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Abstract – The fullerenes are the fi rst “free-standing” 
elemental hollow cages identifi ed by spectroscopy experiments 
and synthesized in the bulk. Here, we report experimental and 
theoretical evidence of hollow cages consisting of pure metal 
atoms, Au–

n
 (n = 16–18); to our knowledge, free-standing 

metal hollow cages have not been previously detected in the 
laboratory. These hollow golden cages (“bucky gold”) have an 
average diameter >5.5 Å, which can easily accommodate one 
guest atom inside. 

Keywords – anion photoelectron spectroscopy, density functional 
calculation, hollow gold cages, lowest-energy clusters

Abbreviations – DFT, density-functional theory; PES, 
photoelectron spectroscopy; VDE, vertical detachment energy

The isolation and detection of carbon-free hollow cages have 

attracted much interest since the discovery (1) and synthesis (2) of 
the buckyball C60 and the higher fullerenes. Although “free-standing” 
inorganic cages have been synthesized (3), bare elemental metal 
cages have not been observed in nature or detected in the laboratory. 
Among metals, gold has some unique properties including the strong 
relativistic effects and aurophilic attraction (4). Recently, a fullerene-
like hollow cage with 32 Au atoms was predicted to be highly stable 
(5, 6). However, photoelectron spectroscopy (PES) combined with 
theoretical calculations shows that at the relatively large size the 
overwhelming population of low-lying clusters for Au32

– near room 
temperature appears to consist of only compact structures because of 
the entropic factor (7). Other, larger gold clusters with cage-like local 
minimum structures also have been suggested (8, 9), but none has 
been observed experimentally. Conversely, it has been established 
from both ion-mobility (10) and PES (11) experiments that the 
most stable anion gold clusters (Au–

n
) in the size range n = 5–13 

possess planar structures and that a structural transition from planar 
to three-dimensional (3D) structures occurs at n = 14. Beyond n = 
14, previous global-minimum searches based on empirical potential 
functions of gold (12, 13) or semiempirical tight-binding models of 
gold (14) suggest that all low-lying isomers of gold clusters assume 
space-fi lling compact structures. Among the larger gold clusters, 
Au

20
 is the most interesting; it has been found to possess a pyramidal 

structure with tetrahedral symmetry just as carved out of the bulk 
face-centered cubic crystal (15). 

Results and Discussion

To elucidate the structural transition from the planar Au at n = 13 
to the pyramidal Au

20
, we carried out a joint experimental PES and 

theoretical study on Au–
n
 for n = 15–19. The measured spectra (see 

Methods below) are shown in Fig. 1A with numerous well resolved 
features in the lower binding energy part, which are used to compare 
with theoretically simulated spectra (Fig. 1 B and C and Methods 
below; see also Fig. 3, which is published as supporting information 
on the PNAS web site) with the candidate lowest-energy clusters (see 
Fig. 4, which is published as supporting information on the PNAS 

web site). The vertical detachment energies (VDEs) (given by the 

location of the fi rst major peak near the threshold) for this feature are 
given in Table 1, compared with the theoretical VDEs from the lowest-
energy structures. Note that the threshold of the lowest-binding-
energy feature in each spectrum (see Table 2, which is published as 
supporting information on the PNAS web site) defi nes the electron 
affi nity of the neutral clusters. 

The theoretically obtained top-10 lowest-energy structures (see 

Methods) are given in Fig. 4. Among these top-10 isomers, we 

selected those isomers within 0.2 eV (1 eV = 1.602 x 10–19 J) from 
the lowest-energy isomer and simulated their photoelectron spectra 
(Figs. 1 B and C and 3). We regard these selected isomers as the 
candidates for the lowest-energy structure owing to the intrinsic 
error bar (<0.2 eV) of density-functional theory (DFT) electronic 
energy calculations (16–18) and the basis-set effects. The number of 
candidate lowest-energy isomers ranges from one for Au–

19 (Fig. 4E) 
to fi ve for Au–

15 (Fig. 4A) and Au–
16 (Fig. 4B), and six for Au–

17 (Fig. 

4C) and Au–
18 (Fig. 4D). 

Remarkably, we observed that all but a total of three candidate 

lowest-energy isomers of Au–
16, Au–

17, and Au–
18

 are “hollow cages” 
with an empty interior space (Fig. 4 B–D). The interior space (typically 
with length scale >5.5 Å) of these hollow cages can easily host a 
foreign atom. Among the fi ve candidate lowest-energy structures 
of Au–

15 (Fig. 4A), Au–
15a

, Au–
15b

, and Au–
15d

 are fl at-cage structures, 
whereas Au–

15c
 and Au–

15e
 are pyramid-like structures. Previous 

studies have shown that in stable gold clusters, gold atoms tend to 
have maximum coordination number of six, e.g., in the 2D planar 
structures of Au

9
–Au

13
 (10, 11) and in the pyramidal structure of Au

20
 

(15). Hence, it is understandable that both the fl at-cage and pyramid-
like structures are energetically competitive for the gold clusters 

within the size range Au
14

 to Au
20

. Conversely, it is quite surprising 
that the hollow-cage structures dominate the low-lying population of 
Au–

16 to Au–
18 clusters. Specifi cally, at Au

16
, only Au–

16e

– (among the 
fi ve candidate lowest-energy structures) has fl at-cage structure whose 
interior length scale can be <5 Å (Fig. 4B). The isomer Au–

16a
 can be 

viewed as a relaxed structure of the pyramidal Au–
20

 with four missing 
corner atoms but maintains the tetrahedral symmetry of Au–

20 (15). At 
Au

17
, only Au–

17c
 among the six candidate lowest-energy structures 

has a fl at-cage structure (Fig. 4C), whereas at Au
18

, only Au–
18a

 among 
the six candidate lowest-energy structures exhibits pyramid-like (non-
hollow-cage) structure (Fig. 4D). Note that Au–

17a
 can be viewed as 

placing one atom on top of Au–
16a

, whereas Au–
18b

 can be viewed as 
placing one atom on top of Au–

17a
. Both Au–

17a
 and Au–

18b
 possess C2v

 
symmetry. At Au

19
, there is only a single candidate for the lowest-

energy structure, namely, Au–
19a

, whose energy is 0.2–0.3 eV lower 

(depending on the basis set) than the second-lowest-energy isomer 

(Au–
19b

) and ≈ 0.5 eV lower than the third-lowest-energy isomer 
(Au–

19c
). Au–

19a
 exhibits a pyramidal structure, which is similar to the 

pyramidal Au–
20 (15) with one missing corner atom. This structural 

similarity is expected because Au
19

 is only one atom less than the 
highly stable (magic-number) pyramidal cluster Au

20
 (15). Compared  
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Fig. 1.  Experimental photoelectron spectra of Au
n
– (n = 15–19) compared with those simulated theoretically. (A) Experimental 

spectra measured at 193 nm (6.424 eV). (B) The simulated spectra for one (or two) lowest-lying isomer that matches the fi rst and 
second major peaks of the measured spectra. (C) The simulated spectra for the non-hollow-cage candidate isomer, which appears 
not to match the observed spectra.
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with Au–
19a

, the hollow-cage structures such as Au–
19c

 and Au–
19d

 

are no longer energetically competitive (Fig. 4D). In other words, 
the structural transition from hollow-cage to pyramid-like structure 
appears to occur at Au

19
. To illustrate the structural evolution of gold 

clusters from 2D planar to 3D fl at-cage, hollow-cage, and pyramid-
like structures, we highlight in Fig. 2 those candidate lowest-energy 
clusters that can provide reasonable match to the fi rst two to four major 
peaks of the experimental photoelectron spectra (Fig. 1 A and B). 

Our fi rst-principles global search provides the electronic energy-
based evidence that the overwhelming majority of the low-lying 
clusters of Au–

16 to Au–
18 exhibit hollow-cage structures. Moreover, our 

measured/simulated PES provides additional spectroscopic evidence 
to the existence of free-standing hollow golden cages. Here, we used 
the time-independent DFT (see Methods) to obtain approximated 
theoretical PES for all of the candidate lowest-energy structures of 
Au–

15 to Au–
19 (Figs. 1 and 3). Note also that the combined experimental 

and theoretical PES study has been used by many researchers to 
explore structures of small- to medium-sized clusters. This approach 
is particularly effective to identify structures of highly stable (magic-
number) clusters such as the buckyball C

60
 or golden pyramid Au

20
 

(15) because magic-number clusters are notably lower in energy than 

other isomers (i.e., they are the undisputed lowest-energy cluster). 

In this sense, Au–
19a

, the sole candidate for the lowest-energy cluster 
of Au–

19, can be viewed as a magic-number cluster because of the 
overwhelming stability of the pyramidal Au

20
 (15). As such, the 

simulated PES of Au–
19a

 should match well with the measured one. 
Indeed, the location of the fi rst two peaks near the threshold, which 
are directly related to the frontier orbitals and the VDE of the cluster, 
are in very good agreement with the measured one (including the weak 
doublet feature of the second major peak). Because the simulated PES 

based on DFT was obtained from the negatives of the Kohn–Sham 

(KS) eigenenergies (ground-state energy values), the simulated PES is 
not expected to match peak-for-peak with the measured PES beyond 
the threshold (energies of excited states). In summary, the location 
of the fi rst two major peaks offers a critical structural “fi ngerprint” 
of the Au–

19a
. Conversely, the simulated PES for the second lowest-

energy isomer (Au–
19b

), which is also pyramid-like, corresponding to 
the removal of an atom from the edge of the tetrahedral Au–

20 (15), 
does not agree with the experiment. The VDE of the fi rst simulated 

peak is too high compared with the experiment (Fig. 1). 

For other Au–
n
 clusters (n = 15–18), each has fi ve or six candidate 

lowest-energy structures (Fig. 4). Moreover, previous PES studies of 
the endohedral gold-cage cluster W@Au

12
 (19, 20) have shown that 

the gold cage is fl uxional. In other words, the energy barriers separating 
structurally similar isomers (e.g., hollow cages) can be quite small. As 
a result, it is conceivable that multiple isomers may contribute to the 
experimental spectra. Hence, our fi rst priority was to use the measured 
PES as a “fi lter” to identify those candidate isomers that cannot match 
the measured PES well (see Fig. 1C). Again, our main focus has been 
placed on the location of the fi rst two major peaks and, to a lesser 
extent, the number of peaks in the 4- to 5-eV binding energy range. 
For example, at Au

15
, the two pyramid-like low-lying isomers Au–

15c
 

and Au–
15e

 can be ruled out (Fig. 3A). In fact, the simulated PES of the 
two fl at-cage isomers Au–

15a
 and Au–

15d
 seem to match the measured 

PES (Fig. 1 A and B), particularly on the location of the two major 
peaks near the threshold. 

Fig. 2.  Structural evolution of mid-sized gold anion clusters from Au13
– to Au20

–. (A) The 2D planar to 3D fl at-cage structural 
transitions (11). (B) The hollow gold cages with diameters >5.5 Å. (C) The pyramid-like clusters, which resemble bulk gold (15).

Table 1.  Experimental fi rst VDEs for Aun
– (n = 15–19) 

compared with computed values for the candidate 
lowest-energy clusters that give the best fi t to the fi rst 
two major peaks of the measured spectra
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At Au
16

, the only non-hollow-cage isomer Au–
16e

 and the isomer 
Au–

16c
 can be ruled out because their fi rst VDE seems to be lower 

than the experimental data (Fig. 3B). The remaining three isomers, 
Au–

16a
, Au–

16b
, and Au–

16d
, all give reasonable VDE, but Au–

16a
 seems 

to provide the best agreement with the experiment in term of the fi rst 
two major peaks observed between 4 and 5 eV (Fig. 1B). Hence, Au–

16a

 is likely to be the most popular isomer in the mass-selected cluster 
beam. However, there are some weaker features in this binding energy 
range, suggesting the presence of other low-lying isomers (possibly 
Au–

16b
 and Au–

16d
) that may account for the observed weak features 

experimentally. 

At Au
17

, the measured PES spectrum displayed fi ve relatively 

sharp and quite evenly separated peaks in between 4 and 5 eV (Fig. 
1). On this ground, we can rule out the only non-hollow-cage isomer 
Au–

17c
 (Fig. 1C) and isomer Au–

17e
 among the six candidate lowest-

energy structures. The simulated spectrum of Au–
17a

 seems to agree 
somewhat better than others with the observed spectral pattern. 
However, the simulated spectra of Au–

17b
, Au–

17d
, and Au–

17f
 (Fig. 3C) 

all have transitions in the same energy range so that they may coexist 

with the Au–
17a

 in the cluster beam. Note that all four hollow-cage 
isomers can be viewed as relaxed structures by placing an atom to the 
surface of the Au–

16a
 cage. 

Lastly, at Au
18

, it appears at fi rst glance that none of the six 
candidate lowest-energy isomers can give good match with the 
measured PES (particularly the fi rst two peaks). However, after a closer 
look we found that the simulated spectra of Au–

18b

 and Au–
18c

 match the 
fi rst and fourth experimental peaks well (Fig. 1 A and B), suggesting 
that the two relatively weak second and third experimental peaks were 
due to other isomers. Indeed, the simulated spectra of Au–

18a
, Au–

18d
, 

Au–
18e

, and Au–
18f

 all have transitions in the appropriate spectral range 
and may be candidates for these transitions. It is interesting to note that 
except Au–

18a
, all other low-lying isomers are hollow-cage structures, 

which can be viewed as placing an atom to the cages of Au–
17. The only 

non-hollow-cage isomer, Au–
18a

, is pyramid-like, which can be viewed 
as removing two corner atoms from Au–

20 (15). 

Overall, the fairly good agreement between the experimental 

and theoretical PES lends credence to the identifi ed lowest-energy 

structures for the Au–
n
 clusters (n = 16–18), which are predominately 

hollow cages. To date, all medium-sized metal clusters detected 
experimentally exhibit compact structures, a manifestation of the 
metallic effects due to delocalized electrons. The fact that anion gold 
clusters can form stable hollow cages in the mid-size range n = 16–18 
is quite unusual. A natural question is why gold clusters favor hollow-
cage structures in this special size range. Clearly, the strong relativistic 
effects and aurophilic attraction in gold must play a key role for the 

formation of the cages. In fact, a recent DFT study showed that copper 
clusters (a lighter noble-metal congener of gold) favor space-fi lling 
compact structures beyond the size n = 16 (21). Moreover, because 
of the lack of strong relativistic effects and aurophilic attraction in 
copper and silver, the 2D-to-3D structural transition occurs at n = 7 
for both copper and silver anion clusters (22), whereas this transition 
occurs at n = 14 for gold anion clusters (10, 11). Hence, the formation 
of hollow gold cages in the size range of n = 16–18 refl ects a 
compromise between the tendency of forming 2D planar structures 
at small sizes (5 ≤ n ≤ 13) and the tendency to form 3D compact 
structures at larger sizes (n ≥ 19). At n = 14 and 15, the tendency of 
forming planar structures is stronger so that most low-lying clusters 

favor fl at-cage structures. At n = 16–18, the hollow-cage structures 
seem to be the best compromise between the 2D and 3D structural 
competition, even though the pyramid-like compact structure starts to 
become energetically competitive at n = 18. 

Finally, our preliminary calculations suggest that these hollow 

golden cages can easily accommodate a guest atom with very little 

structural distortion to the host cages. We note that an icosahedral 

Au
12

 cage with a central metal atom, M@Au
12

, has been predicted 

(19) and verifi ed experimentally (20, 23). Recently, a larger gold cage 
with a central atom (M@Au

14
) has been predicted to be very stable 

(24). However, bare Au
12

 and Au
14

, as well as their anions, do not 
possess hollow-cage structures, and the endohedral cage structures 
M@Au

12
 and M@Au

14
 are mainly stabilized through the interaction 

between the central impurity atom M and the outer gold cage. The 
current mid-sized hollow golden cages with n = 16–18 suggest that a 
new class of novel endohedral gold clusters may exist, analogous to 
the endohedral carbon fullerenes with a metal inside (25, 26). 

Methods

PES. The PES experiment was done similarly as for the smaller gold 

clusters (11) and Au–
20 (15). The gold cluster anions were produced 

by using a laser vaporization cluster source, and their PES spectra 
were obtained by using a magnetic-bottle time-of-fl ight photoelectron 
analyzer (27). Photoelectron spectra were measured at both 266 nm 
(4.661 eV) and 193 nm (6.424 eV) photon energies and calibrated 
with the known spectrum of Au–. 

Theoretical Calculations. We performed global-minimum 
searches using the basin-hopping method (12) for gold anion clusters 
Au–

n
 in the size range n = 15–19. Here we combined the global 

search method directly with ab initio (relativistic) density-functional 
calculations (28). After each accepted Monte Carlo move, a geometry 
minimization was carried out. DFT calculations with a gradient-
corrected functional [the Perdew–Burke–Ezerhof (PBE) exchange-
correlation functional (29)] as implemented in the DMOL3 code (a 
density functional theory program distributed by Accelrys, Inc., San 

Diego; see ref. 30) were used for the geometric optimization from 
which the top-10 lowest-energy isomers were collected and listed in 
Fig. 4 (energy values in black). Among the top-10 isomers, those with 
their energy value within 0.2 eV from the lowest-energy isomer were 
all regarded as candidate lowest-energy structures to be compared 
with experimental data. Relative energies of these candidate isomers 
with respect to the lowest-energy isomer were further evaluated by 
using a modest (LANL2DZ) and a large [SDD+Au(2f)] basis set, 
respectively. The energy values shown in Fig. 4 (in blue color) are 
based on optimization with the PBEPBE/LANL2DZ functional/basis 
set, implemented in the GAUSSIAN 03 package (31), whereas the energy 
values in red color are based on single-point energy calculations at 
the PBEPBE/SDD+Au(2f)//PBEPBE/LANL2DZ level of theory, 
implemented in GAUSSIAN 03 package. Here “SDD+Au(2f)” denotes 
the Stuttgart/Dresden ECP valence basis (32, 33), augmented by 
two sets of f polarization functions (exponents = 1.425, 0.468). 
Finally, simulated anion photoelectron spectra (based on the DFT 
calculation with the PBEPBE/LANL2DZ functional and basis set) 
of all candidate lowest-energy isomers are shown in Fig. 3. Here, 
the fi rst VDE was calculated as the energy of the neutral cluster at 
the geometry of the anion. Then the orbital energies from the deeper 
orbitals were added to the fi rst VDE to give the density of states. 
Each peak was fi tted with a Gaussian of width 0.04 eV to give the 
simulated anion photoelectron spectra presented. Details of the 
computational method to obtain simulated PES of gold clusters have 
been presented elsewhere (7, 11, 15). 
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