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Abstract

We review the evidence of how organisms and populations are currently responding to climate change through phe-

notypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter

their gene expression and metabolism to increase the concentrations of several antistress compounds and to change

their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and micro-

evolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of

organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hin-

dered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for

all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs

and links with population structure warrant further research. The application of omic techniques to ecological studies

will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical

responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes

in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feed-

backs on climate of all these changes in vegetation are also poorly understood. We here review the evidence of

responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between

climate change and life.
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Introduction. Rapid atmospheric and climate

change

Elevated concentrations of atmospheric greenhouse

gases have changed global climate, raising the Earth’s

surface temperature by 0.74 °C in the past century

(IPCC, 2007). The main cause is the rise in concentra-

tion of atmospheric CO2 from 280 ppm at the beginning

of the industrial revolution to the current 394 ppm

(Tans, 2012). This rapid rise has few precedents in

Earth’s history, at least in the last 500 million years

(Mora et al., 1996; Petit et al., 1999; Beerling, 2002). The

current rise continues to increase exponentially despite

the few global policies aimed at stopping it; (Pe~nuelas

& Carnicer, 2010; Carnicer & Pe~nuelas, 2012) for exam-

ple, an increase in 2.36 � 0.09 ppm of CO2 in 2010 was

one of the largest annual increases in recent decades

(Peters et al., 2012), suggesting that levels of CO2 are

likely to increase further and at faster rates. The current

increase in concentrations of atmospheric CO2 is equiv-

alent to 71.8 ppm of CO2 per century, which is several

orders of magnitude greater than the rates of CO2

increase observed in Earth’s atmosphere in previous

periods of rapid changes in atmospheric CO2: 0.003–
0.012 ppm during the Paleozoic (Mora et al., 1996),

0.0075–0.012 ppm during the Cenozoic (Beerling, 2002)

or 0.8–1 ppm during the last glaciation (Petit et al.,

1999). To the current rapid increase in atmospheric CO2

concentrations, we must add the increases in the con-

centrations of other greenhouse gases such as methane

and nitrogen oxides that are also increasingly emitted
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by human activities (IPCC 2007). This rapid increase in

the atmospheric concentrations of CO2 and other green-

house gases has the potential to drive current climatic

changes more quickly than all previous climatic

changes (IPCC 2007). These rapid changes may exceed

the capacities of individuals, populations and commu-

nities to assimilate them. Therefore, an immediate key

question in the biology of global change is how the

Earth-life system is coping with this new situation.

In this study, we review evidence of current biologi-

cal impacts of climate change, the capacity of terrestrial

organisms, populations, communities and ecosystems

to cope with current climate change, and the upscaling

of their responses, from the molecular and genetic level

to the levels of community, ecosystem and biosphere

(Fig. 1). We also identify some of the remaining ques-

tions warranting further research for better understand-

ing the capacity of terrestrial organisms, populations,

communities and ecosystems to adapt to climate

change, including the interactions with other drivers of

global change, and for better understanding the possi-

ble feedbacks on climate of these changes in organisms,

populations, communities and ecosystems.

Responses of organisms

Molecular

Several studies have observed important phenotypic

responses of organisms to drought and warming at the

molecular level (Table 1). Ecometabolomic studies (Sar-

dans et al., 2011; Rivas-Ubach et al., 2012) are a promis-

ing approach for gaining knowledge of the molecular

plasticity of the responses of organisms to drought and

warming. For example, relative to control individuals,

Erica multiflora plants subjected to drought exhibited

increased concentrations of antioxidant compounds,

such as quinic and tartaric acid, and of elements such

as K, and lower concentrations of sugars, amino acids

and P (Rivas-Ubach et al., 2012). These ecometabolomic

studies allow the detection of the main metabolic path-

ways responsible for organismic responses and further

help to recognize the genes involved in the response.

The application of these emerging omic techniques to

ecological and ecophysiological studies has already

illustrated the large capacity of plants and animals to

present plastic molecular responses to drought and

warming. Molecular responses of plants to drought

include increases in the concentrations of several

enzymes as a result of the enhanced expression of some

genes responsive to drought (Table 1), in particular the

genes of the synthetic pathways of abscisic acid (ABA)

and proline, and the mobilization of soluble sugar from

stored polysaccharides (Table 1). These changes in gene

expression are thereafter related to shifts in metabolo-

mic structure (Alvarez et al., 2008; Selter et al., 2010;

Krugman et al., 2011; Sardans et al., 2011; Rivas-Ubach

et al., 2012; Spieb et al., 2012; Warren et al., 2012)

(Fig. 2). For example, the genes involved in drought tol-

erance are frequently related to the maintenance of tur-

gor and cell integrity (Chang et al., 1996; Rabello et al.,

2008; Foito et al., 2009; Aranjuelo et al., 2011; Erxleben

et al., 2012). Some compounds such as proline, pheno-

lics, ABA, gamma aminobutyric acid (GABA) and solu-

ble and alcohol sugars are frequently involved in the

responses of plants to drought (Table 1). The mecha-

nisms and molecules stimulated by drought protection,

though, are very diverse among different species (Car-

mo-Silva et al., 2009; Hamanishi & Campbell, 2011;

Warren et al., 2012) and even among different geno-

types of the same species (Regier et al., 2009; Cohen

et al., 2010; Hamanishi et al., 2010; Yang et al., 2010;

Saxena et al., 2011; Sanchez et al., 2012; Warren et al.,

2012).

Similarly, individual plants also change molecular

composition in response to warming. Omic studies have

revealed higher levels of expression of some genes

(Zhang et al., 2005a) and increased synthesis of some

heat-stress proteins (Table 1) and of other metabolites

and in other metabolic pathways (Guy et al., 2008; Sar-

dans et al., 2011) (Table 1). Some studies suggest an

increase in some pathways of protein catabolism linked

to a rise in the synthesis of protective antistress proteins

(Xu & Huang, 2008a,b, 2010; Xu et al., 2008). Other

studies show changing genotypic compositions at the

population level in response to drought and/or warm-

ing (Jump et al., 2006a, 2008).

The mechanisms of molecular responses to warming

strongly differ when comparing different plant species,

even those belonging to the same genus (Xu & Huang,
Fig. 1 Impacts from climate change on life at different spatial

scales from the molecular to the biospheric levels.
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Table 1 Omic studies that have analyzed phenotypic responses to drought and warming at the molecular level

Species

Analytical techniques

used Principal results References

Molecular responses of organisms to DROUGHT

Capsicum annuum Target metabolomics

(HPLC-UV)

↑ Phenolics Estiarte et al. (1994)

Zea mays Metabolomics

(HPLC-MS/MS)

↑ Threonine, GABA, 6-benzylaminopurine,

proline, tryptophan, leucine

Alvarez et al. (2008)

Medicago sativa Metabolomics (GC-MS) ↑ Proline, p-pinitol Aranjuelo et al. (2011)

Eucalyptus sp. Metabolomics

(capillary GC)

↑ Carbohydrates, quercitol, polyols Arndt et al. (2008)

Cynodon dactylon,

Zoysia japonica

Metabolomics (GC-MS) ↑ 5-hydroxynorvaline Carmo-Silva et al.

(2009)

Pisum sativum Metabolomics (1H NMR) ↑ Proline, valine, threonine, homoserine,

myoinositol, GABA

Charlton et al. (2008)

Vitis vinifera Metabolomics (GC-MS) ↑ Glucose, maltose, proline Cramer et al. (2007)

Physcomitrella patens Metabolomics ↑ Proline, altrose, maltitol, ascorbic acid Erxleben et al. (2012)

Lolium perenne Metabolomics (GC-MS) ↑ Glucose, raffinose, fructose, trehalose,

maltose

↓ Fatty acids

Foito et al. (2009)

Oryza sativa Metabolomics (1H NMR) ↑ Glucose, glutamate, glutamine Fumagalli et al. (2009)

Stagonosphera nodorum Metabolomics (GC-MS) ↑ Glycerol, arabitol

↓ Several amino acids

Lowe et al. (2008)

Arabidopsis sp. Metabolomics

(1H NMR, HPLC-UV)

↑ Proline, tyrosine, malate, GABA Lugan et al. (2009)

Solanum tuberosum Metabolomics ↑ Sucrose, trehalose Mane et al. (2008)

Belgica antartica Metabolomics (GC-MS) ↑ Glycerol, erythritol, serine Michaud et al. (2008)

Lupinus albus Metabolomics (13C NMR) ↑ Sucrose, glucose, proline Peuke & Rennenberg

(2004)

Arabidopsis sp. Metabolomics (GC-MS) ↑ Sucrose, maltose, glucose, proline Rizhsky et al. (2004)

Erica multiflora Metabolomics (1H NMR) ↑ Polyphenolics, quinic acid, choline,

tartaric acid

Rivas-Ubach et al.

(2012)

Lotus sp. Metabolomics (GC-MS) ↑ Proline, sugars

↓ Aspartic acid, glutamic acid, serine,

threonine

Sanchez et al. (2012)

Solanum sp. Metabolomics (GC-MS) ↑ Alanine, GABA, b-alanine, homoserine,

isoleucine, proline, serine, valine

↓ Glutamine, glycine, cysteine

Semel et al. (2007)

Eucalyptus sp. Metabolomics (GC-MS) ↑ Sugars and sugar alcohols but in different

intensities in different species

Warren et al. (2012)

Medicago sativa Metabolomics(HPLC) ↑ Sucrose, succinate, malate Naya et al. (2007)

Gossypium hirsutum Metabolomics ↑ Several amino acids, proline, polyphenols Parida et al. (2007)

Arabidopsis sp. Metabolomics (GC-MS) ↑ Several amino acids and raffinose Urano et al. (2009)

Oriza sativa Proteomics 22 proteins associated with drought

tolerance were identified

Rabello et al. (2008)

Quercus robur Proteomics 18 proteins associated with drought

tolerance were identified

Sergeant et al. (2011)

Glycine max Proteomics 5 proteins increased and 21 decreased

under drought

Alam et al. (2010)

Populus 9 euramericana Proteomics ↑ Antioxidant proteins Bonhomme et al.

(2009)

Populus sp. Proteomics ↑ Proteins associated with photosynthesis

and some protein families related to

cellular water transfer

↓ Some protein families related to cellular

water transfer

Plomion et al. (2006)
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Table 1 (continued)

Species

Analytical techniques

used Principal results References

Medicago sativa Proteomics ↑ Rubisco protein Aranjuelo et al. (2011)

Oryza sativa Proteomics ↑ Superoxide dismutase Muhammad Ali &

Komatsu (2006)

Pinus armandii Proteomics 5 proteins changed their concentrations

under drought

He et al. (2007)

Populus sp. Proteomics ↑ Rubisco protein

↓ Membrane-related proteins

Durand et al. (2011)

Quercus ilex Proteomics ↑ Triosephosphate isomerases, rubisco

activase

↓ Peroxidase

Echevarr�ıa-Zome~no

et al. (2009)

Populus kangdingensis Proteomics ↑ Proteins related to redox homeostasis

and sugar metabolism

Yang et al. (2010)

Populus 9 euramericana Proteomics ↓ Proteins related to photosynthesis He et al. (2008)

Populus cathayana Proteomics ↑ Proteins related to antithermal stress,

secondary metabolism and defense

Xiao et al. (2009)

Triticum aesticum Proteomics ↑ Some globulin, gliadin and albumin

proteins

Yang et al. (2011)

Triticum aesticum Proteomics ↑ Expression of 36 proteins Caruso et al. (2009)

Populus cathayana Proteomics ↓ Proteins related to photosynthesis Zhang et al. (2010a)

Carissa spinarum Proteomics ↓ Proteins related to photosynthesis Zhang et al. (2010b)

Solanum tuberosum Transcriptomics ↑ Raffinose and proline synthesis

pathways

↓ Superoxide dismutase synthesis

Mane et al. (2008)

Lolium perenne Transcriptomics ↑ Sulfate transporter protein Foito et al. (2009)

Lotus sp. Transcriptomics ↓ Proteins related to the synthesis of

threonine, serine and glutamic acid

Sanchez et al. (2012)

Pinus radiata Transcriptomics Expression of 73 genes

♦ Expression of 43 genes

Heath et al. (2002)

Populus balsamifera Transcriptomics ↑ Galactinol synthetase, stachyose

synthetase

Hamanishi et al.

(2010)

Pinus pinaster Transcriptomics ↑ Glycolate oxidase synthesis Dubos & Plomion

(2003)

Pinus taeda Transcriptomics Variation in expression of 42 genes Lorenz et al. (2005)

Pinus pinaster Transcriptomics ↑ Expression of 28 genes

↓ Expression of 20 genes

Dubos et al. (2003)

Pinus taeda Transcriptomics ↑ Expression of genes involved in

cell-wall reinforcement

Chang et al. (1996)

Populus alba Transcriptomics ↑ Expression of 199 genes (among

them enzymes related to protein

degradation)

↓ Expression of 253 genes (among

them enzymes related to cellulose

synthesis)

Berta et al. (2010)

Populus sp. Transcriptomics ↑ Expression of genes linked to leaf

abscission

Street et al. (2006)

Physcomitrella patents Transcriptomics ↑ Expression of genes related to ABA

synthesis pathway

Cuming et al. (2007)

Lotus japonicus Transcriptomics ↑ Expression of genes related to proline

synthesis pathway

D�ıaz et al. (2010)

Lolium perenne Transcriptomics ↑ Expression of genes related to

glutathione peroxidase and superoxide

dismutase synthesis pathways

Liu & Jiang (2010)

Hordeum vulgare Transcriptomics ↑ Upregulation of the enzymes linked

to ABA synthesis pathway

Seiler et al. (2011)
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Table 1 (continued)

Species

Analytical techniques

used Principal results References

Arabidopsis thaliana Transcriptomics ↑ Expression of genes related to control

of stomatal openness

Aubert et al. (2010)

Populus sp. Transcriptomics ↑ Expression of genes related to ABA

synthesis pathway

Cohen et al. (2010)

Nicotina tabacum Transcriptomics ↑ Expression of genes related to proline and

superoxide dismutase synthesis pathways

Li & Han (2012)

Festuca mairei Transcriptomics 464 transcript fragments were differently

expressed under drought

↓ Expression of genes related to transcription

and DNA processing

Wang & Bughrara

(2007)

Cleistogenes songorica Transcriptomics ↑ Expression of 8 genes

↓ Expression of 5 genes

Zhang et al. (2011a)

Avena barbata Transcriptomics ↓ Expression of genes related to N remobilization Swarbreck et al. (2011)

Oriza sativa Transcriptomics ↑ Expression of genes related to cell turgor Rabello et al. (2008)

Populus balsamifera Transcriptomics ↑ Expression of genes related to raffinose

synthesis pathway

Hamanishi et al.

(2010)

Populus nigra Transcriptomics ↑ Expression of genes related to starch

mobilization to produce soluble sugars

Regier et al. (2009)

Zea mays Transcriptomics ↑ Expression of genes related to ABA

synthesis pathway

Jiang et al. (2012)

Gossypium sp. Transcriptomics ↑ Expression of genes related to cell-wall

loosening and cell expansion

Padmalatha et al.

(2012)

Quercus suber Transcriptomics ↑ Expression of genes related to glucose,

fructose, galactose, manitol and quercitol

synthesis pathways

Spieb et al. (2012)

Populus nigra Transcriptomics ↑ Expression of genes related to starch

degradation pathways

Regier et al. (2009)

Avena barbata Transcriptomics ↓ Expression of genes related to C and

N metabolism

Swarbreck et al. (2011)

Medicago sativa Transcriptomics ↑ Sucrose synthetase and nitrogenase Naya et al. (2007)

Oryza sativa Transcriptomics ↑ Synthesis of transcriptomic factor

protein AP37

Oh et al. (2009)

Arabidopsis sp. Transcriptomics ↑ Synthesis of protein LEW1 linked to

dolichol biosynthesis pathway

Zhang et al. (2008)

Arabidopsis sp. Transcriptomics ↑ DREB2A expression Perera et al. (2008)

Arabidopsis sp. Transcriptomics ↑ Drought-inducible genes and discovery

of DRIP1 and DRIP2 genes involved in

DREBA protein proteolysis

Qin et al. (2008)

Arabidopsis sp. Transcriptomics ↑ Discovery of OCP3 transcription factors

that actuate a drought ABA-responsive

mechanism

Ram�ırez et al. (2009)

Solanum tuberosum

ssp. andigena

Transcriptomics ↑ Sucrose phosphatase and glucose

pyrophosphatase transcription

Watkinson et al.

(2008)

Triticum durum, Aegilops

kotschii,

Aegilops umbellulata

Transcriptomics ↑ Expression of 5 dehydrin genes Rabello et al. (2008)

Arabidopsis sp. Transcriptomics ↑ DREB2A expression that stimulates the

expression of drought-responsive genes

Sakuma et al. (2006)

Arabidopsis sp. Transcriptomics ↑ Discovery of the gene encoding protein

nucleotidase/phosphatase SAL1 that is a

negative regulator of drought-tolerance genes

Wilson et al. (2009)
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Table 1 (continued)

Species

Analytical techniques

used Principal results References

Arabidopsis sp. Transcriptomics ↑ Discovery of the gene encoding the factor

HYB96 that is upregulated under drought and

integrates ABA and auxin signals under

drought

Seo et al. (2009)

Nicotina tabacum Transcriptomics ↑ Receptor kinase protein was related and

cytokinin-dependent photorespiration protein

that increases plant resistance to drought

Rivero et al. (2009)

Thellungiella halophila Transcriptomics ↑ Synthesis of vacuolar pyrophosphatase Li et al. (2008a,b)

Zea mays Transcriptomics ↑ 51 transcripts Fernandes et al. (2008)

Cajanus cajan Transcriptomics ↑ Expression of hybrid proline-rich protein Priyanka et al. (2010)

Arabidopsis thaliana Transcriptomics Discovery of the gene related to the feedback

mechanisms between responses to drought

and changes in the circadian clock

Legnaioli et al. (2009)

Tabacum sp. Transcriptomics ↑ Expression of phospholipases that increased

drought resistance at short-term

Hong et al. (2008)

Arabidopsis sp.,

Brassica napus

Transcriptomics ↓ Expression of farnesyltransferase Wang et al. (2009)

Oryza sativa Transcriptomics Discovery of the gene encoding mitogen-activated

protein kinase that mediates in drought

tolerance by scavenging reactive oxygen species

Ning et al. (2010)

Arabidopsis sp. Transcriptomics ↑ Expression of two genes (PUB22 and PUB 23) Cho et al. (2008)

Molecular responses of organisms to WARMING

Saussurea alpina,

Tofieldia pusilla,

Carex vaginata,

Vaccinium

ulginosum,

Salaginella selaginoides

HPLC-UV (target

metabolomics)

No effects on plant secondary compounds Nybakken et al. (2011)

Arabidopsis thaliana Metabolomics (GC-MS) ↑ Several sugars, leucine, valine, tyrosine, uracil,

quinic acid, xylitol

Kaplan et al. (2004)

Agrostis stolonifera Metabolomics (GC-MS) ↑ Lipid unsaturation Larkindale & Huang

(2004)

Drosophila sp. Metabolomics (1H NMR) ↑ Leucine, valine, tyrosine Malmendal et al.,

2006;

Belgica antarctica Metabolomics (GC-MS) ↓ Serine Michaud et al. (2008)

Schizosaccharomyces

pombe

Metabolomics (LS-MS) ↑ Some amino acids, threhalose,

glycerophosphoethanolamine, arabitol,

ribulose, ophthalmic acid

Many changes in secondary metabolites such as ↓
urea-cycle intermediates and ↑ acetylated

compounds

Pluskal et al. (2010)

Erica multiflora Metabolomics (1H NMR) ↑ Fatty acids, compounds related to amino acid

and sugar metabolism

Rivas-Ubach et al.

(2012)

Arabidopsis sp. Metabolomics (GC-MS) ↑ Sucrose, maltose, glucose Rizhsky et al. (2004)

Oncorhynchus mykiss Metabolomics (1H NMR) Different metabolomic fingerprinting Turner et al. (2007)

Oncorhynchus mykiss Metabolomics (1H NMR) ↑ Metabolites related to antithermal stress

protein pathways, ATP, glycogen

Viant et al. (2003)

Folsomia candida Metabolomics (1H NMR) ↓ Arginine, lysine, leucine, phenylalanine,

tyrosine (after 7 hr heat exposure)

Waagner et al. (2010)

Oryza sativa Metabolomics (Capillary

electrophoresis-MS)

↑ Sucrose, pyruvate/oxaloacetate-derived

amino acids

↓ Sugar phosphates and organic acids involved

Yamakawa & Hakata

(2010)
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2008b, 2010; Xu et al., 2008). The experimental data

currently available suggest that the response of plants

to warming does not imply important changes in sec-

ondary compounds. For example, Nybakken et al.

(2011) observed that warming had little effect on the

concentrations of carbon-based secondary compounds

in subalpine ecosystems.

The individual molecular responses of plants to

drought and warming are frequently related to physio-

logical (Xu & Zhou, 2006; He et al., 2008; Aubert et al.,

2010; Yang et al., 2010; Aranjuelo et al., 2011), phenolog-

ical (Swarbreck et al., 2011) and anatomical (Spieb et al.,

2012) responses. Moreover, changes in the molecular

composition of plants in response to drought are linked

to changes in elemental stoichiometry (Rivas-Ubach

et al., 2012) (Fig. 2), with different levels of response

among the species of the same community (Pe~nuelas

et al., 2008a). Changes in plant C : N : P stoichiometry

affect the cycling of nutrients in ecosystems, the trans-

fer of energy throughout trophic webs and the compo-

sition of herbivore communities (Elser et al., 2000, 2009;

Elser, 2006; Sardans et al., 2012a). All these shifts in the

chemical composition of plants can thus have further

consequences on the functioning of trophic webs

(Pe~nuelas & Sardans, 2009), which warrants future

research based mainly on long-term observations and

experiments.

Studies on the molecular impacts of drought and

warming on wild terrestrial animals are less common.

Nguyen et al. (2009) observed that individual aphids

exposed to elevated temperatures presented lower

growth, lower abundances of several enzymes of cen-

tral pathways of energy metabolism and increased pro-

duction of exoskeletal proteins. Metabolomic studies in

insects further confirmed that heat stress increases the

levels of some amino acids and proteins and decreases

the metabolism of sugar (Malmendal et al., 2006;

Michaud et al., 2008) (Table 1).

This overview of current bibliography of omic stud-

ies of the impacts of climate change shows that these

techniques have a high sensitivity to detect metabolome

shifts of organisms submitted to drought and/or

warming. They show a fast increase in the synthesis of

enzymes, metabolic pathways and metabolites linked

Table 1 (continued)

Species

Analytical techniques

used Principal results References

in glycolysis/gluconeogenesis and the

tricarboxylic acid cycle (TCA)

Macrosiphum euphorbiae Proteomics ↓ Proteins involved in energy metabolism Nguyen et al. (2009)

Agrostis scabra, Agrostis

stolonifera

Proteomics ↑ Proteins involved in photosynthesis and

heat-shock proteins

Xu & Huang (2008a,b,

2010) and Xu et al.

(2008)

Pinus armandii Proteomics 8 proteins changed their concentrations under

warming

He et al. (2007)

Triticum aesticum Proteomics ↑ Some gluteninss proteins Yang et al. (2011)

Festuca sp. Transcriptomics ↑ Expression of genes related to transcription

and photosynthesis

Zhang et al. (2005a)

Avena barbata Transcriptomics ↑ Expression of genes related to N remobilization Swarbreck et al. (2011)

Arabidopsis sp. Transcriptomics ↑ Protein BOBBER1 Perez et al. (2009)

Arabidopsis sp. Transcriptomics ↑ Expression of NFYAS5 transcription factor that

is related to the transcription of stress-response

genes

Li et al. (2008a,b)

Solanum tuberosum Transcriptomics ↑ Genes related to cell proliferation, hormone

synthesis and antistress mechanisms were

upregulated

Ginzberg et al. (2009)

Boea hygrometrica Transcriptomics ↑ Expression of BhHsf1 transcriptional factor

that is related to thermotolerance

Zhu et al. (2009)

Zea mays Transcriptomics ↑ 754 transcripts Fernandes et al. (2008)

Arabidopsis sp. Transcriptomics ↑ Expression of peptidyl prolyl cis/trans

isomerase

Meiri & Breiman

(2009)

Arabidopsis sp. Transcriptomics Epression of dehydration-response element

binding protein (DREB2A)

Schramm et al. (2008)

Oryza sativa Transcriptomics ↑ Expression of 23 genes related to heat-shock

protein synthesis

Sarkar et al. (2009)

Chenopodium album Transcriptomics ↑ Expression of heat-shock proteins Barua et al. (2008)
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to osmotic control and antistress mechanisms. How-

ever, there is a lack of studies coupling climatic change

and genomics-metabolomics with nutrient cycles, avail-

ability and stoichiometry, with physiological and phe-

nological changes and with shifts in ecosystem

structure. These integrated studies should provide a

better understanding of the mechanisms and processes

underlying the change in resource use, in intraspecies

and interspecies competition and in species substitution

and selection under global change.

Physiological and morphological

An organism’s capacity for physiological adaptation is

a key factor in its success in adapting to climate change

(Bernardo et al., 2007). A plant’s response to drought

includes several physiological responses. There are

changes in the allocation of resources, decreases in net

photosynthetic rate, decreases in efficiency of carboxyl-

ation, increases in the efficiency of PSII photochemistry

and increases in water use efficiency (WUE) that fre-

quently accompany a decrease in plant growth and

reproductive output, the intensities of which differ

among communities and species (Table 2). The shifts in

enzymatic machinery necessary for these changes are

linked to shifts in N metabolism, consisting of a

decrease in the activity of key enzymes related to N

anabolism, such as nitrate reductase and glutamine

synthase, and an increase in enzymatic activity related

to N catabolism and transport, such as the activity of

asparaginase (Xu & Zhou, 2006). As reported in the pre-

vious section, a shift of protein content occurs under

drought from proteins related to photosynthesis and

carboxylation to proteins linked to antistress systems

(Table 1). Fine-scale studies using 1H nuclear magnetic

resonance (NMR) imaging have observed that leaves of

the Mediterranean tree Quercus ilex under prolonged

drought are able to maintain water in parenchymal tis-

sues for a longer time than in vascular tissues, which

allows the most active parts of the leaves to be more

hydrated for a longer time (Sardans et al., 2010). These

conservative mechanisms are frequently able to mini-

mize the negative effects of drought on plant growth

(Molina-Montenegro et al., 2011; Pe~nuelas et al., 2011a,

b). These mechanisms also have negative impacts, how-

ever, such as a decrease in nutrient uptake resulting

from the decrease in plant transpiration (Peñuelas et al.,
1993; Cramer & Hawkins Verboom, 2009; Cernusak

et al., 2011) or a decrease in the production of root

phosphatases (Sardans et al., 2007). Plants can compen-

sate for this low uptake of nutrients by enhancing their

reabsorption of nutrients (Heckathorn & DeLucia, 1994;

Devakumar et al., 1999; Marchin et al., 2010). This

increased reabsorption, together with a higher synthe-

sis of C-rich secondary compounds under drought

(Hale et al., 2005), decrease the quality of leaf litter,

which has a negative feedback effect on productivity by

decreasing, decomposition rates of soil organic matter

and the availability of nutrients (Yaire & van Cleve,

1996; Sardans & Pe~nuelas, 2004, 2005).

An organism’s response to warming depends on

whether or not the ecosystem is limited by water and

on whether or not the climate is cold (Table 2). In eco-

systems not limited by water, the photosynthetic capac-

ity of plants and, in general, the changes in plant

function under warming strongly depends on the

capacity of each species to adapt its optimal tempera-

ture of maximal rates of assimilation (Gunderson et al.,

2010; Sardans & Pe~nuelas, 2010; Zelikova et al., 2012).

Plants generally tend to increase their optimal photo-

synthetic temperatures under warming, which differ

among species (Gunderson et al., 2010). This photosyn-

thetic acclimation can increase plant production capac-

ity if other resources such as nutrients are not limiting.

In this way, the capacity of a plant to invest in mecha-

nisms for enhancing the availability and uptake of

nutrients is critical for enhancing growth (Michelsen

et al., 1996; Henry & Molau, 1997; J�onsd�ottir et al.,

2005b). Plants under warming can respond by increas-

ing N2 fixation (Sorensen & Michelsen, 2011), mycorrhi-

zal intensity (Rillig et al., 2002; Staddon et al., 2004;

Olsrud et al., 2010; Yergeau et al., 2012), root enzymes

Fig. 2 PLS-DA analysis of the stoichiometry and metabolomics

of leaves of Erica multiflora shrubs submitted to the effects of a

moderate experimental field drought (Based on Rivas-Ubach

et al., 2012). (triangles: drought; circles: control).

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 2303–2338
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activity (Estiarte et al., 2008a) and turnover of fine roots

(Wan et al., 2004). Most studies conducted in ecosys-

tems not limited by water have thus observed increases

in growth, photosynthetic activity and reproductive

output of plants (Table 2). In tundra ecosystems limited

by low temperatures, warming usually increases vascu-

lar plant growth and reduces nonvascular plant growth

(Table 2), effects related to the increase in the availabil-

ity of water (Clarke et al., 2012) and frequently limited

by the availability of nutrients (Henry & Molau, 1997).

In contrast, plants under warming in dry areas

respond to increased water deficits induced by associ-

ated increased evapotranspiration mainly by increasing

their WUE (Brodribb & Hill, 1998; Pe~nuelas et al.,

2008b) and generally by conservative mechanisms such

as better control of photosynthetic capacity (Ogaya

et al., 2011) and reduced growth (Table 2). A reduction

in the availability of water has a negative effect on rubi-

sco activity that limits CO2 uptake (Flexas et al., 2004;

Rennenberg et al., 2006). The physiological responses of

plants to warming, therefore, range from changes that

tend to increase plant production in cold-wet ecosys-

tems to conservative responses that tend to increase the

efficiency of use of resources in hot-dry ecosystems.

To complement these functional changes, plants can

also alter their morphological structure to adapt to

drought, mainly by increasing the allocation of carbon

to the root system, thereby decreasing their stem/root

ratio (Williams & Black, 1994; Xu et al., 2007; Meier &

Leuschner, 2008; Shao et al., 2008; Dreesen et al., 2012),

reducing their leaf size, increasing their leaf mass area

(Ogaya & Pe~nuelas, 2006; Shao et al., 2008) and decreas-

ing their leaf area index (Asner et al., 2004). The higher

allocation of carbon to belowground tissues does not

necessarily translate into a larger investment in mycor-

rhizal formation. Some studies have observed a trend

of increasing investment in mycorrhizae (Shi et al.,

2002), whereas others have observed the opposite trend

(Staddon et al., 2004). The investment in mycorrhizal

association under moderate drought can increase, but

physiological stress limits the symbiosis at certain lev-

els of drought (Shi et al., 2002).

Animals, particularly ectotherms, have several ways

of physiologically adapting to warming. The most gen-

eral and immediate responses in insects are an increase

in metabolism and respiration (Neven, 2000) and the

production of heat-shock proteins (Feder et al., 1997).

When temperatures exceed a certain ‘thermal limit’,

however, the number and intensity of the impacts on

insect function threaten survival (Neven & Rehfield,

1995; Neven, 2000). Animals adapted to broad climatic

gradients also have broad thermal tolerances and there-

fore respond better to the impacts of warming (Boneb-

rake & Deutsch, 2012). Moreover, spatial heterogeneity

may play a critical role in thermal adaptation,

particularly in the tropics where individuals can move

to cooler or wetter parts of their current home ranges

(Bonebrake & Deutsch, 2012) rather than altering their

geographical distribution at the regional scale.

Growth and reproduction

Despite the observed phenotypic plasticity of plants in

response to drought, a decrease in net production

(Table 2) and reproduction (Ogaya & Pe~nuelas, 2007b)

are the general responses of plants to drought. The

intensities of these effects frequently differ among the

species of a community (Pe~nuelas et al., 2004a; Ogaya &

Pe~nuelas, 2007a,b; Wu et al., 2011a,b) and among the

different levels of soil-water availability. A shift in phe-

nology is one of the most conspicuous responses of

plants and animals to current climate change (K€orner,

1995; Pe~nuelas & Filella, 2001; Fitter & Fitter, 2002;

Pe~nuelas et al., 2002, 2009b; Chuine et al., 2010) (Fig. 3).

Climate warming has changed the life cycles of plants

and animals, advancing the biological spring and

delaying the arrival of biological autumn and winter

(Pe~nuelas et al., 2002, 2009b; Badeck et al., 2004; Menzel

et al., 2006; Steltzer & Post, 2009; Fridley, 2012). Several

studies have observed significant advances in the tim-

ing of leaf expansion and flowering under warming in

cold (Price & Waser, 1998; Th�orhallsd�ottir, 1998;

Menzel & Fabian, 1999; Huelber et al., 2006), temperate

(Pe~nuelas & Filella, 2001; Sherry et al., 2007; Rollinson

& Kaye, 2012) and Mediterranean regions (Pe~nuelas &

Filella, 2001; Pe~nuelas et al., 2002; Llorens & Pe~nuelas,

2005). In a meta-analysis of 125 000 observational series

of 542 plant and 19 animal species in Europe, Menzel

et al. (2006) observed that leaf unfolding had advanced

2.5 days per 1 °C of temperature increase, and leaf fall

was delayed 1 day per 1 °C of temperature increase.

Parmesan & Yohe (2003), in a review of available global

data, reported an advance in leaf unfolding of 2.3 days

per decade. These observations of advances in spring

phases have been confirmed experimentally in the field

in response to warming treatments of only about 1 °C
(Llorens & Pe~nuelas, 2005; Prieto et al., 2009d). In most

cases, though, the advances in these field experiments

have been much lower than those observed in the field

in recent decades (Wolkovich et al., 2012).

These effects, as those discussed earlier, vary for the

different species of the community. For example, trees

in temperate forests advance their leaf emergence to

overlap with the period of emergence of the understory

vegetation, thereby increasing competition (Rollinson &

Kaye, 2012). Warming tends to advance flowering and

fruiting in species that flower before the summer peak

and delay flowering in species that flower after the
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summer peak (Sherry et al., 2007). Among the species

that flower before the summer peak, the species that

flower early tend to lengthen the duration of flowering

by flowering earlier, whereas late-flowering species

tend to advance the onset of flowering without increas-

ing its duration (Gim�enez-Benavides et al., 2011). These

different shifts in plant phenology also produce a

mismatch in species involved in the same biotic

relationships, leading to disequilibrium in the sizes of

populations (Both et al., 2006). Mismatches have been

singularly observed in mutualistic plant-pollinator rela-

tionships (Memmott et al., 2007; Hoover et al., 2012)

and in plant–herbivore relationships (Post et al., 2008;

Green, 2010).

The specific phenological response of plants to

drought has been less studied despite its important role

(Pe~nuelas et al., 2004b). Pe~nuelas et al. (2004b) found

that the onset of greenup in the Iberian Peninsula shifts

from spring (triggered by rising temperatures) in the

northern cool-wet regions to autumn (triggered by the

arrival of autumn rain) in the southern warm-

dry regions. In water-limited ecosystems such as the

Mediterranean ecosystems, experimental drier condi-

tions (15–29% reduction in soil moisture) delayed the

flowering period and decreased the number of flowers

per plant (Ogaya & Pe~nuelas, 2004; Llorens & Pe~nuelas,

2005; Prieto et al., 2008). This effect frequently had dif-

ferent intensities depending on the species in the stud-

ied community (Ogaya & Pe~nuelas, 2005). In contrast,

in ecosystems of central Europe not limited by water,

drought advanced the flowering period (Jentsch et al.,

2009). Because drought plays a key role in several parts

of the world, intensive research on the phenological

shifts it induces in plants and animals is warranted.

Warming also has significant direct effects on animal

phenology by lengthening the period of summer activ-

ity and by increasing the number of reproductive cycles

and larval size in insects (Stefanescu et al., 2003; Harada

et al., 2005; Altermatt, 2010) or by changing the sex

ratios in populations of turtles (Tucker et al., 2008). In

amphibians and birds, advanced periods of breeding

and oviposition in response to warming have been

observed (Beebee, 1995; Crick et al., 1997; Schaefer et al.,

2006; Potti, 2009). An increase in reproductive success

has been observed in reptiles (Zhang et al., 2009; Take-

da et al., 2010; Clarke & Zani, 2012) and is frequently

accompanied by an advance in the period of oviposi-

tion (Zhang et al., 2009). Drought can have the opposite

phenological effect to that of warming, for example, it

has delayed phenological phases in butterflies of the

Mediterranean basin (Stefanescu et al., 2003).

The species-specific phenological responses of ani-

mals of the same community can be very different, with

further consequences for biotic relationships (Stefane-

scu et al., 2003). Guo et al. (2009), studying grasshop-

pers in Inner Mongolia, observed that the mid- and

late-season species tended to advance the reproductive

period, overlapping it with the early-season species,

thus increasing the competition among different species

of grasshoppers. In the Mediterranean Basin, with an

expected increase in aridity, the varying degrees of

phenological flexibility among species may account for

differences in species’ responses and, in the case of

multivoltine species, strong selection is projected,

favoring local seasonal adaptations such as diapauses

or migratory behavior (Stefanescu et al., 2003). In cli-

mates that are already warm, an enhanced warming

can be important for ectothermic animals whose ther-

moregulative behavior can be critical for buffering the

impact of severe warming (Kearney et al., 2009).

The phenology of endothermic animals has also been

affected by warming. The Alpine marmot has advanced

its emergence from hibernation, leading to an earlier

weaning of young and a longer growth season that

thereafter imply larger body sizes before the next hiber-

nation (Ozgul et al., 2010). This larger body size favors

a decline of adult mortality and a shift in the pheno-

typic composition of populations, which in turn trig-

Fig. 3 Example of the phenological changes in the different species in the Montseny mountains (Catalonia, NE Spain) in the last

50 years of the 20th century. Based on Pe~nuelas et al. (2000a,b).
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gers an abrupt increase in population size, thus show-

ing that a phenological shift can cause sudden changes

in evolution and demography (Ozgul et al., 2010).

From individual changes to changes in populations,
communities and ecosystems

The plasticity and degree of each individual to present

intense responses at molecular, physiological, pheno-

logical and morphological levels are the first ‘resources’

to cope with the new climatic situation. Several studies,

however, have observed that the responses of organ-

isms are unable to prevent defoliation, decreases in

growth, mortality, migration and shifts in the distribu-

tions of species (Pe~nuelas & Boada, 2003; Pe~nuelas

et al., 2007a,b, 2008b; Allen et al., 2010; Carnicer et al.,

2011). Moreover, these responses at the level of individ-

ual organisms differ among individuals and species of

the same community (Ogaya & Pe~nuelas, 2006; Volder

et al., 2010; Kardol et al., 2010; Ogaya et al., 2011),

implying further changes in community composition

and feedback effects on climate change. We now dis-

cuss these impacts of climate change at the scales of

populations, communities and ecosystems.

Responses of populations

Genotypic adaptation: microevolution

Plants can tolerate environmental changes ‘in situ’ by a

combination of phenotypic plasticity and genotypic

adaptation (Jump & Pe~nuelas, 2005). The existence and

magnitude of phenotypic plasticity, however, is under

genetic control and is not unlimited (Jump & Pe~nuelas,

2005). Evidence suggests that phenotypic plasticity is

submitted to strong selection pressure in the range lim-

its of species distribution by the need of species com-

munities to adapt to extreme conditions for the species

(Fallour-Rubio et al., 2009; M�aty�as et al., 2008). Pheno-

typic plasticity is thus likely to be under strong direc-

tional selection under climate change (Jump &

Pe~nuelas, 2005).

Recent evidence links the genetic diversity of popula-

tions to population persistence in rapidly changing

environments in wild ecosystems (Jump & Pe~nuelas,

2005; Eveno et al., 2008; Jump et al., 2008) (Fig. 4) and

also relates genetic variability with climatic gradients

(Elboutahiri et al., 2010; Carnicer et al., 2012). Genomic

approaches have become a potent tool for detecting

alterations in population genetics (Luikart et al., 2003;

Storz, 2005; Bonin, 2008; Karrenberg & Widmer, 2008).

With these techniques, the variation among individuals

of the same population in the ability to establish under

enhanced drought conditions has been observed in the

Mediterranean shrub Fumana thymifolia (Jump et al.,

2008) and in Pinus pinaster (Eveno et al., 2008). Direct

rapid evolution toward drought avoidance was demon-

strated in populations of Brassica rapa, where genotypes

sampled after a multiyear drought showed significantly

earlier flowering than did pre-drought individuals

sampled from the same population (Franks et al., 2007).

Similarly, correlation between temperature and allele

frequencies and directional changes in allele frequency

in response to recent warming has been observed in

populations of Fagus sylvatica (Jump et al., 2006a). These

and other similar examples suggest that, at least in

some cases, climate-linked genotypic variation exists,

and that plant species can respond to selection on a

timescale relevant for responding to the current rapid

anthropogenic environmental changes (Barrett & Schul-

ter, 2008; Hoffmann & Willi, 2008; Jay et al., 2012). This

microevolutionary process has also been demonstrated

in laboratory mesocosmic experiments studying the

rapid microevolution of life-history traits (van Doorsl-

aer et al., 2007) and in field experiments where several

loci presented significantly different frequencies in

plants submitted to drought than in control plants

(Jump et al., 2008) (Fig. 4).

Shifts in genetic composition in populations of birds

are involved in recent changes in morphology and

migration behavior related to climate changes (Pulido

& Berthold, 2004). The presence of additive genetic var-

iation within and among bird populations, and exam-

ples of rapid evolutionary responses to rare climatic

events, suggest that birds also have a high potential for

Fig. 4 Genetic differentiation between Fumana thymifolia indi-

viduals established in experimental drought and control treat-

ments, based on AFLP molecular markers. The numbered loci

are significantly more differentiated than would be expected if

selectively neutral, indicating that selection resulting from ele-

vated drought has resulted in changes in gene frequencies at

these loci in the experimental treatment. Based on Jump et al.

(2008).
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evolutionary change (Pulido & Berthold, 2004).

Evolutionary adaptation can thus be rapid and can

potentially help species to adapt to the current rapid

changes in climate (Hoffmann & Sgr�o, 2011), although

the effectiveness of the evolutionary response to coun-

ter the negative impacts of rapid warming is generally

expected to be rather more limited (Jump & Pe~nuelas,

2005).

Because different genotypes of the same species can

differ in their functional traits in different environmen-

tal conditions, maintaining diversity within popula-

tions is likely to maximize the probability that the

population will include the more adequate phenotypes

in each different situation. Even though selection will

lower the genotypic diversity of the population over

time in a stable environment, gene flow and environ-

ment-dependent differences in fitness between geno-

types interact with fluctuating selection pressures in a

heterogeneous environment to maintain genotypic pop-

ulation diversity (Gutschick & BassiriRad, 2003). The

loss of genetic variability elevates the vulnerability of

populations to rapid environmental change (Esquinas-

Alc�azar, 2005; Hoffmann & Willi, 2008; Salvaudon et al.,

2008; Jump et al., 2009a,b). Strong initial selection pres-

sure in response to an environmental change, however,

can also reduce genetic variability and the capacity of

further adaptation if the environment continues to

change (Newman & Pilson, 1997; Frankham, 2005; Lei-

mu et al., 2006; Endels et al., 2007).

Despite the possible confusion between genotypic

and plastic phenotypic responses in some studies, an

increasing number of studies have observed signatures

of rapid climate change on the microevolutionary

response of populations (Gienapp et al., 2008). The

microevolution of a population in response to climate

change is frequently related mainly to adaptation to

altered seasonal events, such as drought or changes in

seasonal length, rather than to the direct effect of a

change in temperature (Bradshaw & Holzapfel, 2006).

For example, in the study of Brassica rapa by Franks

et al. (2007) referred to above, increases of multiyear

droughts have induced microevolution in genotypes

of Brassica rapa that has advanced the onset of flower-

ing between 1.9 and 8.6 days relative to ancestral

(predrought) phenotypes when both groups are grown

under the same conditions.

Warming has impacts on insect populations living on

the border of the species’ distribution (Scriber, 2011).

For example, in hybrid zones – the contact points

between closely related and interfertile species, ele-

vated genetic diversity and the disruption of gene com-

plexes through recombination between different but

genetically proximate species can open the way to

rapid adaptation and speciation in response to environ-

mental changes (Scriber & Ording, 2005; Scriber, 2011).

The faster and more frequent shifts in species distribu-

tions under climate change can increase this type of

speciation, potentially helping populations to adapt to

changes in environmental gradients (Scriber, 2011).

Future studies should expand our knowledge of

the interplay between plastic phenotypic, genotypic

and epigenetic changes in the adaptation of organ-

isms to current climate change (Hedhly et al., 2008).

Further research is required to identify both appro-

priate short- and long-term data sets for a range of

species, traits and suitable analytical methods, which

will permit the study of the complex interaction

between phenotypic plasticity and genetic adaptation

of organisms and their populations in response to

climate change. Climate change constitutes an out-

standing opportunity for genetic and evolutionary

ecologists to advance our knowledge of the links,

tuning and trade-offs among phenotypic plasticity,

genotypic variability and population structure in the

evolutionary success of species.

Changes in distribution and migration

There is accumulating evidence of changes in the distri-

bution of organisms in response to climatic changes. In

plants, the shifts currently most widely observed are

those due mainly to drought interacting with hot sum-

mers that increase the limitation of water and erode the

trailing range edge populations of a species, resulting

in a contraction of its distribution toward wetter and

cooler higher latitudes and altitudes (Pigott & Pigott,

1993; Allen & Breshears, 1998; Colwell et al., 2008; Kull-

man, 2008; Jump et al., 2009a,b; Harrison et al., 2010) or

due to elevated temperatures that allow population

expansion at the leading range edge (Walther, 2003;

Pe~nuelas et al., 2007a,b; Kullman, 2008; Crimmins et al.,

2009; Jump et al., 2009a,b). Range shifts, therefore, occur

due to the combination of population expansion at the

leading edges of distributions, through increased repro-

duction and establishment, and retraction at the trailing

edges driven by elevated mortality and declines in

growth and reproduction (Allen & Breshears, 1998;

Pe~nuelas & Boada, 2003; Jump et al., 2006a,b, 2007,

2009a; Pe~nuelas et al., 2007a,b; Colwell et al., 2008;

Worrall et al., 2008). More favorable climatic conditions

can produce a shift in plant populations within the

same altitudinal level across different montane aspects,

from unfavorable to the most favorable climatic condi-

tions resulting from differences in the hours of direct

sunlight (Diemer, 2002). However, under more favor-

able climatic conditions for survival, range expansions

are not inevitable as the shifting of the leading edge

also depends on biotic factors such as herbivore
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pressure (Munier et al., 2010) and dispersal dynamics

(Fordham et al., 2012).

Although distributional shifts are predicted along

both latitudinal and altitudinal gradients, several phys-

ical and climatic factors have different patterns of varia-

tion in altitude than in latitude, such as partial CO2

pressures and UV radiation. Furthermore, the physical

distance necessary to reach sites with significantly dif-

ferent temperatures and/or pluviometry is measured

in meters in altitude as opposed to similar changes

occurring over kilometers along latitudinal transects

(K€orner, 2007). The isolation of populations of once

widespread species and their retention in locally favor-

able sites can result in the formation and persistence of

relict populations. In both lowland and mountainous

areas, the presence of local variations in soil, microcli-

mate and topographic heterogeneity, despite regionally

unfavorable climates, can increase the resilience and

resistance of local populations despite wider popula-

tion declines (Ashcroft et al., 2009; Godfree et al., 2011;

Hampe & Jump, 2011). Such increased isolation can

also increase population divergence, resulting in the

independent evolution of populations of a formerly

more cohesive distribution (Jump & Pe~nuelas, 2005,

2006).

In animals, an increasing number of studies have

shown changes in species distributions related to

warming and drought (Guo et al., 2009; Lenoir et al.,

2010; Kocsis & Hufnagel, 2011). Because of their higher

mobility, animals have a greater capacity than plants to

escape unfavorable climatic conditions. Despite the

capacity of ectothermic animals such as insects to

adapt, they present a ‘heat-scape’ temperature,

described as the temperature that drives the insect to

leave a site (Ma & Ma, 2012). This temperature differs

among species of insects, suggesting that the composi-

tion of species communities under warming can change

largely because of the different rates of migration of the

different species (Ma & Ma, 2012). Changes in migra-

tion at regional scales have been observed in some

groups of insects. For example, in butterflies, poleward

shifts associated with regional warming have been

observed in some species in Europe (Parmesan et al.,

1999).

In vertebrates, the rates of migration within a species

sometimes differ with genotype, favoring the possibil-

ity of allopatric speciation such as observed in popula-

tions of the lizard Lacerta vivipera (Lepetz et al., 2009).

Birds can migrate in response to other human-driven

effects, such as changes in land use, and/or by changes

in biotic relationships related to warming (Lenoir et al.,

2010). However, the controversy over whether or not

the changes in migratory behavior, for example in the

long-distance migration of birds, are due to genotypic

evolution remains (Both, 2007). Finally, the number of

limitations and constraints of latitudinal shifts are large,

from geographic natural barriers and lack of adequate

food sources to human-driven constraints such as

urbanization and habitat conversion (Jump et al., 2009a,

b). Consequently, and due to both natural and anthro-

pogenic causes, each of these altitudinal and latitudinal

shifts in plant species has its own peculiarities such that

individual rates of migration will have impacts at the

level of the community (Huntley, 1991).

Mortality and local extinction

Disturbance of species interactions, together with the

low probability that phenotypic, genotypic and migra-

tional responses will allow most species to tolerate

rapid climate change, suggest a range-wide increase in

individual mortality (Pe~nuelas et al., 2000b) and there-

fore in the risk of local extinction (Jump & Pe~nuelas,

2005).

Furthermore, extreme temperatures in summer,

which further exacerbate drought, increase dieback and

reproductive failure in large areas on a continental scale

(Pe~nuelas et al., 2000b; Saxe et al., 2001; Breshears et al.,

2005; K€orner, 2007; Fensham et al., 2009; Peng et al.,

2011). These dieback events by extreme climate changes

are occurring with increasing frequency worldwide

(Allen, 2009; Allen et al., 2010). The threat of local

extinction is even higher for species living in sites with

restrictions to geographic shifts of populations toward

more favorable areas, such as the higher altitudes of

mountains (Rull & Vegas-Vilarrubia, 2006; La Sorte &

Jetz, 2010), but this threat can be buffered by the pres-

ence of high topographic variability that allows suitable

microclimates or sites with suitable soils (Pe~nuelas

et al., 2000b; Ashcroft et al., 2009; Scherrer & K€orner,

2011).

Defoliation and dieback thus increase when the phe-

notypic and genotypic capacity and the capacity of

population movement are insufficient to cope with the

climate change (Ogaya & Pe~nuelas, 2007a; Carnicer

et al., 2011) (Fig. 5). The consequenses of exceeding

such tolerance thresholds are evident from historical

data in the Mediterranean area showing substitution of

forest by shrublands and deserts in relatively short

periods of time (Estiarte et al., 2008b) (Fig. 6).

Particular traits of species can render some species

especially resistant or vulnerable to the risk of extinc-

tion. For example, Phillyrea latifolia can withstand

warming and drought in Mediterranean forests much

better than Quercus ilex because it dissipates excess

radiation better and has stronger hydraulic resistance

and higher WUE (Pe~nuelas et al., 1998, 2000a,b). In

another example, Iszkulo et al. (2009) have observed a
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large intolerance to drought in females of Taxus baccata,

which strongly reduces the reproductive success of the

species and makes it especially vulnerable to extinction

in areas under increased drought.

Highly diverse ecosystems are sensitive to losses of

biodiversity in response to warming and drought (van

Peer et al., 2004). Because of their high biodiversity,

tropical forests particularly suffer from the impacts of

the current rapid climate change. Moreover, a reduction

in the availability of water has a large impact on tropi-

cal forests because of the long-term adaptations of their

organisms to high temperatures and availability of

water. Current models project a high risk of losses of

biodiversity in tropical forests by warming (Malcolm

et al., 2005). In the dry tropical forests of Central Amer-

ica, a rapid increase in drought by the lengthening of

the drought season by 4 weeks can cause the extinction

of 25–40% of forest species (Condit, 1998). Sensitivity

may also be high in temperate or boreal systems of low

diversity, however, when dieback occurring in the two

main species forming the canopy may generate strong

transformations at the ecosystemic scale, from forest to

shrubland, for example.

Elevated temperatures can directly threaten the sur-

vival of populations by restricting migration to higher

altitudes (Shoo et al., 2005). Populations of tropical ani-

mals, particularly of ectotherms such as insects and

reptiles, are especially threatened under warming

because they currently live very close to their optimal

temperatures. Those species that live in sites with lim-

ited possibilities for migration, such as mountainous

areas or islands, have a high risk of local extinction

(Chiu et al., 2012).

Changes in communities

Through changes in abiotic factors

Apart from drought and warming themselves, one fre-

quently observed abiotic effect of climate change is the

shift in availability of soil nutrients (Hobbie & Chapin,

1996; Shaver et al., 2000; Schmidt et al., 2002; Beier et al.,

2008; Li et al., 2011d; Sardans et al., 2012b). Because

organisms frequently respond to climate change by

shifting their chemical composition and use of

resources (Sardans et al., 2012b), they can exert an effect

on ecosystemic C, N and P cycles that thereafter can

produce feedback effects on the community species that

must respond to these cycles (Finzi et al., 2011).

Drought decreases the activities of soil enzymes (Garcia

et al., 1994; Sardans & Pe~nuelas, 2005, 2010; Sardans

et al., 2008b,c) and the turnover and availability of

Fig. 6 Changes in the land cover from forest to shrubland in

southern Spain in the last millennium. Based on Estiarte et al.

(2008b).

(a)

(b)

Fig. 5 (a) Increased defoliation in southern European forests in

recent decades. (b) Defoliation in the Iberian Peninsula modeled

as a function of water deficit (Emberger index) in generalized

linear mixed models for each tree species in areas of different

mean annual rainfall (i.e., rainfall quantiles). Significant coeffi-

cients of regression (b values) between water deficit and defolia-

tion are plotted. The red dots represent beta values for 0–25

rainfall quantiles; orange dots, 25–50 quantiles; yellow dots,

0–50 quantiles; green dots, 50–75 quantiles; dark-blue dots,

75–100 quantiles; light-blue dots, 50–100 quantiles; white dots,

species of restricted geographical distribution. Based on Carnic-

er et al. (2011).
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nutrients (Sardans & Pe~nuelas, 2004, 2007; Bloor &

Bardgett, 2012), effects that generate changes in the ele-

mental composition of plants that vary in intensity in

the different species of the plant community (Sardans

et al., 2007; Pe~nuelas et al., 2008a). For example, a rela-

tive increase in fungal vs. bacterial dominance in soil

communities has been repeatedly reported in response

to drought (Yavitt et al., 2004; Yuste et al., 2011).

In cold and wet temperate areas, warming frequently

increases the decomposition of soil organic matter

(Schmidt et al., 2002; Wessel et al., 2004; Gornall et al.,

2009; Butler et al., 2012), availability of soil nutrients

(Beier et al., 2008; Aerts, 2010), plant growth (Molau,

1997; Hill & Henry, 2011) and biomass of the soil com-

munity and leads to changes in its species composition

(Sjursen et al., 2005; Zhang et al., 2005b; Schulte et al.,

2008; Yergeau et al., 2012) . These changes provide new

competitive scenarios both among plants (Gornall et al.,

2009) and between plants and microbes (Schmidt et al.,

2002).

Warming can also change the relationships of inter-

specific competition by changing the structure of the

physical habitat. For example, sympatric species of pen-

guins have changed their competitive equilibrium as a

result of a reduction in the extent of sea ice produced

by warming, which has a greater detrimental effect on

species that depend on ice area for their reproduction

and fishing (Forcada et al., 2006).

Through biotic effects on the structure and function of
trophic webs

The direct effects of climate change on the different spe-

cies of a community also change the biotic relationships

among the species. Species must therefore adapt to new

scenarios of competitive and trophic relationships.

Warming can exert a direct effect on the relationships

of interspecific competition because plant species of the

same community frequently respond with different

intensities in both their growth and their reproduction

(Shaver et al., 2000; Weltzin et al., 2000, 2003; Walker

et al., 2006; Williams et al., 2007; Prieto et al., 2009b;

Green, 2010; Verlinden & Nijs, 2010; Bokhorst et al.,

2008, 2011; Messaoud & Chen, 2011; Zhang et al., 2011b;

Reed et al., 2012). In some cases, the increases in growth

of some species are accompanied by decreases in

growth in other species (Day et al., 1999; Price & Waser,

2000; Cornelissen et al., 2001; Walker et al., 2006; Gebler

et al., 2007). These asymmetrical effects are further

related to competitive suppression (Kudo & Suzuki,

2003; Reed et al., 2012) and decreases in the diversity of

species in plant communities (Farnsworth et al., 1995;

Cornelissen et al., 2001; Klein et al., 2004; Walker et al.,

2006; Cross & Harte, 2007; Gedan & Bertness, 2009; Pri-

eto et al., 2009d; Lang et al., 2012a). Some groups, for

example lichens, are more prone to extinction in cold

areas submitted to warming (Wahren et al., 2005;

Walker et al., 2006). The loss of biomass from the disap-

pearance of some species is frequently compensated by

an increase in growth of the remaining species (Cross &

Harte, 2007). For example, the loss of biomass and

diversity in lichens of arctic ecosystems is related to

increases in the biomass and diversity of shrubs and

herbs (Wahren et al., 2005; Walker et al., 2006; Joly et al.,

2009). Warming increases interspecific competition and

discourages the establishment of new plant species,

especially when the community is highly diverse

(Klanderud & Totland, 2007) potentially limiting popu-

lation expansion for some species.

Warming has bottom-up effects. The plant–herbivore
relationship is one of the most important biotic relation-

ships. It depends on the coordination between plant

and herbivore phenology (Loe et al., 2005). Outbreaks

of insects are likely to increase under global warming

due to the direct effects of higher temperatures on these

ectothermic animals (Tobin et al., 2008; J€onsson et al.,

2009) and to the extension of their active periods (Tobin

et al., 2008; J€onsson et al., 2009). The changes in phenol-

ogy and distribution caused by warming can also

asymmetrically affect herbivores and predators (Barton,

2010); predators can compensate for the decrease in

encountering herbivores by increasing their activity

(Lang et al., 2012b). Some long-term field and labora-

tory studies suggest that warming disproportionally

affects the loss of top predators and herbivores com-

pared to autotrophs and microbes (Petchey et al., 1999).

A paradigmatic case of indirect biotic alteration

resulting from the effects of warming on plant and

animal metabolism is that produced by the increase in

biogenic volatile organic emissions (BVOCs). This

increase varies depending on the plant (and animal)

species and the phenological and ontogenic stage, but it

is also different for the hundreds or thousands of differ-

ent BVOCs emitted by plants. As a result, significant

changes occur in the protection of plants from climatic

stresses, the communication between plants and pollin-

ators, the relationships among plants and with herbi-

vores and the defense of plants from pathogens, among

others (Pe~nuelas & Staudt, 2010; Llusia et al., 2010, 2011)

(Fig. 7). Significant changes in the competitive abilities

of species are highly likely to result in changes in the

composition of communities (Pe~nuelas & Staudt, 2010).

Warming can also exert indirect effects on communi-

ties by top-down mechanisms. Warming can increase

the activities of predators and change hunting strate-

gies between pursuit and wait/ambush, which changes

the competitive pressures on different species of preda-

tor and drives some to extinction (Barton & Schmitz,
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2009). Increases in herbivore pressure can have com-

plex effects on community structure as increases in

herbivore activity under warming are frequently asym-

metrical, with most herbivores increasing their activity

while others decrease theirs (Rizhsky et al., 2004). Pop-

ulations of bark beetles in the boreal forests of Canada

have grown because the number of stressed and ill

trees, which are sources of food for these herbivores,

have increased under warming, a situation that impacts

the entire boreal community (Choi, 2011). A higher

activity of herbivores can asymmetrically impact differ-

ent plant species and thus change the scenarios of com-

petition among them (Van Bogaert et al., 2009). The

gregarious behavior of North American wolves in some

areas varies depending on the intensity of winter snow.

In years with more snow, wolves hunt more efficiently

in large groups and can triple the number of deer killed

compared to years with less snow when the wolves

hunt in smaller groups. Deer populations thus rise in

years with less snow, and the understory of the fir for-

est decreases, whereas contrary top-down effects occur

in years with high snow cover (Post et al., 1999). The

decreases in understory vegetation generated by a high

presence of deer in years of low snowfall also decrease

the populations of songbirds (Martin & Maron, 2012).

Drought can also change the competitive relation-

ships in arid areas because the capacities and strategies

of plant species to adapt to drought are different, as

reported in several observational and experimental

studies (Llorens et al., 2003; Ogaya & Pe~nuelas, 2003,

2005, 2006, 2007a; Lloret et al., 2004a,b; Loe et al., 2005;

Ripley et al., 2010; Belerkuhnlein et al., 2011). In this

new scenario of plant interspecific competition, species

less able to adapt to drought can be eliminated. Long-

term experimental studies are needed to determine

whether species whose production, flowering or

growth are negatively impacted by drought have com-

pensatory mechanisms, for example by enhancing their

defensive capacity against herbivores or their competi-

tive ability against neighboring plants through chemical

allelopathy. Compensatory mechanisms can help these

initially disfavored species to remain, perhaps with

lower density, in their current ranges under drought

conditions. Plant defenses such as phenolics increase

under warming (Scriber, 2011) and drought (Hale et al.,

2005; Atala & Gianoli, 2009) and can then act as deter-

rents to herbivores (Eichhorn et al., 2007; Cipollini et al.,

2008). Drought frequently has bottom-up effects that

impact on plant cover and reduce species richness (Til-

man & Haddi, 1992; Lloret et al., 2004b, 2009; Yurkonis

& Meiners, 2006; Reed et al., 2012). Drought reduces the

quality and abundance of host plants, thereby reducing

herbivore populations (Sumerford et al., 2000) and

affecting the entire trophic web (Sumerford et al., 2000;

Pritchard et al., 2007). Drought can also have strong

top-down effects. In Mediterranean regions, drought

has been related to the loss of insect species, especially

of specialist insects (Stefanescu et al., 2011). The trade-

offs between defenses to drought and to herbivores

remain unclear but seem quite variable (Haugen et al.,

2008; Gutbrodt et al., 2012).

Ecosystems

Climatic feedbacks

When changes in phenology and plant communities

are large, at regional and continental scales, they can

exert significant feedback effects on climate (Pe~nuelas

et al., 2009b) (Fig. 8). Lengthening the period of plant

activity can increase the uptake of atmospheric CO2

(Pe~nuelas & Filella, 2001), thereby buffering the

increased levels of CO2. Despite the lengthening of

plant activity, the increase in frequency and severity of

drought seems to have precluded the expected increase

in tree growth worldwide (Pe~nuelas et al., 2011a,b) and

in the fixation of CO2 (Angert et al., 2005; Ciais et al.,

2005; Buermann et al., 2007; Zhao & Running, 2010).

The emissions of plant BVOCs also increase with tem-

perature and longer periods of plant activity (Pe~nuelas

& Llusia, 2003; Pe~nuelas et al., 2005; Blanch et al., 2007,

2011) (Fig. 8). Although their atmospheric lifetime is

Fig. 7 Flow-on effects of warming on community processes

through changes in plant BVOC emissions. Based on Pe~nuelas

& Staudt (2010).
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short, BVOCs have an important influence on climate

through the formation of aerosols that can cool the

Earth’s surface during the day by intercepting solar

radiation (Claeys et al., 2004; Kullman, 2008) (Fig. 9).

Moreover, a longer presence of green cover should

influence other factors such as albedo, latent and sensi-

ble heat and atmospheric turbulence (Pe~nuelas et al.,

2009b). In some areas of North America, spring temper-

atures are different after leaf emergence due to

increases in latent heat (Schwartz, 1996; Fitzjarrald

et al., 2001). Moreover, the denser the cover, the higher

the turbulence and latent heat, leading to a cooler and

wetter atmospheric boundary layer (Bonan, 2008).

Increasing the duration of green cover can thus gener-

ate a cooling by sequestering more CO2 and by increas-

ing evapotranspiration. On the other hand, higher plant

production and increased evapotranspiration decrease

soil moisture and may generate abrupt rises of temper-

ature when drought precludes evapotranspiration. An

early and prolonged green period with increased

evapotranspiration may have enhanced recent summer

heat waves in Europe by lowering soil moisture (Zaitc-

hik et al., 2006; Fisher et al., 2007). Decreases of soil

moisture have a negative effect on late cooling and con-

sequently increase surface temperature (Fisher et al.,

2007) and probably reduce summer precipitation (Jen-

tsch et al., 2009).

All these feedbacks generated by the lengthening of

the period of plant growth are also generated by per-

manent changes in communities and ecosystems that

also change the vegetative cover. For example, the

shifts from forest to shrubland or to grassland

described above as responses to climate change (e.g.,

Estiarte et al., 2008b) must have significant biophysical

(albedo, latent heat, sensible heat) and biogeochemical

(e.g., decreased CO2 fixation, changed BVOC emission,

altered exchanges of greenhouse gases) feedbacks

(Bonan, 2008).

One of these feedbacks, which may be the key feed-

back affecting climate change, is the changing role of

ecosystems in the fixation of CO2. We have yet to dis-

cern whether the current widespread summer droughts

negate the enhancement of CO2 uptake induced by

Fig. 9 Feedbacks on climate of the lengthening of the growth period in response to global warming. Based on Pe~nuelas et al. (2009a).

Fig. 8 Flow-on and feedback effects of warming on atmo-

spheric processes through changes in plant BVOC emissions.

Based on Pe~nuelas & Staudt (2010).
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warmer springs, possibly by CO2 fertilization or

increased eutrophication. An accurate continuous

quantification of the role of ecosystems as carbon sinks

and the changes produced by climate change consti-

tutes a key issue in the face of ongoing disturbance.

Current tools for the continuous monitoring of carbon

uptake by ecosystems include eddy covariance and

remote sensing. Eddy covariance is currently the only

direct way to assess the carbon flux of whole ecosys-

tems with high temporal resolution. Nevertheless, tow-

ers for eddy covariance can effectively measure a single

‘point’ over flat and uniform terrain, usually on a scale

of a few square kilometers or less (Baldocchi, 2003).

Remote sensing has, instead, the ability to extend the

spatial coverage of observations of carbon flux beyond

a fixed point. Promising approaches include the use of

the Photochemical Reflectance Index (PRI) (Garbulsky

et al., 2011; Pe~nuelas et al., 2011a,b) or of fluorescence

(Frankenberg et al., 2011) that offer good prospects for

the continuous global monitoring of plant primary pro-

ductivity from space (Fig. 10).

Conclusions and perspectives for future research

These many lines of evidence indicate that current

climate change is having a great impact on

organisms, populations, communities and terrestrial

ecosystems by changing phenotypes, genotypes,

growth, phenology, the distribution of organisms,

species competitive ability, ecological relationships

and the risk of extinction in communities. Ecosys-

tems are thus changing in structure and function

and have significant feedbacks on climate change

itself.

We know less about how these primary responses

affect the capacity of organisms, populations, commu-

nities and ecosystems to respond to the interactions

with the other simultaneous stresses produced by other

drivers of global change and to the new biotic relation-

ships that are generated. As one example among many

of the interactions from global change, the current

changes in the N : P ratios of organisms and environ-

ments, which some ecosystems are experiencing as a

result of the unbalanced input to the biosphere by

humans (Pe~nuelas et al., 2012), can strongly interact

with climate change. We can hypothesize that in a sce-

nario of drought, an increase in the N : P ratio can

interact with the decrease in the availability of water,

favoring species with low rates of growth and more

conservative uses of resources. The N : P ratios can sig-

nificantly affect the rate and direction of the responses

of organisms, populations and communities to climate

change, but no information about this possibility is

available.

Current studies of field climatic manipulations inter-

acting with eutrophication or elevated levels of CO2,

though, can help. They should continue as long as pos-

sible as many lines of evidence indicate that the longer

in time and the wider in space the experiments are con-

ducted, the more buffered are the changes described

(Leuzinger et al., 2011). They must also be comple-

mented with observational studies based on inventories

(Carnicer et al., 2011), remote sensing data (Zhao &

Running, 2010), paleoecological data (Estiarte et al.,

2008b) and large data sets (Kattge et al., 2011) to shed

light on the actual impacts climate change is having on

life on Earth. The coupling of omic studies with studies

of nutrient cycles, nutrient availability and stoichiome-

try, physiological and phenological changes and eco-

system structure shifts will allow making a step

forward on our integrated understanding of the mech-

nisms and processes underlying biological impacts of

climate change.
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Fig. 10 Photochemical Reflectance Index (PRI) as a possible

monitor of gross primary productivity everywhere all the time.

Based on Pe~nuelas et al. (2011b). NDVI Normalized difference

vegetation index or similar index providing a proxy of absorbed

radiation by green biomass.
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