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Abstract

It has recently become possible to study the dynamics of information diffusion in techno-

social systems at scale, due to the emergence of online platforms, such as Twitter, with mil-

lions of users. One question that systematically recurs is whether information spreads

according to simple or complex dynamics: does each exposure to a piece of information

have an independent probability of a user adopting it (simple contagion), or does this proba-

bility depend instead on the number of sources of exposure, increasing above some thresh-

old (complex contagion)? Most studies to date are observational and, therefore, unable to

disentangle the effects of confounding factors such as social reinforcement, homophily, lim-

ited attention, or network community structure. Here we describe a novel controlled experi-

ment that we performed on Twitter using ‘social bots’ deployed to carry out coordinated

attempts at spreading information. We propose two Bayesian statistical models describing

simple and complex contagion dynamics, and test the competing hypotheses. We provide

experimental evidence that the complex contagion model describes the observed informa-

tion diffusion behavior more accurately than simple contagion. Future applications of our

results include more effective defenses against malicious propaganda campaigns on social

media, improved marketing and advertisement strategies, and design of effective network

intervention techniques.

Introduction

The diffusion of information and ideas in complex social systems has fascinated the research

community for decades [1]. The first proposal to use epidemiological models for the analysis

of the spreading of ideas was put forth more than fifty years ago [2]. Such models, where each

exposure results in the same adoption probability, are referred to as simple contagion models.

It was subsequently suggested, however, that more complex effects might come into play

when considering the spread of ideas rather than diseases. For example, some people tend to

stop sharing information they consider “old news”, while others refuse to engage in
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discussions or sharing certain opinions they do not agree with [3–5]. Such models, in which

adoption probabilities instead depend strongly on the number of adopters in a person’s social

vicinity in a way where exposure attempts cannot be viewed as independent, are referred to as

complex contagion [6] models. Concretely, we use a threshold complex contagion model, in

which the adoption probability is assumed to increase slowly for low number of unique expo-

sure sources, then increase relatively quickly when the number of sources approaches some

threshold level (see ‘Models’ for full details).

The role of contagion in the spreading of information and behaviors in (techno-)social net-

works is now widely studied in computational social science [7–19], with applications ranging

from public health [20] to national security [21]. The vast majority of these studies are, how-

ever, either observational, and therefore prone to biases introduced by confounding factors

(network effects, cognitive limits, etc.), or entail controlled experiments conducted only on

small populations of a few dozens individuals [6, 7]. To date, these limitations have prevented

the research community from drawing a conclusive answer as to the role of simple and com-

plex information contagion dynamics at scale.

In this paper we shed new light on the nature of information diffusion using a large-scale

experiment on Twitter, in which we study the spreading of hashtags within a controlled envi-

ronment. Creating a controlled environment for experiments within online platforms is espe-

cially challenging for researchers that do not have access to the system’s design itself, as

traditional techniques such as A/B testing cannot be employed. Even for service providers like

Facebook, ethical concerns emerged when random control trials were carried out without

review board approval [15].

For this experiment, we leveraged algorithm-driven Twitter accounts (social bots) [22]. We

had previously shown that a coordinated network of Twitter bots can be effective in influenc-

ing trending topics on Twitter [23]. This study is a follow-up experiment designed to quantita-

tively investigate how users react to information stimuli presented by single or multiple

sources. In particular, for this experiment, teams of students from the Technical University of

Denmark (DTU) worked together to create a network of Twitter bots (a botnet) designed to

attract a large number of human followers. We programmed the bots to spread Twitter hash-

tags (see Table 1) in a synchronized manner among a set of real Twitter users from a selected

geographical area. A large number of users in our target dataset followed one or multiple bots

(See Fig 1B), which allowed us to study the effect of multiple exposures from distinct sources

on information contagion.

The decision to use Twitter bots to perform coordinated interventions has several advan-

tages: first, we are able to ensure that the hashtags we introduce are new to Twitter, and there-

fore that they are seen by the target users for the first time when we perform experiments.

Table 1. List of interventions.

Hashtag Message

#getyourflushot Encouraging Twitter users to vaccinate.

#highfiveastranger Encouraging users to engage in positive human interactions.

#somethinggood Sharing a recent positive experience.

#HowManyPushups Encouraging healthy behaviors and fitness.

#turkeyface Photoshopping a celebrity’s face onto a turkey.

#SFThanks Hashtag for Thanksgiving in San Fransisco.

#blackfridaystories Sharing Black Friday shopping stories.

#BanksySF Rumor that Banksy, the street artist, was in San Fransisco.

https://doi.org/10.1371/journal.pone.0184148.t001
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Second, it enables the bots to work together to expose users to each intervention multiple

times. Finally, the Twitter botnet mitigates the confounding effects of homophily [24–26]. For

example, when conducting a purely observational study, it is a fundamental problem to distin-

guish whether a user is more likely to adopt information shared by many of their friends

because they are influenced by their friends sharing the content, or simply because friends

tend to be similar, so anything tweeted shared by the user’s friends is more likely to be of inter-

est to the user.

In the remainder of the paper we will discuss the experimental framework design in detail,

then present two statistical models for simple and complex contagion, developed in order to

evaluate the two competing hypotheses, and finally show the results of the experimental

evaluation.

Results

Deploying the botnet. Creating a botnet with a large number of followers with a network

structure suited for testing our hypotheses presented several challenges which are described

below.

We began by ensuring that the bots would appear to be human-like if subjected to a cursory

inspection. We achieved this goal by having the bots generate content using simple natural lan-

guage processing rules as well as ‘recycling’ popular content from other Twitter users. We also

had the bots tweet at irregular intervals, but with frequencies set according to a circadian pat-

tern. Finally, we used some Twitter users’ tendency to reciprocate friendships to ensure that

the bots were followed by a large number of accounts while themselves following only a few; a

following/follower ratio much smaller than one is unusual in typical twitter bots. The full bot-

net consisted of 39 algorithmically driven Twitter accounts. See ‘Materials and Methods’ for

full details on botnet-creation.

Once we had established the botnet, we focused on establishing a network structure that

would allow for investigating the mechanism driving contagion processes. Our strategy was

simple: Whenever a user followed one of our bots, the ID of this user was automatically com-

municated to the remaining bots, which then also attempted to get that user to follow them.

This strategy resulted in a botnet followed by a large number of human users (around 25 000

total followers a the time of interventions), in which a large users followed multiple bots, allow-

ing us to test the effects of multiple exposures to information. Fig 1A shows the total number

of followers as a function of time, while Fig 1B displays the distribution of users following n

bots. Having obtained a botnet with a large number of followers and a desirable network struc-

ture, the bots performed a series of coordinated interventions, described in the following.

Fig 1. Illustration of the status of our botnet at the time of the interventions. The bots had accumulated
a large number (*25000) of followers (A) at the time of the interventions (shaded region), and many of the
target users followed several distinct bots (B).

https://doi.org/10.1371/journal.pone.0184148.g001
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The general intervention strategy implemented by the bots follows:

1. Each bot tweets 2 original tweets about a given #hashtag;

2. Each bot retweets the first 4 tweets about that #hashtag;

3. Each bot retweets 15 tweets containing that #hashtag that do not originate from other bots;

4. Each bot favorites all tweets about the given #hashtag.

Step 1 of this protocol was based on human-generated tweets; this allowed students to cre-

ate content designed to increased the likelihood of adoption. In order to avoid the confound-

ing effect of users adopting hashtags they encountered from other sources than our botnet, we

based the study on hashtags (see Table 1) that had not previously been observed on Twitter.

Steps 2–4 were instead automated. By retweeting each other’s content, the bots provided a

higher exposure to the target users with respect to what would have been possible if bots could

only have targeted their mutual friends, as illustrated in Fig 2. An overview of the hashtags that

we introduced is shown in Table 1. The hashtags we introduced support positive behaviors

(e.g., encouraging vaccinations or positive human interactions, sharing something good, etc.)

and in some cases are contextualized with the time period of the intervention (e.g., fostering

stories about Thanksgiving and Black Friday).

To track exposures and contagions, each bot automatically recorded when a target user

retweeted intervention-related content, and also each exposure that had taken place prior to

the retweeting. It is important to remark that users cannot be expected to consume the entirety

of content generated by those they follow: the probability of seeing a tweet can depend on

many factors including the total number of accounts a user follows, the activity level of each of

those accounts, and the amount of time that user spends on Twitter. The two contagion mod-

els we created, described in the following, model this uncertainty explicitly.

Models

In the following, we propose two contagion models, namely simple contagion model (SC), in

which all exposure attempts are considered to be independent, and complex contagion thresh-

old model (CC), and derive quantitative predictions for them. Both models take into account

the uncertainty regarding the target users observing a given tweet. Specifically, we do not have

direct access to a user’s actual exposures, to an intervention, but only to the attempted

Fig 2. Bots in a botnet can work together to provide users with multiple exposures to an intervention.
(A) userU only follows bot B1. Bot (B1) acts as a proxy and exposes the user not only to its own content, but
also to content from two other bots (B2 and B3), that the user does not follow. (B) Twitter feed from the
perspective of userU.

https://doi.org/10.1371/journal.pone.0184148.g002
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exposures, N, meaning simply the number of times a bot followed by the user published a tweet

containing the hashtag in question. The simple contagion model employs only the total num-

ber of attempted exposures, which we denote k. The complex contagion model, however, is

only concerned with the number of unique sources κ from which one or more exposures have

succeeded. This is because a central idea in threshold models is the reluctance to partake in

activities until a number of individuals in one’s social group have already done so [3]. To avoid

cluttered notation, we write k and ‘number of exposures’ in descriptions relevant for both

models, although these should be replaced with κ and ‘number of unique exposure sources’ for

the CC case.

Going forward, we separate the two factors that enter into a users tendency to adopt a

behavior. Firstly, the probability of the user experiencing k exposures, and, secondly, the prob-

ability P(RT|k) of the user deciding to retweet content after experiencing k exposures. Thus,

we model the probability of a user retweeting content from an intervention, given bot activity

A as

PðRTjAÞ ¼
X

k

PðkjAÞPðRTjkÞ: ð1Þ

In the following, A = [a1, a2, . . .] denotes a list of the number of times a user has received

attempted exposures from each bot (disregarding those with zero attempts). For example, A =

[2, 1, 3, 1] means that a given user has been subjected to 2 attempted exposure from one bot, 3

from another bot, and 1 from two bots. In the case of SC, where only the total number of expo-

sures is of interest, we will use N = ∑i ai to denote the total number of attempted exposures.

Simple contagion. Wemodel the number of exposures by assuming that a user sees a

given tweet with some independent probability q. Thus, the number of actual exposures fol-

lows a binomial distribution B(k;N, q) given by q and the number of attempted exposures N,

PðkjN; qÞ ¼
N

k

 !

qkð1� qÞ
N�k

¼
N!

k!ðN � kÞ!
qkð1� qÞ

N�k
: ð2Þ

In SC, each actual exposure has some probability ρ of ‘infecting’ the user, which is independent

of other exposures. Hence the probability for an infection after k exposures is simply

PðRTjkÞ
SC
¼ 1� ð1� rÞ

k
; ð3Þ

which is almost linear in k for small values of ρ. Inserting this expression into Eq (1) we get

PðRTjNÞ
SC
¼
XN

k¼0

N!

k!ðN � kÞ!
qkð1� qÞ

N�k
ð1� ð1� rÞ

k
Þ; ð4Þ

which is equivalent to the simpler expression

PðRTjNÞ
SC

¼ 1� ð1� rqÞ
N
: ð5Þ

Under results, we fit the parameters in Eq (5) to the data obtained by our experiment. Next, we

derive an expression for the retweet probability of the complex contagion model.

Complex contagion. When quantifying the predictions of CC, we face two obstacles: (i)

redefining the conditional retweet probability P(RT|A) in order to incorporate the threshold

effect of CC; and, (ii) obtaining an expression of the probability distribution for κ given the

previous activity A.

Let us first derive the probability distribution for κ given previous activity A. The probabil-

ity pi of source i resulting in one or more actual exposures is given by a binomial distribution
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using similar considerations as those leading to Eq (5):

pi ¼ 1� ð1� qÞ
ai : ð6Þ

Hence, the distribution of unique exposures is the result of independent draws from |A|

Bernoulli trials with ai draws from each, with individual success probabilities pi, also known as

Poisson’s Binomial [27]. For example, the probability of κ = 1 given a list of attempted expo-

sures A is obtained by summing over the different ways we may achieve success in only a single

Bernoulli trials:

Pðk ¼ 1jAÞ ¼
XjAj

j¼1

ð1� ð1� qÞ
ajÞ

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{
pj

Y

i6¼j

ð1� qÞ
ai

zfflfflfflfflffl}|fflfflfflfflffl{
1�pi

: ð7Þ

Generalizing this to any κ � |A|, we sum over every unique combination of κ successful trials.

Denoting the set of sets of κ integers between 1 and |A| by Sκ, we get

PðkjAÞ ¼
X

s2Sk

Y

i2s

ð1� ð1� qÞ
aiÞ
Y

i =2s

ð1� qÞ
ai ; ð8Þ

S
k

¼ fs � f1; 2; . . . ; jAjg; jsj ¼ kg: ð9Þ

We include a note in the SI on how to efficiently compute Eq (8), as this expression becomes

infeasible to compute using a brute force approach when |A|> 25. As in Eq (1), we sum over

positive κ to obtain a final expression for the retweet probability given a list A of exposure

attempts, by computing the sum ∑κ P(κ|A)P(RT|κ) over the probabilities given by Eq (8).

PðRTjAÞ ¼
XjAj

k¼1

X

s2Sk

Y

i2s

ð1� ð1� qÞ
aiÞ
Y

i =2s

ð1� qÞ
aiPðRT jkÞ: ð10Þ

Now we select a threshold function for P(RT|κ). We choose a Sigmoid function,

PðRTjkÞ
CC

¼ rl þ
rh � rl

1þ e�wðk�k0Þ
; ð11Þ

as it employs both a threshold κ0, steepness w and the lower and upper limits, ρl and ρh. Sig-

moids are commonly used to model soft thresholds, for example as activation functions in

neural networks [28], or as fuzzy membership functions [29]. Combining Eqs (10) and (11),

the expression for P(RT|A) becomes

PðRTjAÞ
CC

¼
XjAj

k¼1

X

s2Sk

Y

i2s

ð1� ð1� qÞ
aiÞ
Y

i =2s

ð1� qÞ
ai

rl þ
rh � rl

1þ e�wðk�k0Þ

� �

: ð12Þ

Having derived expressions for the retweet probability for a user given previous exposure

activity for both the SC and CC hypotheses, we proceed to fit the models to our experimental

data.

Analysis. We now use these two contagion models to investigate how the adoption proba-

bility P(RT) varies as a function of the exposure numbers in our dataset. By studying how well

each model fits the observed data, we can determine which model is the most appropriate

description of the contagion processes measured in the experiment.

An example of the distributions for q = 0.2 and the best fits of the SC and CC models are

shown in Fig 3.
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Fig 3 suggests that the SC model from Eq (4) is not an adequate fit to the observed data,

whereas the CCmodel from Eq (10) provides an excellent fit. The figure indicates that the CC

model, which models contagion as a function of the number of distinct sources provides a bet-

ter explanation for the user behavior on Twitter.

In order to compare the models in a way that takes into account different model complexi-

ties, we use the Bayesian Information Criterion (BIC) score [30] on simulations using the

probabilities provided by the two models (see Methods for details). The results, displayed in

Fig 4, show that the CC model results in better BIC scores for any value of q. In general, a dif-

ference in BIC scores larger than 10 points is considered a very strong evidence in support of

the model with the lower score [31]. Fig 4 shows gaps between the average BIC scores of the

two models that are substantially larger than 10 points throughout the entire range of values of

q, supporting the hypothesis that the CCmodel is the best explanation for the dynamics of

information diffusion on Twitter.

For very small values of q (q< 0.1) the gap between the BIC scores of the two models is

small, and as q grows the gap increases to reach its maximum for values of q around 0.5. The

reason for the low BIC scores in the case of very low values of q is that the estimates of expo-

sure numbers from Eqs (2) (SC) and (8) depend on q and yield a very low number of estimated

successful exposures for low values of q, which causes the error bars on the number of esti-

mated retweets (such as those from Fig 3B) to grow large.

Fig 3. Simple contagion (SC, left) does not adequately describe the contagion dynamics: The best fit
underestimates the probability of retweeting after a low number of exposures and overestimates the
probability with a large number of exposures. The best fit of complex contagion (CC, right) dynamics
correctly estimates the probability of retweeting across the number of sources of exposure. A. Percentage of
tweets that were retweeted after k successful exposures (SC) or after exposures from κ sources (CC). B.
Number of tweets retweeted following k successful exposures (SC), or after exposures from κ sources (CC).
Best fit of SCmodel (Eq (4)) and CCmodel (Eq (10)) to the data using q = 0.20, plotted up to k = 7 (and κ = 8)
to avoid plotting noisy data for large values of k (and κ).

https://doi.org/10.1371/journal.pone.0184148.g003
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Methods

Data. All data was collected in accordance with the Danish regulations for personal data; addi-

tionally the study has been subject to Institutional Review Board (IRB) approval. The IRB

grantee is Indiana University (protocol number 1410501891), which was the hosting institu-

tion of the only U.S.-based author (Emilio Ferrara) at the time when this experiment was per-

formed. All co-authors aligned to the requirements imposed by Indiana University’s approved

protocol. For data access please contact Copenhagen Center for Social Data Science

(http://sodas.ku.dk/contact/), or the corresponding author: Sune Lehmann.

Botnet creation.We designed the Twitter bots as part of a graduate course on social net-

works. The goal was to create bots which appear, at a cursory glance, to be human-operated

Twitter accounts, but in reality are algorithmically driven (by means of Python scripts). The

bot creation was divided into two phases: first, the goal was to build convincing accounts that

real users might want to follow. Second, we worked to infiltrate a set of geographically co-

located real users and spread new hashtags among them.

In phase 1, each group of 2-4 students manually created 1-3 personas (with interests, music

taste, favorite sports team, etc.) and corresponding Twitter profiles, each with a profile picture,

profile description, background picture, etc., resulting in a total of 39 bots. Each group also

manually posted a number of initial tweets for each bot.

One of the key objectives was to achieve a large follower base while maintaining a low fol-

lowing/follower ratio. A low following/follower ratio is unusual among bots [21] and signals

popularity on Twitter. Our bots achieved a low ratio by capitalizing on the fact that many new

users with relatively few followers (and other Twitter bots) tend to reciprocate the link when

they gain a new follower. Therefore, we used the following strategy: Every day, each bot auto-

matically followed approximately 100-200 randomly selected accounts with a low follower

count or the string ‘followback’ in the description. After 24 hours, the bots unfollowed the

accounts that failed to reciprocate their follow. This routine was repeated every subsequent

day. Using this strategy, the bots were able to maintain a following/follower ratio close to 1,

while gaining large amounts of followers. The bots avoided automatic detection by limiting the

churn among their followers, since performing too many (un)follow operations in a day leads

Fig 4. BIC scores for both SC and CCmodels for a range of values of q, the lower the score the better.
Across the values of the q parameter, complex contagionmodel achieves lower BIC scores than simple
contagion. The thick lines are the mean values of the simulations, and the shaded regions are the percentiles
corresponding to one standard deviation, i.e. they contain 68% of the simulation results.

https://doi.org/10.1371/journal.pone.0184148.g004
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to a suspension of the account. As a whole, the botnet was successful in gaining a large group

of followers which grew steadily throughout the duration of the experiment, as shown in

Fig 1A.

While attracting followers, the bots gradually assumed a number of behaviors designed to

emulate human behavior:

Geographical patterns. All bots’ self-reported location in their Twitter profile was set to the

San Francisco Bay Area. In addition, all bots tweeted with geo-tagged tweets, set to originate

from a random location within the Bay Area bounding box. This allowed our bots to target

a geographically-confined region.

Temporal patterns. Bots also timed their tweets to match typical diurnal patterns correspond-

ing to the pacific time zone, and produce content that reflected circadian patterns of activity

commonly observed online [32].

Content. Finally, based on simple natural language processing rules, the bots automated tweet-

ing and re-tweeting of content that matched the persona developed above.

As final step of phase 1, the bots unfollowed users which were obviously spam/bot accounts

in order to decrease their following/followed ratio. To investigate the quality of each bot, we

routinely used the online service Bot or Not API [33] (http://truthy.indiana.edu/botornot/) to

ensure that the bots appeared human to state-of-the-art bot-detection-software.

In phase 2, the bots began following non-bot Twitter accounts within the target area (San

Francisco/Bay Area), leveraging the information users self-reported in their Twitter profiles

(location string). To achieve the goal of having individuals in the target area following multiple

bots, the bots maintained a shared list of Twitter accounts that followed-back any of the bots—

and all bots followed those real accounts over the following days. As a result, many Twitter

users in the target set ended up following multiple bots by the time when the interventions

occurred during the period between November 15th to December 2nd, 2014. The distribution

of the number of bots followed by other Twitter users during the intervention period is shown

in Fig 1B.

Statistics of observed data. The following shows how the observations, including the error

bars, in Fig 3 were obtained. For both SC and CC, we investigate how P(RT) changes as a func-

tion of k, then iterate over each of the interventions and for each target user we compute the

distribution of exposure numbers, according to Eq (2) for SC, and according to the Poisson

binomial distribution shown in Eq (8) for CC. These distributions allow us to estimate the

number of retweets after k exposures in the following way: Consider a series of events S1, S2,

. . ., Sn, each representing a user retweeting an intervention-related tweet. For an event Si, we

have probabilities pi,1, pi,2, . . ., pi, n of the event representing k = 1, k = 2, . . ., k = n true expo-

sures. Hence, considering a discrete value k = j, the event can belong to bin j with a probability

pi,j, and it can belong in another bin with probability 1 − pi,j; i.e., it is drawn drawn from a Ber-

noulli distribution with pi = pi,j and s
2

i ¼ pi;jð1� pi;jÞ. Similarly, the following event is drawn

from another Bernoulli distribution independent of the first, and so the distribution of each

bin follows another Poisson binomial distribution with μ = ∑i pi and s
2 ¼

P

is
2

i . This process

approaches the normal distributionN ðm; s2Þ, when the number of Bernoulli draws becomes

large due to the central limit theorem (see SI Appendix for details). Thus, can we obtain an

approximate distribution for the number of observed retweets for each value of k.

Bayesian information criterion. The Bayesian information criterion (BIC) score is defined

as

BIC ¼ �2 ln ðLÞ þ k ln ðnÞ; ð13Þ
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where L is the likelihood of the data given the model, k is the number of model parameters,

and n is the number of data points. We compute the likelihood based on the fits to the number

of retweets, i.e. fits like those shown in Fig 3B: For each exposure number k, we have (from our

previous analysis) an estimate of the number of times, Nk, a user has experienced k exposures.

To ensure a discrete number of retweets, we run a series of simulations, computing P(k|A) for

each retweeting user and adding 1 to a bin k, which is selected using that probability distribu-

tion. We denote the number of retweets in bin k by nk, and discard bins in which nk< 5. As

our models provide the probability P(RT|k) of each exposure succeeding in eliciting a response

from the exposed user, the likelihood of each bin in one such simulation is given by a binomial

distribution, and the total likelihood is simply the product of those, i.e.

L ¼
Y

k

Nk

nk

� �

PðRTjkÞ
nkð1� PðRTjkÞÞ

Nk�nk : ð14Þ

We repeat this simulation 103 times for both SC and CC for the full range of values of q.

Conclusion

Diffusion phenomena in social and techno-social systems have attracted much attention due

to the importance of understanding dynamics such as disease propagation, adoption of behav-

iors, emergence of consensus and influence, and information spreading [1, 6–8]. In contrast to

modeling epidemics, for which clear laws have been mathematically formulated and empiri-

cally validated [2, 4], modeling and understanding information diffusion has proved challeng-

ing, in part due to the inability to perform controlled experiments at scale and due to the

abundance of confounding factors that bias observational studies [24–26]. Two competing

hypothesis have been debated, namely that information spreads according to simple or com-

plex contagion. In this work we test the two hypotheses by creating a controlled experimental

framework on Twitter: we deployed 39 coordinated social bots [22] that interacted with a

selected cohort of participants (our target population), and carried out a variety of interven-

tions, in the form of attempts to spread new positive messages (i.e., memes for social good).

The bots recorded the behavior of the target users and all their interactions with the bots and

with other users, while tracking the number of exposures to each message over a period of

more than one month. The data we collected allowed us to test two Bayesian models that we

derived to capture the diffusion dynamics of simple and complex information contagion. Spe-

cifically, in our complex contagion model, we assume that the probability of adoption depends

on the number of unique sources of information, rather than the number of exposures.

The statistical evidence clearly shows that the complex contagion model is a better explana-

tion for the observed data than the simple contagion model. This implies that exposures from

multiple sources impacts the probability of spreading a given piece of information. This

threshold mechanism differs significantly from, say, the spreading of a virus, where many

exposures from a single source are sufficient to increase probability of infection. A variety of

explanations for the complex contagion hypothesis have been proposed in social theory,

including social reinforcement and social influence, echo chambers, human cognitive limits,

etc. [1, 3, 9–11, 13, 19]. While our work identifies the type of mechanism according to which

information spreads from person to person, much work is still needed to discriminate which

factors drive this phenomenon. We expect that future work will explore these factors and fur-

ther disentangle and explain the dynamics of human communication in social networks.
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