4 plants are

believed to have evolved gradually from C3 plants through several

intermediate stages of C3–C4 plants [52]. However, the evolu-

Figure 2. Phylogenetic analysis of rbcL and PPDK. The phylogenetic tree was constructed by the neighbor-joining (NJ) method using Mega
(version 4.0). Bootstrap analysis was computed with 1000 replicates and bootstrap values below 50% were omitted. C3–C4 refers to species that
possessed the genes for both C3 and C4 photosynthesis with C3 photosynthesis being the primary pathway. (A) Phylogenetic analysis of rbcL.
GenBank accession numbers of the sequences used for constructing the phylogenetic tree of rbcL were as follows: Ulva prolifera (FJ042888),
Thalassiosira pseudonana (YP_874498), Flaveria bidentis (ADW80649), Flaveria trinervia (ADW80661), Flaveria pringlei (ADW80648), Zea mays
(NP_043033), Sorghum bicolor (ABK79504), Oryza sativa (CAG34174), Saccharum officinarum (YP_054639), Arabidopsis thaliana (AAB68400), Volvox
carteri (ACY06055), Chlamydomonas reinhardtii (ACJ50136), Ostreococcus tauri (YP_717262), Ectocarpus siliculosus (CBH31935), Populus tremula
(CAD12560), and Eleocharis vivipara (CAQ53780). (B) Phylogenetic analysis of PPDK. GenBank accession numbers of the sequences used for
constructing the phylogenetic tree of PPDK were as follows: Ulva prolifera (JN936854), Thalassiosira pseudonana (XP_002290738), Flaveria bidentis
(AAA86941), Flaveria trinervia (CAA55703), Flaveria pringlei (CAA53223), Zea mays (ADC32810), Sorghum bicolor (AAP23874), Oryza sativa (CAA06247),
Saccharum officinarum (AAF06668), Arabidopsis thaliana (AEE83621), Volvox carteri (XP_002955807), Chlamydomonas reinhardtii (XP_001702572),
Ostreococcus tauri (XP_003075283), Ectocarpus siliculosus (CBN74442), Populus tremula (CAX83740), and Eleocharis vivipara (BAA21654).
doi:10.1371/journal.pone.0037438.g002
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tionary processes giving rise to C3–C4 intermediates and C4 plants

are yet to be elucidated. Phylogenetic analysis of PPDK revealed

that C4-like photosynthesis in green algae has multiple indepen-

dent origins (Fig. 2), a result that is consistent with the results from

diatoms [19,53,54]. Relative studies on diatoms reveal that they

have obtained a redundant set of carboxylation and decarboxyl-

ation enzymes during complicated endosymbiosis events, which

could potentially constitute C4-type pathways including lateral-

gene transfer (LTG) [54]. Higher plants were exposed to much

higher pCO2 at the beginning of evolutional history but then

became starved for CO2 by a steep decrease of CO2 and increase

of O2. These changes were a major driving force for land plants to

Figure 3. Real-time quantitative PCR analysis for the relative expression level of rbcL and PPDK gene in U. prolifera subjected to
different forms and intensities of stress. Data are means of three independent experiments (6SD). Relative mRNA expression of rbcL and PPDK
exposed to different stress conditions: (A, B) desiccation for different durations up to 5 h, (C, D) different salt concentrations for 3 h, (E, F) different
light intensities for 3 h, (G, H) different temperatures for 3 h.
doi:10.1371/journal.pone.0037438.g003
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Figure 4. Activity of RuBP carboxylase and PPDK in U. prolifera exposed to different forms and intensities of stress: (A) desiccation for
different durations up to 5 h, (B) different salt concentrations for 3 h, (C) different light intensities for 3 h, (D) different temperatures for 3 h.
doi:10.1371/journal.pone.0037438.g004

Figure 5. Optimum quantum yield (Fv/Fm) and effective PS II quantum yield (Y II) in U. prolifera under different forms and
intensities of stress: (A) desiccation for different durations up to 5 h, (B) different salt concentrations for 3 h, (C) different light intensities for 3 h,
(D) different temperatures for 3 h.
doi:10.1371/journal.pone.0037438.g005
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develop C4 metabolism for suppression of photorespiration.

Analogous evolutionary events might have taken place in the

marine environment without loss of biophysical CCM [55].

Information about C4-related enzyme variations under various

treatments is considerable. In Egeria densa, transfer from low

temperature and light to high temperature and light conditions

induced increases in the activities and amounts of both PEPC and

NADP-ME. After 3 d of treatment, PEPC specific activity

increased about 1.7 times relative to values in plants at LTL,

whereas NADP-ME activity increased 1.26 times [56]. The

submersed monocot Hydrilla verticillata is a facultative C4 NADP-

malic enzyme (NADP-ME) plant in which the C4 and C3 cycles

co-exist in the same cell. The transcript expression of PEPC in H.

verticillata was substantially up-regulated during light stress [57]. In

U. prolifera, both C3 and C4 pathway enzymes exist under normal

conditions (Fig. 4). The expression levels of rbcL and PPDK

increased under stress conditions, such as high salinity, low

salinity, high temperature, and low temperature, but the levels of

PPDK were higher than those of rbcL by 3.25, 4.25, 2.8 and 4.5

times, respectively (Fig. 3). The expression levels of rbcL decreased

slowly with desiccation time, whereas those of PPDK increased

steadily at first and decreased thereafter. These results indicate

that both C3 and C4 cycles may function under normal conditions

in U. prolifera, while C4 photosynthesis may play a more significant

role under stress conditions.

Ulva prolifera is a green macroalga with single-layered tubular

thalli (Fig. 6A). It differs from most other multi-cellular C4 land

plants, in which, with few exceptions [58–62], the assimilation of

CO2 is distributed over two cell types, the mesophyll cells (MCs)

and the bundle sheath cells (BSCs) [63]. The distribution of CO2

assimilation over two distinct cell types requires a massive flux of

metabolites between MCs and BSCs [2,64]. Bienertia sinuspersici, a

land plant, is a recently discovered species with a unique form of

C4 photosynthesis. In this single-cell C4 species (SCC4), the carbon

concentrating mechanism does not depend on cooperation

between M and BS cells, as it does in Kranz-type C4 species.

Rather, it possesses a unique chlorenchyma with two functional

and biochemically different chloroplast types within photosynthet-

ic cells. Peripheral chloroplasts are spatially separated by a large

vacuole from chloroplasts clustered in a central compartment (C-

CP). This structural arrangement allows for enrichment of CO2 in

the Rubisco-containing C-CP, ultimately repressing photorespira-

tion, similar to the mechanism in Kranz-type C4 plants. In U.

prolifera, chloroplasts aggregate lucipetally along the outer side of

the layer, and there are apparently no functionally or biochem-

ically different chloroplast types (Fig. 6B), so the chloroplast

differentiation mechanism is not fit for this species. Indeed,

information about the mechanisms controlling the altered cell

biology and morphology associated with C4 photosynthesis is very

limited. The C4 cycle likely affects not only the relatively small

number of enzymes and transport proteins needed to perform the

core reactions but, given the consequences to the ecological

performance of the plants, also a range of other processes [65].

In the present study, the results showed that the expression of

PPDK in U. prolifera was higher under some daily-encountered

stress conditions, such as desiccation, high light intensity, high

temperature, and low temperature (Figs. 3, 4). High temperature is

a major environmental requirement for C4 evolution because it

directly stimulates photorespiration and dark respiration in C3

plants [66,67]. The availability of CO2 as a substrate also declines

at elevated temperature because of the reduced solubility of CO2

relative to O2 [68]. Aridity and salinity are important because they

promote stomatal closure and thus reduce intercellular CO2 levels,

again stimulating photorespiration and aggravating a CO2

substrate deficiency [3]. C4 photosynthesis has been found in

some marine algae. The implications of marine C4 photosynthesis

are very significant. The presence of the C4 pathway is likely to

influence algal sensitivity to changes in CO2 concentrations. As in

terrestrial ecosystems, C4 photosynthesis may therefore be a factor

that is shaping species distribution and succession if it occurs in

only some members of the phytoplankton. It could operate both

on geological timescales and in response to the present rise in

atmospheric CO2 concentrations. If C4 photosynthesis can

account for a significant portion of marine carbon fixation in

some species, it will affect various aspects of marine ecology and

biogeochemistry [69]. C4 photosynthesis is a complex biological

trait that enables plants to either accumulate biomass at a much

faster rate or live in adverse environments compared with

‘‘ordinary’’ plants [40,70]. Our results suggest that photosynthetic

organisms may have evolved a unique mechanism for coping with

environmental transition, before losing CCM, and the C4 pathway

may have first formed in intertidal pluricellular green algae before

plants colonized terrestrial habitats. An added benefit of the C4

syndrome is improved nitrogen- and water-use efficiencies that

have likely contributed to their global distribution and high rates of

productivity [71–73]. Therefore, the manmade environmental

changes, such as CO2 rise and eutrophication, stimulate the

expression of the C4 pathway, while the cooperation of CCM and

the C4 pathway may enhance the capacity of photosynthesis,

which may be one of the most important factors leading to the

rapid accumulation of the vast biomass of U. prolifera in the green

tide that has occurred in the Yellow Sea in four consecutive years

since 2008 [27,31].
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Figure 6. Longitudinal and transverse section view of U.
prolifera. A, Transmission electron microscopy of transverse section.
EX, external of cavity; IN, inner of cavity. Bar, 5 mm. B, Longitudinal and
transverse section view with an optical microscope. TS, transverse
section; LS, longitudinal section. Bar, 20 mm.
doi:10.1371/journal.pone.0037438.g006
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