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Abstract

Photodissociation regions (PDRs) are parts of the ISM consisting of predominantly neutral gas, located at the
interface between H II regions and molecular clouds. The physical conditions within these regions show variations
on very short spatial scales, and therefore PDRs constitute ideal laboratories for investigating the properties and
evolution of dust grains. We have mapped IC 63 at high resolution from the UV to the NIR (275 nm to 1.6 μm),
using the Hubble Space Telescope WFC3. Using a Bayesian SED fitting tool, we simultaneously derive a set of
stellar (Teff, glog( ), distance) and extinction (AV, RV) parameters for 520 background stars. We present maps of AV

and RV with a resolution of 25 arcsec based on these results. The extinction properties vary across the PDR, with
values for AV between 0.5 and 1.4 mag, and a decreasing trend in RV, going from 3.7 at the front of the nebula to
values as low as 2.5 further in. This provides evidence for evolution of the dust optical properties. We fit two
modified blackbodies to the MIR and FIR SED, obtained by combining the AV map with data from Spitzer and
Herschel. We derive effective temperatures (30 and 227 K) and the ratio of opacities at 160 μm to V band κ160/κV
(7.0× 10−4 and 2.9× 10−9

) for the two dust populations. Similar fits to individual pixels show spatial variations
of κ160/κV. The analysis of our HST data, combined with these Spitzer and Herschel data, provides the first
panchromatic view of dust within a PDR.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Photodissociation regions (1223); Interstellar
dust extinction (837)

1. Introduction

Photodissociation regions (PDRs) are regions of the interstellar
medium (ISM) where the physical properties of the gas are mainly
determined by the radiation field of nearby O or B stars. They
form a boundary layer between ionized (H II) regions, and the rest
of the molecular cloud where they reside. The FUV radiation from
ionizing stars is quickly attenuated by the opacity of the relatively
high-density medium shielding the rest of the gas (several 10 s
up to ∼106 cm−3

). As a consequence, there are typically sharp
transitions between different regimes (e.g., H II, H I, and H2),
resulting in a layered structure (Hollenbach & Tielens 1997,
1999). This makes PDRs the perfect laboratory for studying the
evolution of the ISM, including the dust over different physical
and excitation conditions.

Interstellar dust grains make a very significant contribution to
the total opacity of the ISM, and modify any impinging radiation
field through the effects of absorption, scattering, and re-emission
(Draine 2003; Steinacker et al. 2013). Aside from attenuating
the UV radiation field that regulates the physics inside a PDR,
they also couple to the gas through other processes. Dust grains
play a major role in the formation of H2, through reactions
that take place on grain surfaces (Hollenbach & Salpeter 1971;
Wakelam et al. 2017). They provide a major contribution to the

heating of the gas through the photoelectric effect, but can also
have a cooling effect when gas–grain collisions occur (Bakes &
Tielens 1994; Weingartner & Draine 2001).
To model these effects, knowledge about the composition

and size distribution of the dust grains is necessary. While
there are many dust models that can explain the observed
extinction curves and emission spectra (Desert et al. 1990;
Zubko et al. 2004; Draine & Li 2007; Compiègne et al. 2011;
Jones et al. 2017), it remains difficult to accurately constrain
the exact properties of the grains. Moreover, the effects of
dust evolution processes can change these properties depend-
ing on the time and the environment. Some models, such as
THEMIS (Jones et al. 2017), have built-in ways to follow
the changes in dust properties. Providing better constraints on
these models is crucial for understanding not only the dust
itself, but also the structure and evolution of PDRs and the
ISM in general.
Evidence for dust evolution in PDRs has been found through

observations in the mid- and far-infrared. By applying Blind
Signal Separation methods to Spitzer IRS data of several PDRs
(Ced 201, NGC 7023 east and northwest, ρ Oph), Berné et al.
(2007) identified two spectral shapes. One mainly contains the
aromatic infrared bands (AIBs), and is linked to polycyclic
aromatic hydrocarbons (PAHs). The other exhibits a combina-
tion of broad AIBs and MIR continuum emission, and was
found to correspond to very small grains (VGSs). Later work
by Boersma et al. (2014), uses k-means spectral clustering
to identify zones in NGC 7023 that have similar spectral

The Astrophysical Journal, 888:22 (23pp), 2020 January 1 https://doi.org/10.3847/1538-4357/ab557f
© 2019. The American Astronomical Society. All rights reserved.

* Based on observations made with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc., under NASA
contract NAS5-26555. These observations are associated with program GO-
14186.

1

https://orcid.org/0000-0002-5895-8268
https://orcid.org/0000-0002-5895-8268
https://orcid.org/0000-0002-5895-8268
https://orcid.org/0000-0001-5340-6774
https://orcid.org/0000-0001-5340-6774
https://orcid.org/0000-0001-5340-6774
https://orcid.org/0000-0001-6326-7069
https://orcid.org/0000-0001-6326-7069
https://orcid.org/0000-0001-6326-7069
https://orcid.org/0000-0002-7502-0597
https://orcid.org/0000-0002-7502-0597
https://orcid.org/0000-0002-7502-0597
https://orcid.org/0000-0002-3930-2757
https://orcid.org/0000-0002-3930-2757
https://orcid.org/0000-0002-3930-2757
https://orcid.org/0000-0003-0789-9939
https://orcid.org/0000-0003-0789-9939
https://orcid.org/0000-0003-0789-9939
mailto:drvdputt.vandeputte@ugent.be
http://astrothesaurus.org/uat/847
http://astrothesaurus.org/uat/1223
http://astrothesaurus.org/uat/837
http://astrothesaurus.org/uat/837
https://doi.org/10.3847/1538-4357/ab557f
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab557f&domain=pdf&date_stamp=2019-12-30
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab557f&domain=pdf&date_stamp=2019-12-30


shapes, and find a spatial evolution in the PAH band strength
ratios.

Radiative transfer modeling by Compiègne et al. (2008)
shows that differences in excitation conditions are not enough
to explain the observed variations of the AIBs and MIR
continuum in NGC 2023 and the Horsehead nebula, compared
to the diffuse ISM. Changes in the relative abundances of the
PAHs and VSGs are suspected. In the Orion bar, a radiative
transfer model which uses the dust abundances of the diffuse
ISM is sufficient to explain the dust variations derived from
Herschel/PACS/SPIRE and Spitzer/IRAC maps, but over-
estimates the PAH emission at 3.6 μm (Arab et al. 2012). Using
theoretical dust emission models which include the coagulation
of grains, Köhler et al. (2015) were able to reproduce the
changes in temperature, spectral index, opacity, and MIR
emission, that are observed when transitioning from the diffuse
ISM to high-density regions.

IC 63 is a nearby nebula which is illuminated by the B IV star
γCas. Based on the Hipparcos parallax (Perryman et al. 1997) of
5.32 mas, the distance to γCas is roughly 190 pc. A compre-
hensive study of the physics and chemistry of IC 63 can be found
in Jansen et al. (1994, 1995, 1996). A study using Infrared Space
Observatory (ISO) data has characterized the fine structure and
H2 lines in IC 63 (Thi et al. 2009), and the distribution of PAHs
has been derived from Spitzer data (Fleming et al. 2010).
Recently, Herschel FIR maps and FIR spectroscopy data were
combined with [C II] 157μm velocity maps from the GREAT
instrument on board the SOFIA observatory to revisit IC 63 in
greater detail (Andrews et al. 2018).

For the radiation field at the tip of IC 63, the model of
Jansen et al. (1995) used a value of 650 Draine field units
(Draine 1978), or G0=1100 in Habing field units (Habing
1968). Here, an edge-on orientation was assumed, meaning that
the distance between the tip of IC 63 and γCas is taken to
be equal to the projected distance of 1.3 pc. In the work of
Andrews et al. (2018), a value of G0∼150 is obtained instead,
based on measurements of the FIR emission. This implies that
IC 63 might be several times further away from γCas than the
projected distance, and that the orientation is not truly edge-on.
The whole cloud has a projected size of ∼0.5 pc, and the area
studied in this work, the tip, is ∼0.1 pc wide. IC 63 is still a
dense PDR (1.2× 104 cm−3

), but it has a relatively low column
density (2.3× 1020 cm−2; Andrews et al. 2018). Compared to
the Horsehead nebula or the Orion bar, this is about an order of
magnitude lower in both number and column density, making
IC 63 sufficiently transparent to detect background stars.

In this work we aim to study the spatial variations of the dust
properties observed through extinction, in particular through
the AV and RV parameters (Cardelli et al. 1989). IC 63 is a most
suitable target for this, as it has many observable background
stars, each of which provides information about the medium
along a specific line of sight. Grouping these stars into spatial
bins makes it possible to measure the average extinction for a
number of regions on the sky. To measure the extinction for
each star, we use the same approach as in Gordon et al. (2016)
for the Panchromatic Hubble Andromeda Treasury (PHAT)

survey data (Dalcanton et al. 2012). A catalog of point sources
is generated from broadband Hubble Space Telescope (HST)

observations, to which our Bayesian Extinction And Stellar
fitting Tool (BEAST, Gordon et al. 2016) is applied.

In Section 2, we describe our seven-band photometric
observations with HST, and how we extract photometric

measurements for 520 background sources. Our Bayesian
extinction fitting tool is introduced, and some necessary
modifications to it are explained. Section 3 presents the
individual fit results for the sources, and how these were
processed to create AV and RV maps. In Section 4, we compare
our findings to earlier studies of IC 63, and use data from
Herschel and Spitzer combined with our maps and modified
blackbody fits to derive the AV-normalized dust surface
brightness and dust optical depth. To conclude, we present
some simple per-pixel fits to the FIR SED, and compare some
of the results for IC 63 with the Horsehead nebula and
NGC 7023.

2. Data and Analysis

2.1. Hubble Observations

The photometric data for the various sources behind IC 63
were obtained through observations with the Wide Field
Camera 3 (WFC3) of HST, using both the UVIS (UV and
visual) and IR (infrared) channels. We obtained photometric
images in the F275W, F336W, F475W, F625W, and F814W
bands with the UVIS chip, and in the F110W and F160W
bands with the IR chip. This set of seven broadband filters was
chosen to cover the stellar SED from the UV to the near-
infrared, and to optimize the extraction of the dust extinction
parameters through SED fitting. The IR measurements provide
a way to resolve the degeneracy between the stellar surface
temperature and the reddening, while the UV filters constrain
the type of extinction. A similar observing strategy, and a more
detailed reasoning for choosing each filter can be found in
Dalcanton et al. (2012).
The UVIS images span a field of view (FOV) of 162 by

162 arcsec, while the FOV for the IR images is somewhat
smaller, at 123 by 136 arcsec (Figure 1). The observing program
consisted of two visits, each two orbits long. During the first visit
(2016 August 26), the F275W and F336W exposures were taken,
followed by F814W and F160W. During the second visit (2016
August 31), the F625W, F110W, F475W, and additional F275W
exposures took place. See Table 1 for the exposure times. The
time difference of several days between the visits is intentional, to
prevent persistence for the IR exposures.
Guard exposures for bright stars were taken for 5 s in F475W

and F814W between the two orbits of the first and second visit,
respectively. To help deal with macroscopic features of the
detector and cosmic rays, a gap line dither pattern was used for
all exposures with UVIS except the guard exposures. For the
IR, a small line pattern was used instead to minimize blurring
due to IR persistence. A post-flash was used for all UVIS
exposures, except F625W.
For all figures that make use of this HST data (such as

Figure 2), the drz images were used. These images are created
by the standard “Drizzle” algorithm of the HST pipeline
Fruchter & Hook (2002), which aligns and combines the
dithered exposures, removes cosmic rays, and artifacts, and
corrects for geometric distortion. The photometry described in
Section 2.3 works with the flt files (for IR) and flc files (for
UVIS). These contain the individual calibrated exposures. The
flc files in particular have been corrected for the charge transfer
efficiency (CTE) of the detector. See the WFC3 data
handbook.6

6 http://www.stsci.edu/hst/instrumentation/wfc3/documentation
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2.2. Ancillary Data

The FIR PACS (Poglitsch et al. 2010) and SPIRE (Griffin
et al. 2010) imaging data were obtained from the Herschel
Science Archive. They were originally part of a key program
for the Herschel Space Observatory (Pilbratt et al. 2010),
“Evolution of Interstellar Dust” (Abergel et al. 2010). We also
retrieved IRAC (Fazio et al. 2004) and MIPS (Rieke et al.
2004) photometric data from the Spitzer heritage archive, taken
under the “Star Formation in Bright Rimmed Clouds” program
(ID 202). An overview of the images can be found in Figure 2,
where these data were reprojected onto the same coordinate
frame as the drizzled HST UVIS images.

2.3. Point-source Photometry

2.3.1. Source Extraction

We employ a technique analogous to the one used to extract
similar photometric catalogs from the PHAT (Dalcanton et al.
2012; Williams et al. 2014), SMIDGE (Yanchulova Merica-
Jones et al. 2017), and METAL (Roman-Duval et al. 2019)
data. Following a precise astrometry and alignment step, the
photometry software DOLPHOT (Dolphin 2016) is used to
automatically detect the point sources, and to determine their

positions and fluxes, based on point-spread function (PSF)

fitting. The details about this photometric extraction routine are
described in Williams et al. (2014). However, we do use the
same tweaks as Roman-Duval et al. (2019). The Tiny Tim PSF
libraries (Krist et al. 2011) are used instead of the Anderson
libraries (Anderson & King 2000). Additionally, for UVIS, we
make use of the flc images, which have already been corrected
for CTE. Therefore, a separate CTE correction step after the
PSF fitting is no longer necessary.

2.3.2. Removal of Spurious Detections

Due to the relatively bright extended emission in IC 63
(stellar light scattered by dust, gas emission lines due to
recombination), the majority of the sources listed by the
automatic source detection algorithm mentioned above are false
positives. This can be seen in Figure 3, where most of the
detections clearly coincide with the extended emission.
Fortunately, we found some simple criteria to separate the
bulk of these spurious detections from the real point sources,
making use of some of the quantities provided by the PSF
fitting routine. These quantities are given in certain columns of
the photometric catalog.
The first criterion is a cut on the relative flux error in the

F814W band. We only keep the sources for which the error to
flux ratio F814W_ERR<0.08 (S/N>12.5). This excludes
almost all of the entries due to the extended emission and some
diffraction spikes of bright stars.
Second, an extra cut on the crowding is performed,

specifically F814W_CROWD<0.25. This removes a handful
of overlapping sources, as well as several remaining detections
located at diffraction spikes. The thresholds for these first two
cuts were obtained through some trial and error. By visually
inspecting plots such as Figure 3, we found that these values
remove most of the spurious detections, while keeping
detections of obvious point sources intact.

Figure 1. Footprints of the observed data and retrieved archival data. The image (credit: Ken Crawford) shows IC 63 and its environment, including the nearby nebula
IC 59, using a combination of exposures in blue, green, red, Hα, and SII filters. Between IC 63 and IC 59, a structure of dark dusty clouds can be observed, which
appears more clearly in FIR images. The gray arrow indicates the direction of the radiation from γ Cas. The physical length scale shown assumes a distance of 190 pc.

Table 1

Filters and Exposure Times as Listed in the Observing Program (Arab 2015)

Channel and Filter λeff Exposure Time

UVIS F275W 275 nm 2×600 s+2×349 s
UVIS F336W 335 nm 2×650 s
UVIS F475W 475 nm 4×450 s
UVIS F625W 625 nm 4×420 s
UVIS F814W 814 nm 4×449 s
IR F110W 1.10 μm 2×350 s
IR F160W 1.60 μm 2×400 s

3

The Astrophysical Journal, 888:22 (23pp), 2020 January 1 Van De Putte et al.



Figure 2. Overview of the stacked and drizzled HST images, and a selection of archived imaging data at longer wavelengths. The IRAC 4.5 and 5.8 μm images are not
shown. The archived data has been reprojected onto the coordinate frame of the HST UVIS images. The color scales show the flux in MJy sr−1.
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Lastly, we remove all sources that are outside the region
where observations exist in all bands, to provide a homo-
geneous data set for analysis. The right panels of Figure 3 show
the positions of the sources that are left after applying the cuts.
There are 520 sources remaining, over the area covered by both
the UVIS and IR chip.

2.4. Physics Model

To model the stellar SED attenuated by dust for each source,
we employ the Bayesian Extinction And Stellar Tool (BEAST;
Gordon et al. 2016). This tool works with a 7D grid of SED
models, one-dimension for each parameter (Mini, t, Z, d, AV, RV,
fA; see the description below and Table 2). For each set of
parameters, the physics model makes a prediction for the
observed SED of the source. This is done by first constructing
models for the stellar spectrum and the extinction curve. The
model spectrum is then extinguished according to this curve
at each of its wavelength points, and integrated over the
transmission curve of each filter.

2.4.1. Stellar Parameterization

In the current implementation, the models for the stellar
spectra are calculated based on four parameters, specifying
the star’s birth mass Mini, age t, metallicity Z, and distance d.

Starting from the first three parameters, the luminosity of the
star and the shape of the spectrum are calculated using a
combination of publicly available stellar atmosphere grids
(Castelli & Kurucz 2003; Lanz & Hubeny 2003, 2007) and
evolutionary tracks (Marigo et al. 2008; Girardi et al. 2010;
Bressan et al. 2012, 2013). The reasoning behind this choice of
parameters can be found in Gordon et al. (2016). The predicted
fluxes generated by this model are purely synthetic.

2.4.2. New BEAST Feature: Distance as an Extra Stellar Parameter

Prior to this work only a single value for the distance
was supported, as this tool had only been applied in the
extragalactic context where a single distance to all stellar
sources can be assumed. For IC 63, setting a single distance is
of course not possible, as all the background stars are located
within the Galaxy, and hence they have a wide variety of
distances. Therefore, in the version of the BEAST used for this
work, the distance was implemented as an extra parameter for
the stellar model.

2.4.3. Extinction Parameterization

The other three parameters describe the shape and magnitude
of the extinction curve. The BEAST features a two-component
dust extinction model, mixing two different shapes (wave-
length dependencies); the type- curve, which models the
average extinction as measured in the Milky Way (MW), and
the type- curve, which models that of the Small Magellanic
Cloud (SMC) Bar (Gordon et al. 2003). For the MW-like type,
the shape of the extinction curve Aλ/AV depends on RV

=l l 
A

A
k R 1

V

V, ( ) ( )

where AV is the total Johnson V-band extinction by the dust,
and RV=AV/E(B− V ). This RV dependence is modeled
according to Fitzpatrick (1999). The SMC-like extinction
model l k , does not depend on RV, and its wavelength
dependence is modeled using an average of the measurements
given by Gordon et al. (2003). Within this model, the value of
AV is a way to express the total dust column, while an increase
in RV is believed to reflect a shift of the grain size distribution
toward larger sizes (Cardelli et al. 1989). A third parameter, f ,
takes a linear combination of shapes  and :

= + -l l l    k R f f k R f k, 1 . 2V V, ,( ) ( ) ( ) ( )

Note that this extra degree of freedom is necessary because
the type- and type- curves only describe the average MW
and SMC extinction. For individual sightlines, both compo-
nents are needed to model the scatter on the RV-dependent
relationship of Cardelli et al. (1989). There are certain
sightlines in the MW that exhibit SMC-like extinction in the
UV (Valencic et al. 2003), as well as sightlines in the SMC
with MW-like extinction (Gordon et al. 2003).
This extinction model is then applied to the stellar spectra

generated from the first four parameters.

2.4.4. Model Details for This Work

The details about the parameter ranges and their spacing in the
BEAST physics model grid are summarized in Table 2. Suitable
ranges and resolutions were obtained through a combination of
previous experience (such as Table1 in Gordon et al. 2016), some

Figure 3. Illustration of the cleaning step, using a zoom-in on the tip of the
nebula. The orange boxes indicate the positions of detected sources in our
catalog, before (top) and after (bottom) applying the criteria described in
Section 2.3.2. All of the detections due to the extended emission are removed,
while only a couple of the stars are missed.
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trial and error, and some compromises considering computational
resources. Assuming a distance to IC 63 of about 190 pc, we
initially considered a lower bound of 150 pc for the new distance
parameter. A test run for the fitting showed that only a handful of
sources were closer than 500 pc. Therefore, we decided to change
the lower bound for the distance to 500 pc, providing a slight
increase in resolution. Analogously, we confirmed that an upper
bound of 15,000 pc was sufficient to fit all observed stars.

The parameters shown in the table give rise to about
5.3×109 models, and without compression, about 1.6 TB of
disk space is needed to store this grid. The resolution for most
of the parameters is relatively low, because a relatively large
range and number of bins is needed for the distance. For our
purposes, however, a relatively rough estimate of AV and RV

suffices, since we only need the average values over relatively
large pixels. Within such a pixel, we found the range of AV and
RV values to be broader than the chosen resolution. This spread
can either be caused by the different stellar distances resulting
in a different contribution by the diffuse Galactic ISM, or by
small-scale variations in the cloud. The spread on AV and RV

within each pixel will be used to estimate the error of the mean
values. In any case, the precision on the AV and RV maps is
mostly limited by the number of sources and the chosen pixel
size, and not by the precision of individual AV or RV

measurements.
The priors are shown in the rightmost column of Table 2. For

the new distance parameter, the prior is chosen to be flat as a
function of dlog( ). As a consequence, for some stars a
degeneracy exists between the estimated distance and mass (or
luminosity): an observed star can either be far away and of a
luminous type, or nearby and of a fainter type. The multiband
photometry partly resolves this degeneracy, and we did not find
this effect to be problematic for constraining the extinction.

In the future, more physically motivated priors could be
implemented for the distance, such as an exponentially
decreasing space density (Bailer-Jones et al. 2018). Another
option would be to make direct use of the parallaxes provided
by Gaia DR2 (Gaia Collaboration et al. 2016, 2018; Luri et al.
2018), and use them as source-specific priors in a post-
processing step. However, since there are only 59 out of ∼500
stars in our data set with Gaia data available, this would have a
limited impact on the results of this work. Moreover, we did
cross-check the Gaia data with our fit results, and found that
the parallaxes derived from the distances were consistent with
the fairly uncertain Gaia parallaxes (Figure 4).

2.5. Noise Model

2.5.1. Artificial Star Tests

By applying the physics model to all combinations of the
seven parameters, a grid of theoretical SEDs is constructed,
representing the observations in the relevant filters under perfect
circumstances. But in a realistic setting, when the flux is
measured from imaging data, the flux values that are extracted
for a certain point source are not only affected by shot (Poisson)
noise and the PSF, but also by nearby objects, various sources of
background, instrumental artifacts, and the extraction algorithm
itself. Nearby point sources can create crowding effects (Gordon
et al. 2016), which increase the noise and cause an over-
estimation of the flux. However, since the density of observed
stars in IC 63 is very low compared to the size of the PSF, these
effects are negligible. For IC 63, the main expected contributor
to the observation model is the presence of a foreground and
background of extended emission, such as Hα emission of the
gas or stellar light scattered by dust grains.
To quantify how significantly one of the model SEDs differs

from the observed SED of a certain star, we create a model
describing the uncertainty (error σ) and systematic deviation
(bias μ) for each flux. While the photometric catalog produced
by the PSF fitting does contain values for the uncertainty on
each flux (which we used to perform the input cleaning step),
these do not cover all possible error sources. Instead, we treat
the errors as a property of each theoretical model: for each grid
point i, we aim to calculate the error or uncertainty σi and a bias
μi in every band.
The starting point for this calculation is a set of artificial

star tests (ASTs). The input for a single AST consists of a
theoretical SED and a position. These parameters are used as
input for the fake star mode of DOLPHOT. This routine will
insert a fake star with the given SED into each of our
observations, simulate the PSF and photon noise, and then
perform the exact same photometric extraction routine. The
result is a set of output fluxes, representing a mock-observation
of a point source with that specific theoretical SED. By putting
the same source at many different positions, statistical
information is obtained about the deviations that occur when
observing that specific SED i, from which appropriate values
for σi and μi can be derived.
Ideally, such a set of tests would be performed for each SED

i in the physics grid, leading to an individual measurement of
the noise for each model. However, performing a single AST
takes about 2 minutes of computing time on a modern

Table 2

Specification of the Parameter Grid for the Physics Model

Parameter Description Min Max Resolution Prior

tlog( ) (yr) stellar age 6.0 10.13 0.3 constant SFR

Mlog ini( ) (Me) stellar mass −1.0 2.5 variablea Kroupa IMF

Zlog( ) (mass fraction) stellar metallicity −3 −1.2 0.15 flat in Z

dlog( ) (pc) distance 2.7 4.2 0.037b flat in dlog( )

AV (mag) dust column 0 10.05 0.08 flat
RV dust average grain size 1.5 5.5 0.5 flat

f dust mixing parameter 0 1 0.2 flat

Notes.
a Supplied by isochrone model grid.
b This corresponds to 40 logarithmic steps from 500 to 15000 pc.
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processor, so doing this for the billions of models contained in
the physics grid is practically impossible. Therefore, it is
customary to produce a sample of SEDs that is representative
of all the models relevant for fitting the observed sources.

2.5.2. New BEAST Feature: Uniform SED Sampling by Magnitude

Since the distance parameter can strongly scale the model
SEDs, faint stars at long distances and luminous stars at short
distances will have model fluxes that are far away from the
minimum and maximum of the observed catalog. Their noise
parameters are not useful for fitting our observed SEDs.
Therefore we only consider models that have fluxes that fall
between the minimum and maximum of the observed SEDs,
with 1 magnitude of leeway to allow for a range of uncertainty.
The magnitude ranges of the remaining models are then
discretized into 25 bins for each filter, and SEDs are chosen
randomly from the physics grid and added to the AST input
list. For each SED that is chosen, the corresponding magnitude
is determined in each band, so we can keep track of the number
of ASTs that will cover each filter-mag bin. The algorithm
continues until we have 50 samples in each bin, and the
resulting set of AST input SEDs will have a magnitude
distribution that is more or less flat in each filter.

Figure 5 shows the difference between the original method
which evenly samples by stellar age, and the new method
which evenly samples by magnitude. To show the magnitudes
that need to be covered, the distribution of the observed catalog
is also shown. The original method does not sufficiently sample
the low brightness range, while simultaneously producing
many samples that are several magnitudes brighter than the
maximum of the observed catalog. As designed, the new
method produces a certain minimum number of samples for
each flux bin, within a more suitable range. The peaks that
appear in the distribution depend on the contents of the physics
grid and the brightness cutoffs. The extra stars that populate
those peaks were picked to fill the rarer flux ranges in other
filters. Note that the new method still produces many samples
outside of the observed flux range, because we only require that

at least three bands fall within that range. This allows for a
larger variety of SED shapes to be picked for the ASTs.
Using this approach, a list of about 2500 SEDs was

generated. This list is duplicated multiple times while giving
a random position to each SED, leading to 180,000 unique
ASTs. The list of ASTs was split up into a set of jobs, each of
which have a manageable runtime. These jobs were executed
across three machines with the help of GNU parallel
(Tange 2011), using 78 of the available cores over the course
of 3 days. The results were then merged and processed into a
single fake star catalog, of the same format as the one
containing the observed photometry.

2.5.3. From ASTs to Noise Model

Before the fake star catalog is further processed by the
BEAST to generate the noise model, the same selection
function used in Section 2.3.2 is applied. This way it is ensured
that the observation model generates a set of noise parameters
that is representative of our cleaned ensemble of observed stars.
Note that this also removes ASTs which are missing a flux in
one or more bands, which includes those positioned outside the
IR chip’s FOV. After this step, about 80,000 fake stars remain.
Although a large fraction (100,000 out of 180,000) of the fake
stars ended up either undetected or rejected, we confirmed that

Figure 5. Red: magnitude distribution produced by the new sampling method,
which aims to provide a minimum number of samples for each magnitude
interval. Blue: the old sampling method, which simply picks a fixed number of
SED models from each stellar age bin. Black outline: magnitude distribution of
the observed catalog (only fluxes > 0 shown).

Figure 4. Comparison of the Gaia DR2 parallaxes and the parallax derived
from the distance expectation values dexp, for the 59 sources present in both
catalogs.
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the remaining catalog still sufficiently covers the required
magnitude range, as in Figure 5.

To generate the noise model for each SED in the physics
grid, the BEAST’s most conservative method is used, which
considers each flux individually and as such ignores any
correlations between the bands. This method minimizes the
number of ASTs needed, which is already quite large due to the
broad range of fluxes needed to model all the distances.
Similarly to how the AST input SEDs were chosen, the flux
ranges of the model SEDs are divided into 30 logarithmic bins.
For each bin, the input and output SEDs of the relevant ASTs
are compared, producing statistical values for the error and the
bias in that flux range, for a specific filter. By interpolating
between these bin-averaged values, each filter now has a model
that predicts σ and μ as a function of the theoretical flux F. This
behavior is shown in Figure 6.

One of the main features of the noise model is that the bias
seems to be negative for all but the brightest fluxes, in all
bands. This means that the fluxes extracted by the photometry
routine are on average smaller than the input fluxes of the fake
stars. To take this effect into account, we forward model the
observed fluxes by adding the value of μ to the theoretical
model F, as shown in Equation (6) of the next section. In this
case specifically, the negative value for μ makes it possible to
fit our model to the many stars with negative flux measure-
ments in the UV. The theoretical model cannot produce
negative flux values, but adding the bias shifts these values
down to the correct level.

For weak fluxes, the constant slope of the relative σ and μ
implies that the noise parameters are dominated by photon
noise and/or constant features in the image. For stronger
fluxes, the relative error levels off while the bias becomes
positive (but much smaller than the error). This means that
fractional deviations dominate instead, which are most likely
caused by the PSF or imperfections in the photometry routine.
For all bands except the UV band, the absolute value of μ
seems to be smaller than σ. This means that the exact value of μ
will have less of an effect on the results, as it only causes
deviations within 1σ.
Since we suspect that the background/foreground extended

emission provides the main contribution to the noise model, we
experimented with a noise model that is stratified according to
the intensity of this emission. In the Appendix, we explain how
we determine 4 regions of similar background/foreground
intensity, and create a separate noise model for each of them.
Ultimately, the fitting results obtained using these individual
noise models were not found to be significantly different, so the
rest of the analysis was performed using the single noise model
presented in this section. However, these tools integrate well
with and improve upon the existing code that deals with
varying levels of crowding, and have therefore been incorpo-
rated in the main BEAST branch.

2.6. Fitting Procedure and Output

Once the necessary models have been set up, the fitting
step comes down to calculating a 7D posterior probability
distribution

q q q qµ SP F P F F P, 3obs obs( ∣ ) ( ∣ ( ) ( )) ( ) ( )

for each of the observed point sources. Here, Fobs is the
observed SED, and F(θ) and Σ(θ) represent the SED and the
noise parameters for one of the models, evaluated at a specific
point θ of the 7D parameter grid. The different priors listed in
Table 2 are multiplied to form the 7D prior P(θ). The grid point
θ at the global maximum of the posterior distribution is
considered to be the best-fitting model. The likelihood function
is a 7D multivariate Gaussian:

q qS = c-


P F F e,

1
4obs

22

( ∣ ( ) ( )) ( )

c q q q= D D-with 5T2 1( ) ( ) ( ) ( )

q m q qD = - -F Fand 6obs( ) ( ) ( ) ( )

where the dimension = 7 equals the number of fluxes, and
q s q= diag( ) ( ( )) and μ(θ) are the covariance matrix and the

bias vector. The values for σ(θ) and μ(θ) are calculated as a
function of F(θ), as described in Section 2.5.3. Note that  is
diagonal for this work, since this calculation is done for each
band individually.
In principle, the whole 7D log-likelihood can be written to

disk for each star. In practice, only a local area around the peak
of the posterior distribution is written out. Additionally, the 1D
marginal probability distributions for each parameter are also
available. For our purposes, however, some statistics derived
from the posterior are sufficient. For all the parameters, the best
fit, the expectation values, and the 16th, 50th, and 84th
percentiles are calculated and stored in a table that contains one
row per source. The χ2 of the least-squares model and Pln of
the best-fitting model are also stored. The former gives us some

Figure 6. Flux-dependent model of the bias μ and uncertainty σ for the shortest
and longest wavelengths. The vertical axis is a symmetrical log scale (linear
between −10−3 and 10−3

), which shows the sign change of μ. The absolute
value of μ is also plotted, showing that the bias correction is within 1σ almost
everywhere.
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insight about the quality of the grid and the noise model, and
the source itself. A high χ2 usually means that the grid range or
resolution is not sufficient, that there might be something
wrong with the noise model, or that a source in particular has
an SED that is very much unlike that of an extinguished star.

3. Results

3.1. Post Processing

Following the workflow described in the previous section,
we obtained a catalog for all 520 sources (Figure 3) that were
left after applying the criteria from Section 2.3.2. This catalog
contains statistics for the seven main parameters, as well as a
set of derived stellar quantities: current massMact (derived from
age and initial mass Mini), radius R, luminosity Llog( ), surface
gravity glog( ), temperature Tlog( ), and absolute bolometric
magnitude mbol. The distribution of the expectation values of
the seven parameters and the correlations between them are
shown in Figure 7, and the χ2 distribution is shown in Figure 8.
The latter seems to be slightly peaked around 7, which could
naively be attributed to the fact that we have measurements in
seven bands. But in practice, the distribution of this c2 is not as
simple to interpret, because there are significant correlations
between the observed fluxes in different bands. The value can
only be used as a rough check that the fits are reasonable.

The two bottom panels of Figure 8 show that for almost all
sources with a higher χ2

(30–200), the width of their 1D
posterior AV and distance distribution is near the minimum
cutoff. This means that the resulting fits are acceptable despite
their high χ2 values; their accuracy is simply limited by the
resolution of the grid. Decreasing the AV and distance spacing
will likely improve the χ2 and make the AV distributions
narrower, but we consider the precision achieved with the
current parameters sufficient for the analysis that follows. Since
the distance is a nuisance parameter which is integrated over to
obtain the AV and RV expectation values, increasing the distance
resolution will arguably have a negligible effect.

Based on the corner plot of Figure 7, there seem to be no
correlations or degeneracies that could cause problems. The
RV−fA relationship is to be expected, as the type- dust
extinction component has a fixed RV=2.74 (Gordon et al.
2016); the results with low fA have an RV which is closer to this
value. It is however remarkable that the population of stars
seems to have a bimodal distribution of the fitted initial mass
Mini. Figure 9 shows a color–magnitude diagram, and it can be
seen that the models without extinction seem to have a gap
along the color axis. Upon closer inspection of the derived
parameters, the high-mass group centered at around 0.8Me has
temperatures ranging from 4300 to 6200 K, which corresponds
to main-sequence stars. For the low-mass group at 0.3Me, the
temperatures range from 2900 to 3600 K, which means it
entirely consists of red dwarfs. Looking at the fitted distances
in Figure 7, the red dwarfs are only observed from 1000 up to
7300 pc, while the more massive, hotter stars are distributed
across the entire range from 1500 to 15,000.

To check whether this feature could be produced by two
different populations, we created a simulated catalog of stars
around the line of sight toward IC 63, using the Besançon
Galaxy model (Robin et al. 2003). When no magnitude limit is
used (AbsMag_max=99, all observed band limits at 99), the
resulting log-mass distribution forms a broad peak between
roughly 0.05 and 1.4Me. At the center of this peak (0.4Me), a

small dip does appear, of about 10% of the height of the
distribution. We experimented with some magnitude cuts for
the generated catalog, and these generally caused the dip in the
log-mass distribution to become less pronounced. Concluding,
it is not out of the question that the observed mass bimodality
could be caused by the intrinsic mass distribution along the line
of sight. While we suspect the observational selection function
and possible fitting artifacts to have a significant effect, it
remains unclear why exactly there is such a prominent gap in
the distribution of the fitted masses.
We perform a second cleaning step, which removes sources

from the output catalog for which the obtained parameters are
likely to be incorrect. For certain sources, the shape of the
observed SED does simply not resemble that of a star with a
certain extinction. The reason for this can be physical, because
it is a type of star not covered by the BEAST model, or because
there is some other phenomenon at play which is not common
enough across the image to be captured by the noise model
(e.g., unusually strong scattered light, background galaxy,
diffraction spikes). Most of these are easy to spot, with χ2

usually being several hundreds or thousands. Based on the
histogram shown in Figure 8, we apply a cutoff of χ2<100 to
remove the worst offenders. They have been highlighted in red
in Figure 7.
There also seems to be a group of stars for which the χ2 is

not necessarily large, yet their AV is unusually high (7mag).
When inspecting the other parameters for these stars (Figure 10),
they all seem to have high temperatures ( Tlog 3.8), luminos-
ities ( L Llog 1 ), masses ( Mlog 1.3ini ), and distances
(d10,000 pc). This likely points to a type of star that the
BEAST fails to fit correctly, due to the necessary stellar models
not being present. The resulting parameters might provide an
acceptable SED, but their values are likely unphysical. In the
second panel of Figure 10, a gap can be seen at a temperature of

=Tlog 3.87. We choose to place a cut on the temperature
there; all stars that have an expectation value or best-fit value of

>Tlog 3.87 are deemed suspicious, and are removed from the
catalog. The stars that were removed using this cut are highlighted
in gray in Figure 7.
This phenomenon has some similarities with a previously

documented failure case for the BEAST, which occurs when an
attempt is made to fit the SED model to a Thermally Pulsing
Asymptotic Giant Branch (TP-AGB) star.7

3.2. AV and RV Maps

The main objective of this work is to look for signs of dust
evolution, by mapping the spatial variations of the AV and RV

parameters. The maps, shown in Figure 11, are constructed by
creating a rectangular grid, aligned with the R.A. and decl.
axes. The angular size of each map pixel is roughly 25″, which
provides us with about 10–20 sources per pixel (except at the
edges, as indicated with a green n on the figure). The AV and RV

values for these pixels are calculated by considering all the
stars that fall within their boundaries, and taking the median of
the expectation values. Some of the pixels have no sources in
them at all, mainly due to geometry effects, as the grid does not
line up with the edges of the IR data. These pixels are indicated
with a red X. The error for each pixel is estimated by
computing the standard deviation for the same set of values,
and dividing it by the square root of the number of sources N.

7 https://beast.readthedocs.io/en/latest/beast_issues.html
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The typical error is ∼0.25 mag for AV, and ∼0.15 for RV. To
show the size of the errors versus the size of the variations, cuts
through these maps are shown in Figure 12. The numeric
values of the maps are given in Tables 5 and 6 in the Appendix.

To highlight the variations of AV (RV) across the nebula,
some contours are shown that have been calculated directly
from the maps. The contour levels for the maps were chosen by
taking four linearly spaced values between the 16th and 84th
percentiles of the total range of AV (RV) values. The same
contours are plotted onto the SPIRE 350 μm image, to indicate
the spatial correspondence between features of the AV and RV

maps and those of the FIR emission.
It should be noted that AV does not drop to zero outside of

the visible gas of the nebula. In the area at the bottom of the
map, just outside the visible edge of the gas, an AV>2 is still
observed while the 350 μm emission reaches a minimum (near
the background level of ∼22 MJy/sr). A selection of 50 stars in
this area, has an AV distribution centered at ∼2.5 mag, with a
spread of 0.70 mag. They have a mean AV of 2.51±0.10, and

we assume that this is the extinction produced by material in
the background (or foreground) of IC 63.
This simplistic method of accounting for the diffuse Galactic

extinction comes with an important caveat, especially since
this value is larger than the residual AV, i.e.,the extinction
by the nebula. Since the stars are at widely varying distances
(1–15 kpc), the extinction between each star and the cloud
could be very different. To investigate whether this could
contaminate the structure of the AV map, we examined the
distance distribution in each pixel by making maps of the 16th,
50th, and 84th percentiles of the observed set of distances: d16,
d50, and d84. These maps did not show any obvious structure
that could drastically contaminate the observed trends in
AV. This was further confirmed by examining scatter plots
(Figure 13) of the AV pixels versus the corresponding distance
distribution percentiles. Furthermore, the range of d50 values
for the pixels is quite constrained, with almost all the values
being between 4 and 6 kpc, with more or less a flat distribution.
Similarly d16 lies between 2000 and 4000 for most pixels, and

Figure 7. Distribution and correlation of the expectation values for the fit parameters, of all 520 sources. The density of the points is represented by the color scale.
Red: stars with χ2>100. Gray: stars with >Tlog 3.78. After applying these cuts, 462 stars remain.
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d84 lies between 5000 and 8000. Therefore, the diffuse Galactic
extinction introduces an extra source of noise caused by
variations in the average distance, but we do not expect it to
produce false trends.

4. Discussion

4.1. AV

The AV map shows that the extinction peaks at 00h59m02s; 60°
53′30″, with AV=(3.91± 0.23) mag. This is near the tip of the
nebula. Given the background AV estimate of the previous section,
the average amount of extinction added by the tip of IC 63 is hence

D = A 1.41 0.25 mag. 7V ,tip ( ) ( )

The higher AV values seem to lie along a ridge-like feature
containing this maximum, more or less parallel to the direction
of the radiation (see arrow in Figure 1). The extinction of this
part in the nebula typically ranges from 1.0 to 1.4 mag. With
the exception of the bottom row of the map which we used to

measure the AV background, we find a minimum AV of 3.0 mag,
or a net extinction of at least 0.5 mag for the rest of the values.
In the top right of the map, a feature with a much higher

extinction (AV∼ 5 mag) can be seen, 2.5 mag when subtracting
the background. The cuts in Figure 12 show that this peak is
significantly more pronounced than the other features. On the
full version of the SPIRE map, this feature is a bright part of a
larger structure in the FIR, which does not have optical
emission. In the NIR (e.g., F160W in Figure 2), it can be seen
very faintly. We do not consider this structure part of the PDR,
and we ignore its contribution in the analysis that follows.

4.2. RV

The RV measurements over individual stars have a spread of
0.5, and a mean of RV=3.556±0.001 (the error on the mean
is this small due to the number of sources in our sample, but
excludes systematics). The contours in Figure 11 seem to
indicate a slight drop in RV, going from ∼3.6 at the front, to
∼3.4 at the back of the PDR. Given the errors on the map of
about 0.15, this drop is not significant when comparing
individual pixels. Instead, we first examine the diagonal cuts in
Figure 12. For both the orange and the blue curves, a slope is
observed, and the difference between the second and fourth
points is larger than the error bars. Lastly, to quantify the
significance of the RV decrease, we focus on the two magenta
regions shown in the same figure. We gather the individual RV

results for the stars in each of the two regions, and calculate the
means. For the front region (bottom right rectangle in
Figure 12), we find = R 3.63 0.08V

front , and for the back
region = R 3.42 0.05V ,mean

back . A standard two-sample t-test
comparing the two sets of RV values yields t=2.25, with a

Figure 8. Top panel: χ2 histogram for the fit results and the theoretical
distribution for clog 2( ) that would naively be expected for 7 degrees of
freedom. Bottom two panels: relationship between χ2 and the width of the 1D
posterior distributions for AV and dlog( ) (defined by their 84th and 16th
percentiles). The color scale visualizes the density of overlapping points on the
plot. The dashed line indicates χ2=30. Almost all sources that have a χ2

higher than 30 have narrow posterior distributions for AV, dlog( ), or both.

Figure 9. Color–magnitude diagram of the (nonnegative) raw data and the
expectation values of the theoretical model fluxes. The dashed lines indicate the
median magnitude and color of each set. Bright sources seem to have colors
and magnitudes that are closely matched, as can be seen from the nearly
overlapping crosses and diamonds. For weak sources, this overlap disappears
due to noise.
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two-tailed p-value of 0.02, indicating that the mean RV differs
significantly between the front and the back region.

One also has to take into account that the observed RV is a
mix of that of the nebula and the background. Since the AV of
the background (∼2.5 mag) is larger than that of the nebula
(0.5–1.4 mag), the drop in RV of the dust in IC 63 will be
stronger than what is observed. We can write the measured RV

in terms of the extinction parameters of the two parts: AV
B( , RV

B)

for the background, and AV
N( , RV

N) for the nebula
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Knowing AV and RV from our maps, and using our value of
=A 2.51V

B mag obtained earlier, we just need to assume a

value for RV
B. It should be noted, however, that Equation (9) is

quite sensitive to the assumed value of RV
B. For example,

picking a value near the Galactic average of ∼3.0 often leads to
very high or even negative values for RV

N . If we take the

average RV over the same region that we used to determine AV
B,

we obtain =R 3.6V
B .

The galactic RV map by Schlafly et al. (2017) shows values
between 3.0 and 3.7, with variations at kiloparsec scales. While
there might still be variations at smaller scales, we assume
that AV

B and RV
B stay constant over our FOV. With these

assumptions, we find that RV
N ranges from 3.7 at the bottom

right of the map (tip of the nebula), to values between 2.5 and
3.3 near the top left. Since RV correlates with the average grain
size, this points to the existence of processes making the
average grain size of the dust population larger at the front of
the nebula. Possible candidates are coagulation and accretion at
the tip of the nebula due to higher gas densities (Stepnik et al.
2003; Köhler et al. 2015).
Andersson et al. (2013) determined AV and RV for 14 observed

background stars of IC 63. This was done using a spectral
classification of the stars, followed by a calculation of RV using
the relation RV=1.12×E(V−K )/E(B−V )+0.02 (Fitzpatrick
1999). Via the total-to-selective extinction and the color excess E
(B−V ), AV was then obtained. Unfortunately these stars are not
present in our sample, as they were either too bright (and removed
per Section 2.3.2), or simply outside of the FOV. They obtained an
average valueá ñ = R 2.2 0.5V , which is significantly lower than
the values listed by our RV map. We do not believe that this is due
to different physical conditions, as the positions of the stars used in
Andersson et al. (2013) probe different areas of the cloud: some are
at the front edge, and others are behind or inside the cloud. The
low RV values listed for all of these stars, and the fact that there is
no overlap between the samples, make it hard to compare these
results.

4.3. Column Density to AV Ratio

Our results have an average AV across IC 63 of 3.3 mag, or
0.8 mag with the background subtracted. As a check on the
validity of this measurement, we make an estimate of the NH

(column density of hydrogen nuclei) to AV ratio.
The relationship between the extinction AV and the column

density NH of hydrogen has been found to be linear, on average
in the MW. Different values for the ratio á ñN AVH have been
found, by using far-UV extinction observations (Bohlin et al.
1978; Diplas & Savage 1994) and observations of X-ray
sources (Reina & Tarenghi 1973; Gorenstein 1975; Predehl &
Schmitt 1995; Güver & Özel 2009). The most recent
measurements by Zhu et al. (2017) show that á ñA NV H is more
or less invariant across the Galaxy, and NH=(2.08± 0.02)×
1021AV cm

−2mag−1.

Figure 10. Illustration of the suspicious, high-AV fit results described in
Section 3.1. Every dot corresponds to the fit result for a single star. Red: stars
removed by applying cuts on the temperature ( Tlog exp and <Tlog 3.87best ).
Most of these high temperature stars also have high luminosities (middle
panel), as well as high distances and masses (bottom panel). This is suspicious,
and despite their seemingly normal χ2 values (top panel), these fit results are
likely to be incorrect.
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The HI4PI 21 cm survey (HI4PI Collaboration et al. 2016)
contains two sightlines which cover our area of interest;
the listed H I column densities are 4.47×1021 cm−2 and
5.53×1021 cm−2. We assume that the average atomic
hydrogen column density for IC 63 is somewhere between
these two values: NH I=(4.50± 0.03)×1021 cm−2. Since we
cannot distinguish the 21 cm contribution of IC 63 from that of
the background, we assume that the NH I/AV ratio is the same
for IC 63 and its background, and we divide by the average

=A 3.3 magV
total .

= = ´ - -N

A

N

A
1.36 10 cm mag . 10

V V

H I H I
total

total
21 2 1 ( )

Andrews et al. (2018) used H2 excitation diagrams based on
IRS spectra from Spitzer to determine the gas temperature and
column density for the molecular component. They found that
it consists of two components, of which the cooler one has a
temperature of T=(207± 30) K and a column density of

= ´ -N 2.3 10 cm ,H
20 2

2
while the warm component has

T=(740± 47) K and = ´ -N 9.3 10 cmH
17 2

2
. Given the

dominant (cold component) value from Andrews et al. (2018)
for the column density of H2, and our background subtracted
value for the average AV=0.8mag, we find a N A2 VH2

ratio of

= ´ - -N

A

2
5.75 10 cm mag . 11

V

H 20 2 12 ( )

Since we are looking at the PDR, we expect the medium
to be mostly neutral. IPHAS data (Drew et al. 2005;

Barentsen et al. 2014) show that most of the Hα emission
is emitted at the bright, irradiated edge of the cloud.
Additionally, the PDR model of Jansen et al. (1995) predicts
that the H+ abundance is at least six orders of magnitude
lower than that of H or H2. Therefore, we will not take into
account the column density of ionized hydrogen here. The
combined value is

= + = ´ - -N

A

N

A

N

A

2
1.94 10 cm mag 12

V V V

H H I H 21 2 12 ( )

This value is quite close to the value from the literature
mentioned above. Looking for a separate velocity component
in the H I data, and combining our measurements with better
MIR spectroscopy, would provide a way to map the molecular
fraction and the gas to dust ratio for IC 63.

4.4. AV to Surface Brightness Relation

We investigate how our AV and RV maps compare to the dust
emission measured using Spitzer and Herschel data. To look
for a relation between AV and the surface brightness in the
different bands, the IRAC, MIPS, PACS, and SPIRE maps are
first reprojected onto the same coordinate grid, using the
reproject package for Python.8 For each reprojected image,
the pixels are matched with the ones from the AV map, and
the reprojected fluxes are plotted against the AV map values, as
shown in Figures 14 and 15. For all bands, we find a positive

Figure 11. Left: maps of AV and RV and their contours. The contour levels are indicated on the respective colorbars. Middle: errors on the map values. Right: the same
contours overplotted onto a SPIRE 350 μm image. Red X: No sources. Green n: low (�5) number of sources.

8 https://reproject.readthedocs.io/en/stable/
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correlation between AV and the observed flux. Upon applying
the same analysis to the RV map, no significant correlation
between any of the fluxes and RV was found.

For each panel in Figures 14 and 15, we determine a slope
and an uncertainty using a linear fit, which is weighted
according to the errors on the AV pixels. The inverse of this
slope gives us the flux produced per AV-unit of material present,
which can be interpreted as an emission coefficient for the
dust. Figure 17 shows these inverse slopes as a function of

wavelength. We applied the same technique to our HST data
(Figure 16), showing that this relation extends into the visual
and UV, albeit less significant and with greater scatter. As a
consequence, the error bars for the emission coefficients are
larger. This is to be expected, as the observed flux is more
complex for these wavelengths. There are contributions from
the gas emission, as well as scattered light from γ Cas.
These measurements can serve as useful observational

constraints for future SED modeling efforts of IC 63 or
similar objects, especially those that model the dust composi-
tion and emissivity. We therefore present the values and their
uncertainties in Table 3. In the next section, we will use these
results to fit a simple dust emission model.

4.5. Model for the Average Dust SED

The surface brightness of dust with a single equilibrium
temperature Td is given by

l k l l= Sn nS B T; 13d d( ) ( ) ( ) ( )

where κ is the grain absorption cross section per unit dust mass
as a function of λ, Σd is the dust surface mass density and Bν is
the Planck function. The subscript ν indicates that we are using
quantities per unit frequency (e.g., MJy). Within this model
with κ and Σd as parameters, κ and Σd are degenerate. But the
quantity that we have measured, that is displayed in Figure 17
is actually the surface brightness per unit of AV:

l
k l l=

Sn
n

S

A A
B T; 14

V

d

V

d
( )

( ) ( ) ( )

So if a value for the ratio Σd/AV is known, it becomes possible
to measure κ. In practice, we use a modified blackbody model

Figure 12. Cuts through the AV and RV maps. Arrows: starting point and direction of each cut. Curves and error bars: value and error along each arrow, color coded.
Different offsets have been added on the x-axis for legibility reasons. The magenta rectangles indicate the two regions used to determine the significance of the RV

decrease.

Figure 13. Histogram and scatter plot for the distance percentiles in each pixel.
Each point corresponds to one of the pixels of the AV map. The plot for d84 is
not shown here, but shows a similar scatter.
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of the form
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as in Gordon et al. (2014). The scale factor κeff, 160 determines
the effective value of κ at 160 μm. The second and third
parameters are the effective spectral index βeff and the effective
temperature Teff. These parameters are called effective because
the observed surface brightness per AV is a mix of measure-
ments along different sightlines, and each sightline is a mix of
different dust populations. By using the well known relation-
ship

t k= = SA 1.086 mag 1.086 mag 16V V V deff, ( )

we can write the model as
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where we drop the “eff” subscript for conciseness. Therefore,
by fitting this model to our measurements we can determine the
average 160 μm to V band opacity ratio. We treat the ratio
τ160/AV=κ160/1.086κVmag−1 as a single fit parameter.

We found that the sum of two modified blackbody models
works well to fit the slopes calculated from the Herschel and

Spitzer maps simultaneously. We use a least-squares fitting
approach using the standard options of Astropy’s modeling
module. Three fit results are displayed in Table 4, and the
corresponding curves are shown in Figure 17.
The first modified blackbody was fitted to only the PACS

and SPIRE points, with a total χ2 of 0.61. The second model fit
included the IRAC points and the MIPS 24 μm point, but not
the IRAC 3.6 μm point. The latter was excluded because it is
systematically higher than the IRAC 4.5 point, preventing the
model from properly fitting the other data points. For this
model, the κ-ratio and β parameters are not well constrained,
and χ2 in this case is 3.55. The estimated Pearson correlation
coefficients between the three parameters are all over 90%,
which is a known problem for this parameterization (Gordon
et al. 2014).
Fixing β=2.06 for both models gives stronger constraints

on the other two parameters, especially on the temperatures.
Lastly, we simultaneously fitted the sum of the two modified
blackbodies with the same fixed value for β, leading to the
gray, dashed curve in Figure 17. For this two-component
modified blackbody model, χ2 is 4.18 when fitting the four free
parameters to our nine data points, and the resulting parameters
are shown on the third line of Table 4.
Before we discuss these fit results, some remarks should be

made about the meaning of these two models and their
temperatures. The use of two modified blackbody components
does not relate to the existence of a warm and a cool
component of the gas in the cloud (Andrews et al. 2018).
Instead, they each model a different wavelength range in the

Figure 14. Correlation of AV with the reprojected Herschel fluxes. The black line shows the best-fit slope. The Pearson correlation coefficient ρ is shown, together with
the p-value for a two sided hypothesis test, where a slope of 0 is the null hypothesis.
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SED, for which the observed flux is emitted by a different
subpopulation of the grains.

The first component and its temperature parameter T1 can be
interpreted rather straightforwardly, as the observed flux at the
Herschel wavelengths consists of thermal continuum emission
from big grains. These grains are in thermal equilibrium with
the local radiation field, and T1 can be used as a measure of
their average temperature. This temperature is expected to be
higher for grains residing in the low density PDR region where
the radiation field is stronger, and lower for those in the cold
dense parts of the cloud.

On the contrary, the flux in the Spitzer bands originates from
VSGs and PAHs. The VSGs are heated stochastically by
photons, and the resulting SED shows a complex behavior with
several peaks in the MIR (Draine & Li 2001). Despite this, the
MIR SED (except the IRAC 3.6 μm point) seems to be well
described by a modified blackbody with effective temperature
T2.

Using the same PACS 70 and 160 μm images, and assuming
a fixed β=1.8, Andrews et al. (2018) derive a color dust
temperature of 30 K in IC 63. They also perform single-
component modified blackbody fits with the same fixed β at the
tip of the nebula, and again obtain a dust temperature of ∼30 K.
This matches well with our value for T1. For the gas
temperature, they report two values: 207±30 K from H2

excitation diagrams, and 130 K from a PDR model. Note that
incidentally, these values for the temperature are of the same
order of magnitude as T2. We find it unlikely, however, that
these two values would be coupled, as the physics driving the

MIR emission by VSGs and PAHs is very different from the
processes driving the H2 excitation (Habart et al. 2011).
As for the optical depth, Andrews et al. (2018) find that

τ160=8×10−4. Using our value of AV,tip=1.41 mag yields
τ160/AV=5.7×10−4mag−1, which is compatible with our
value for τ160;1/AV. Multiplying the last two values for τ160/AV

in Table 4 with 1.086 (Equation (16)) gives us the result

k
k

=  ´ -6.98 0.88 10 19
V

160;1 4( ) ( )

k
k

=  ´ -2.91 0.53 10 . 20
V

160;2 9( ) ( )

In the above equations κV is the combined V-band cross section
of the two components. Since the first component dominates,
the value of κ160;1/κV will depend on the optical properties of
the big grains. The second component makes only a small
contribution to the total value, and therefore κ160;2/κV will also
depend on the relative mass density of the VSGs and PAHs.
We can compare the value of κ160;1/κV to theoretical dust
models, using κ0.54 (the cross section at 540 nm) as an
approximation for κV. With their standard grain size distribu-
tions, we find κ160/κ0.54=1.4×10−3 for the model of
Draine & Li (2007), and κ160/κ0.54=7.4×10−4 for the
THEMIS model (Jones et al. 2017).

4.6. Per-pixel Modified Blackbody Fits

Instead of making a fit to the average ΔSν(λ)/ΔAV SED
obtained from the slopes, we also perform individual fits for

Figure 15. Correlation of AV with the reprojected Spitzer fluxes, analogous to Figure 14.
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each pixel of the maps, based on the same reprojected Spitzer

and Herschel images. In this case, the scale parameter for the
modified blackbodies is τ160 instead of τ160/AV, since we are
fitting directly to the observed fluxes, instead of average flux
versus AV slopes. We are not fitting a differential measurement
this time, and unlike the previous section we need to determine
and subtract the background in each band. Since we have a
measurement of the AV background of 2.51 mag, we use the
slope and intercept of the lines in Figures 15 and 14 to calculate
an appropriate level for the background in each band. By doing
these per-pixel fits, we obtain maps of the same resolution for
each parameter, shown in Figure 18. We do not show the
parameters for the MIR model, as T2 and β2 are quite noisy,

and the τ160;2 map looks very similar to that of τ160;1, besides
being of a different order of magnitude.
Figure 18 shows a gradient in the temperature, perpendicular to

the direction of the incoming radiation field. The typical
uncertainty on T1 is about 2–5 K. A feature of the same shape
exists for the β1 and τ160;1 parameters too, which shows an
anticorrelation with the temperature. The β−T relationship is well
known and can be explained by variations in the dust properties
(Dupac et al. 2003; Ysard et al. 2015). However, because of noise
and temperature variations along the line of sight, least-squares
fitting naturally leads to this type of correlation (Shetty et al.
2009a, 2009b; Juvela & Ysard 2012). Therefore, we performed the
same fits with β fixed to 2.06. A very notable difference is that the

Figure 16. Analogous to Figures 14 and 15, for the HST data. Some of the correlations are somewhat less significant, as can be seen from the ρ and p values, but we
still obtain usable values for the slopes, albeit with larger error bars.
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trend in T becomes inverted, and that the temperature range
becomes narrower. Because the β−T trend appears partly due to
noise-induced correlations and partly due to a physical relationship,
these results are not easily interpreted. On the one hand, fixing β
might elimitate any exaggerated variations of T that occur due to
the correlations in the fit. On the other hand, choosing a constant β
value introduces a bias in T, which will depend on the real value of
β. A more in-depth analysis (e.g., Galliano 2018) might be able to
disentangle these degeneracies, but would go beyond the scope of
this work.

Comparing the τ160;1 map to the AV map in Figure 11, we
find a similar structure. By dividing the τ160;1 values by the AV

value in each pixel (minus the background of 2.51 mag), and
using AV=1.086τV, we obtain maps of κ160;1/κV. We see that
this ratio is quite noisy, and comparing the top and bottom rows
of Figure 18, fixing β seems to affect the pixels in the bottom
left corner more than others. The general trend is that κ160/κV
seems to be higher toward the lower edge of the image. So
while the RV map points to an increase in average grain size at
the front of the nebula, this analysis of the Herschel data and
the AV map shows a less pronounced trend which more or less
aligns with its south edge.

We did not find any significant spatial correlation between AV or
RV and any of the fitted parameters, except AV and τ. This holds
regardless of whether a free or fixed β was used. For some of the
physical conditions, Fleming et al. (2010) provide maps based on
Spitzer IRS data: total PAH emission and band ratios; H2 emission,
column density, temperature, and ortho-to-para ratio; and the
radiation field G0/nH. These maps cover a 40 by 40 arcsec area at
the very tip of the nebula, which corresponds to about 4 pixels of
our RV map. Figure7 of Fleming et al. (2010) shows an arc shaped
feature in the PAH emission, where the H2 column density is also
the highest. This feature might be related to the higher RV area
observed at the front of the nebula, but the resolution of our RV
measurements is insufficient to confirm this.

4.7. Comparison with Other Clouds

In the Orion bar, the dust temperature shows a much stronger
gradient, going from 71 K in front of the bar, to 49 K inside,

and 37 K behind the bar (Arab et al. 2012). The distance
between the first and last point for which these temperatures
were measured, is of the order 0.1 pc. The size of the area we
study in IC 63 is ∼2′ or also ∼0.1 pc, assuming a distance of
190 pc. Over the same spatial scale, there is at best a subtle
temperature gradient in IC 63. Note that the radiation field and
the density are more than an order of magnitude higher in the
Orion bar: G0=4×104 and nH=2×105 cm−3. Note that
the conditions in IC 63 are G0=1100 (150 in Andrews et al.
2018), and nH=1.2×104 cm−3. Arab et al. (2012) measure
the values β=1.2, 1.6, and 2.2 for the same three points,
respectively. These differences likely originate from dust
evolution in the Orion bar. For IC 63 we find it hard to
determine the significance of the variations in the fitted β, and
we observe no correlations between the changes in β and the
observed differences in RV.
In Salgado et al. (2016), both the bar and the H II region of

the Orion nebula were studied using MIR observations with the
FORCAST instrument on board SOFIA, and Herschel/PACS
maps. A two-component modified blackbody model was
necessary to properly fit the thermal dust emission. The cool
component (∼40 K) was associated with the molecular cloud,
and the warm component (∼80 K) with the dust in the PDR/
H II region. For IC 63, only one component is needed to fit the
thermal dust emission; we added a second component because
it was able to describe the MIR emission of the PAHs and
VGSs rather well.
For NGC 7023, Köhler et al. (2014) performed similar, per-

pixel modified blackbody fits (with β fixed to 2). The dust
temperature ranges from 20.1 to 30.3 K in NGC 7023 NW, and
from 17.2 to 20.5 K in NGC 7023 E. The temperature
differences are smaller than in the Orion bar, and closer to what
we observe in IC 63. Through the τ factor of their model (in
this case at 250 μm), they derive line-of-sight column densities
ranging from 2.8 to 9.8×1022 cm−2, more than an order of

Table 3

Measurements and Uncertainties of the Average Surface Brightness per AV

Unit

Band ΔSν(λ)/ΔAV σ

(MJy sr−1 mag−1
) (MJy sr−1 mag−1

)

F275W 0.183 0.025
F336W 0.250 0.035
F475W 0.669 0.350
F625W 0.520 0.094
F814W 0.408 0.069
F110W 1.007 0.239
F160W 1.115 0.242
IRAC 3.6 2.472 0.332
IRAC 4.5 1.216 0.164
IRAC 5.8 11.770 1.563
IRAC 8.0 33.961 4.387
MIPS 24 26.741 3.496
PACS 70 399.678 54.112
PACS 160 345.684 45.670
SPIRE 250 103.251 12.661
SPIRE 350 38.976 4.734
SPIRE 500 13.184 1.731 Figure 17. Surface brightness per AV unit for each of the MIR and FIR

observations provided by Spitzer and Herschel, and modified blackbody fits to
these data. The points for the HST data are added for completeness, but are not
used in the blackbody fits. The data points are calculated by fitting slopes to the
scatter plots in Figures 14–16. Red: fit to the IRAC and MIPS 24 points,
ignoring the IRAC 3.6 point. Blue: fit to the PACS and SPIRE points. Gray
dashed: combined model, fitting both sets of points.
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magnitude larger than in IC 63. This means we can expect AV

values along the line of sight of several tens of magnitudes. For
the radiation field, Pilleri et al. (2012) provide the values
G0=2600 for NGC 7023 NW, and G0=250 for NGC 7023
E. The density nH of these two PDRs is about 2×104 to
3×104 cm−3. Despite the differences in radiation field and
optical depth, the dust temperatures in NGC 7023 NW, NGC
7023 E, and IC 63 do not show as much variation as those in
the Orion bar. Concluding, the observed dust variations are
likely related to the density nH.

Unfortunately, we cannot compare our RV measurements to
other PDRs, because direct extinction measurements in other
PDRs are rarely possible, especially in a spatially resolved way.
Reiterating, the number of background stars and the low optical
depth make IC 63 one of the only PDRs for which this is
possible, at least to our knowledge.

5. Conclusion

We have expanded the BEAST code to better support the
fitting of background stars of nebulae and other nearby,
transparent objects. We have performed individual SED fits of
a combined stellar and extinction model to the numerous
background stars of the IC 63 PDR, as observed by HST in
seven broadband filters from the UV to the NIR.

From these fit results, we were able to generate maps of the
extinction parameters AV and RV across the nebula. We find that

AV varies between 0.5 and 1.4 mag when we assume a
background of 2.5 mag. There is a decreasing trend in RV, from
3.7 at the tip of IC 63 to ∼3.4 when moving further away from
γCas. With a correction for background and/or foreground
material, the latter value can go as low as 2.5.
It is the first time that this type of measurement has been

made for a PDR. This approach was possible for IC 63 because
of its low optical depth, making this PDR transparent for a
sufficient number of detectable background sources. This same
technique would therefore also be applicable to IC 59. Most
other PDRs, such as the Horsehead nebula, the Orion bar, and
NGC 7023, have much higher optical depths and would not
allow a sufficient amount of background stars to be measured.
By combining the AV map with FIR maps from Spitzer and

Herschel, we were able to measure the shape of the average,
AV-normalized surface brightness of the dust. A dual modified
blackbody model fits the shape of this curve well, and provides
two temperatures (30 and 227 K) and measurements of κ160/κV
((6.98±0.88)×10−4 and (2.91±0.53)×10−9

). By per-
forming fits of the same model to individual pixels of the AV

map, we derived a map of κ160/κV. The values of this map are
of the same order of magnitude, but there are local variations
that differ significantly (a factor of 2 or 3) from the average.
Both the RV map and the κ160/κV show variations, but no
correlations were found between the two maps, and it is unclear
if there are relationships with other physical quantities.

Table 4

Overview of the Modified Blackbody Fits to Our Measurement of ΔSν(λ)/ΔAV

Fitting method τ160;1/AV β1 T1 τ160;2/AV β2 T2
(10−4 mag−1

) (K) (10−9 mag−1
) (K)

Individual,a free β 6.4±1.9 2.06±0.22 29.9±2.2 1.4±2.4 2.4±1.0 227±6
Individual, fixed β 6.43±0.40 2.06 29.9±0.5 2.70±0.71 2.06 227±6
Simultaneous,b fixed β 6.43±0.81 2.06 29.9±1.1 2.68±0.49 2.06 227±4.2

Notes.
a Model 1 is fit to the Herschel points, model 2 to the Spitzer points.
b The two models and sets of points are combined.

Figure 18. Results of the per-pixel modified blackbody fitting with free β1 (top row) and fixed β1=2.06 (bottom row). Red X: bad value. This is mainly due to
missing AV or AV<2.51 (the assumed background). The top and bottom panels for each parameter use the exact same color scale.
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Software:DOLPHOT (Dolphin 2000, 2016). Tiny Tim (Krist
et al. 2011). BEAST (Gordon et al. 2016). This research made
use of Astropy,9 a community-developed core Python package
for Astronomy (Astropy Collaboration et al. 2013, 2018).

Appendix A
New BEAST Feature: Parallelization Using Subgrids

By introducing the stellar distance as an extra parameter, the
dimensionality of the whole SED model grid is increased from
6D to 7D. Additionally the range of distances is potentially very
large (see Table 2), and because the distance rescales the whole
SED, a granularity on par with the AV grid is necessary. Since we
chose to use ∼40 (log spaced) distance bins, the amount of
memory needed to work with the grid is also increased 40-fold.
Originally we would split the catalog into many pieces, and then
let every process work on a small part of the catalog. This
approach is problematic because for every process launched, the
whole grid has to be loaded into memory. Therefore, the total
memory of the machine still imposes a limit on the number of
fitting processes that can be run simultaneously.

To deal with these large grids, a memory-saving paralleliza-
tion strategy was developed, which we call the subgridding
approach. This approach entails that each process will work on
only a small portion of the grid or subgrid. This works for the
physics model setup, the noise model generation, as well as the
fitting step. For each subgrid, a separate set of statistics and 1D
posterior distributions is obtained. By properly taking into
account the weight (integrated posterior) of each subgrid and
combining these individual 1D posterior distributions, the
statistics can be recalculated to reflect those of the whole grid.

To facilitate this parallelization scheme, a set of functions for
splitting and/or merging the model grids and output statistics
was developed, and an example workflow is given in the
documentation.10 If the size of the RAM proves problematic for
running the BEAST, then the number of subgrids can simply be
increased. Arguably, this makes the BEAST scalable to much
larger grid sizes.

Appendix B
New BEAST Feature: Spatial Variation of Noise Model

Since the extended emission varies for different locations in
the nebula, the noise model should ideally depend on the
position of the source that is being fit. To investigate the spatial
dependence of the noise model, a set of tools was developed
and added to the BEAST. The concept is that a number of
regions on the sky that have similar intensities of background/
foreground emission are determined (background regions).
Within each of these background regions, a separate set of
ASTs is performed, and an individual noise model is created. If
the resulting noise models differ significantly, an individual
fitting run can be done for each background region, using the
corresponding noise model to fit only the sources that fall
within that region.

B.1. Background Map Tool

The first tool consists of a stand-alone script which can
generate a map, with pixels of a user-specified size along the R.
A. and decl. axes. To measure the background for a single
pixel, it is first determined which of the sources of the input
catalog fall into this bin, according to their positions. Then, a
reference image is used (the F625W image in our case) to
measure the background for each source. The sources
themselves are masked out, and their background is determined
using an annulus of a certain radius and thickness. Determining
an ideal inner and outer radius for the annuli may require some
trial and error by the user. The background for this pixel is
then set to be the median of these individual background
measurements. For IC 63, the resulting background map is
shown in the left panel of Figure 19.
As a side note, this same tool can also be used to construct a

map of point-source densities in the exact same format. This is
useful for catalogs that have a very high but variable density of
stars, leading to different crowding effects depending on the
position. The source density is derived directly from the
positions listed in a given catalog. Since the rest of the code is
agnostic of the quantity described by either map, a common
approach can be used to model either effects of extended
emission or those of crowding.

B.2. Selection of AST Positions

One of the applications that uses this background map is the
routine for selecting the positions of the ASTs. We want to
make sure that the areas corresponding to different levels of
background intensity are all sufficiently sampled. We achieve
this by first choosing a set of bins (usually a small number, due
to the available hard disk space and computing time), each of
which represents a certain range in background intensity. Then,
the pixels of the map described above can be distributed
among these bins, leading to groups of pixels which constitute
the desired background regions (Figure 19). A fixed set of
SEDs is reused for each region, and each SED is assigned a
random position within that region. This way, each background
region has the same number of samples regardless of its total
surface area.

B.3. Creating Individual Noise Models

Once the selected ASTs have been run through our
photometry routine, and a catalog of fake stars has been
produced, both the observed and the fake catalog are split up
according to the background regions (see again Figure 19, right
panel). By applying the same spatial split to both the observed
catalog and the fake catalog, a series of catalog pairs is created.
The BEAST can then use each pair consisting of one fake and
one observed catalog to generate the individual noise models,
and perform the individual fitting runs if the resulting noise
models are found to be significantly different.
Using the regions shown in the right panel of Figure 19, we

created four noise models (Figure 20). Despite the differences
between the noise parameters for the background bins, we
found that the predicted AV and RV are not significantly
influenced by using these extra noise models. In each bin
there are at most four stars that have an AV or RV that differs
more than 10%. For some of the other parameters the
differences can be larger, but the fit quality is not necessarily
better. Therefore, the results presented in Section 3 and the

9 http://www.astropy.org
10 https://beast.readthedocs.io/en/latest/subgrid_parallelism.html
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rest of the analysis are based on fits using the single noise
model that was shown in Figure 6. Note that this noise model
still benefits from the background-based AST position
picking, because it makes sure that the tip of the nebula is
sufficiently sampled.

Appendix C
The AV and RV Maps in Table Format

We provide the values and standard deviation for AV and RV

of the maps in Tables 5 and 6. The R.A. and decl. values in the
table are the coordinates of the bottom left corner of each pixel,

Figure 19. Left: illustration of the background map tool. In this case, the F625W image was used as an input, so the background intensity mainly consists of Hα
emission. The point sources have been masked using the positions listed in the cleaned up catalog described in Section 2.3.2. This can be seen from the empty disks on
the image. The resolution of the map is chosen so that there’s at least a handful of sources in each pixel. Right: example of a set of spatial regions, derived from the
background map on the left. The colors indicate which background intensity regime each spatial bin and, by extension, each source (circles) belongs to.

Figure 20. Four different noise models, one for each background region. The numbers 1, 2, 3, and 4 point to the regions shown in the right panel of Figure 19.
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with the tables oriented in the same way as the color maps in
Figure 11.
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Table 5

Av Map and Uncertainty (Same Orientation as Figure 11)

Decl./R.A. (deg) 14.8021 14.7878 14.7736 14.7593 14.7450 14.7308

60.9206 3.54±? X X X X X
60.9137 3.32±0.48 3.00±0.22 3.00±0.33 3.26±0.36 4.75±0.36 X
60.9067 3.92±0.29 3.10±0.28 3.03±0.25 3.01±0.16 5.12±0.45 X
60.8998 3.21±0.24 3.48±0.24 3.60±0.22 3.19±0.19 2.94±0.21 3.15±0.84
60.8928 3.04±0.30 3.28±0.15 3.06±0.19 3.92±0.23 3.04±0.23 X
60.8859 2.98±0.22 3.04±0.16 3.30±0.16 3.44±0.36 3.56±0.36 X
60.8790 2.67±0.12 2.78±0.21 2.38±0.18 2.29±0.14 2.49±0.15 X

Table 6

Rv Map and Uncertainty (Same Orientation as Figure 11)

Decl./R.A. (deg) 14.8021 14.7878 14.7736 14.7593 14.7450 14.7308

60.9206 2.76±? X X X X X
60.9137 3.44±0.11 3.73±0.14 3.48±0.10 3.47±0.15 3.75±0.36 X
60.9067 3.51±0.16 3.34±0.10 3.34±0.10 3.68±0.11 3.68±0.13 X
60.8998 3.43±0.14 3.52±0.11 3.45±0.14 3.55±0.07 3.59±0.11 3.60±0.25
60.8928 3.50±0.31 3.58±0.10 3.40±0.09 3.58±0.10 3.65±0.15 X
60.8859 3.31±0.09 3.53±0.16 3.72±0.14 3.63±0.15 3.66±0.26 X
60.8790 3.90±0.06 3.61±0.17 3.49±0.15 3.61±0.09 3.57±0.11 X
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