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6National Research Council of Italy - Institute of Photonics and

Nanotechnologies (CNR-IFN), via Trasea 7, 35131 Padova, Italy

7Fritz-Haber-Institut der Max-Planck-Gesellschaft,

Faradayweg 4-6, 14195 Berlin, Germany

8Laboratory for Thin Films and Photovoltaics, Empa

Swiss Federal Laboratories for Materials Science and Technology,
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Abstract

Lead-halide perovskite (LHP) semiconductors are emergent optoelectronic materials with out-

standing transport properties which are not yet fully understood. We find signatures of large

polaron formation in the electronic structure of the inorganic LHP CsPbBr3 by means of angle-

resolved photoelectron spectroscopy. The experimental valence band dispersion shows a hole ef-

fective mass 0.26 ± 0.02 me, 50% heavier than the bare mass m0=0.17 me predicted by den-

sity functional theory. Calculations of electron-phonon coupling indicate that phonon dressing of

the carriers mainly occurs via distortions of the Pb-Br bond with a Fröhlich coupling parameter

α = 1.82. A good agreement with our experimental data is obtained within the Feynmann polaron

model, validating a viable theorical method to predict the carrier effective mass of LHPs ab-initio.

PACS numbers: Valid PACS appear here
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Hybrid organic-inorganic and inorganic lead-halide perovskites (LHP) rival conventional

semiconductors in multiple optoelectronic applications. LHP-based solar cells have

established energy conversion efficiencies approaching 25% [1]; light-emitting devices [2] and

lasers [3] are gaining considerable interest thanks to high luminescence quantum efficiency

[4]. The carrier diffusion length is exceptionally long in LHPs, reaching up to several

micrometers [5, 6]. This property results from long carrier lifetimes, rather than from

the carrier mobility [7]. While theory predicts small effective masses [8–10] (≈ 0.1 - 0.2

me, where me is the free electron mass), the reported mobilities are orders of magnitude

lower than in conventional inorganic semiconductors [7, 11]. The microscopic mechanism

underlying this unusual combination of transport properties is possibly the interplay between

carriers and the ionic perovskite lattice [7, 12]. In a polar crystal, longitudinal-optical (LO)

phonon modes have a sizable long-range interaction with charge carriers, resulting in the

formation of so-called Fröhlich polarons [13]. The polaron, heavier than a bare carrier, has a

reduced mobility, compatible with the observed transport properties [12, 14]. In particular,

the screening of the Coulomb potential is modified in the case of polarons, purportedly

explaining the observed carrier lifetimes [14, 15].

The optical properties of different LHPs are known to critically depend on the details of

the lead-halide bond angles [16], highlighting the importance of carrier-lattice coupling also

in the photophysics of LHPs. The presence of polaron quasi-particles was indeed already

proposed to model the results of several optical studies [14, 15, 17].

In this letter we report on experimental evidence of polaron formation by measuring its

fingerprint in the electronic structure. We concentrate on the prototypical inorganic LHP

CsPbBr3 which has lately attracted interest for applications, due to better thermal and

radiation stability compared to hybrid organic-inorganic LHPs [18–22]. The momentum-

resolved electronic structure of CsPbBr3 is determined by angle-resolved photoelectron

spectroscopy (ARPES) and compared with ab-initio density functional theory (DFT). Our

ARPES data provide a direct measurement of the hole effective mass (mexp) in CsPbBr3.

The experiment reveals a mass enhancement of 50% compared to theory, which we attribute

to electron-phonon coupling. Ab-initio simulations of electron-phonon interaction show that

Pb-Br stretching modes dominate the interaction. Furthermore, our calculations provide a

Fröhlich coupling parameter α = 1.82, which indicate that carriers form large polarons and

predict a mass renormalization in good agreement with experimental data.
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FIG. 1. Schematic structure of CsPbBr3: (a) crystal cell; [PbBr6]
4− octahedra are indicated as

shaded-gray surfaces, Pb2+ ions are indicated in black, Br− ions in red and the Cs+ cation in gold;

(b) the orthorhombic lattice distortion (semitransparent lines) is compared to the parent cubic

lattice (full lines); (c) Three-dimensional Brillouin zone of the cubic crystal lattice; (d) VB ARPES

intensity as a function of energy, E and in-plane momentum wavevectors, kx and ky. The cubic

and orthorhombic unit cells are indicated in red and black, respectively. (e-f) Constant energy cuts

of the ARPES intensity compared with DFT calculations at the VBM (E=0 eV, (e)) and below

the VBM (E=-1.1 eV. (f)).

.

The high temperature (T > 130 ◦C) lattice structure of CsPbBr3 [Fig. 1 (a)] consists of

a cubic arrangement of corner-sharing [PbBr6]
4− octahedra, where a Pb2+ ion is surrounded

by four Br− ions. This backbone cages the Cs+ cation. The corresponding reciprocal

space Brillouin zone is depicted in Fig. 1 (c). Upon cooling below 130◦C, the system first

undergoes a structural phase transition to a tetragonal phase, finally followed at 88 ◦C by a

transition to an orthorhombic phase, which is the stable room-temperature lattice structure.

The structural phase transitions cause the PbBr6 octahedra to reorient, reducing the crystal

symmetry [23]. The orthorhombic phase is compared to the undistorted cubic phase in
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Fig. 1 (b), showing its larger real-space primitive cell and the octahedra’s canting angle of

approximately 10◦ [11].

High-quality single crystals of CsPbBr3 were grown from liquid solution using an

inverse temperature crystallization method [24]. The CsPbBr3 crystals were cleaved in-situ

under ultra-high vacuum conditions. ARPES experiments were performed using extreme

ultraviolet radiation from a high-harmonic laser source with a tunable photon energy

between 20 and 40 eV [25, 26]. All data were collected at room temperature, in the

orthorhombic phase of CsPbBr3, as confirmed by X-ray diffraction [27]. To rationalize the

experimental results, we performed ab-initio calculation using the Quantum ESPRESSO

distribution [28, 29]. The electronic structure was obtained at the generalized Kohn-Sham

level using the hybrid functional scheme proposed by Heyd, Scuseria and Ernzerhof [30, 31]

(HSE) for the exchange and correlation energy functional. The electron-phonon interaction

was accounted for within the Fröhlich model [32] with parameters obtained averaging the

ab-initio Fröhlich vertex [33, 34]. Further details concerning the experimental methods and

the DFT calculations are given as supplemental informations [27].

The valence band (VB) photoemission intensity distribution is plotted as a function of

energy and in-plane momentum wavevectors in Fig. 1 (d), for a photon energy of 37 eV.

Four valence band maxima (VBM) are clearly resolved, following the periodicity of the

surface-projected Brillouin zone (SBZ) of the cubic phase. Figure 1 (e) and (f) shows two

cuts at constant energy of the three-dimensional ARPES intensity distribution, at the VBM

and 1.1 eV below the VBM. The energy zero was set at the VBM, determined from the energy

of the peak maximum. The experimental data follows the square symmetry throughout the

measured energy range, and the VBM are located at the four corners (M point) of the SBZ.

This is at odd with DFT calculations for the orthorhombic phase, which predicts an

additional (back-folded) VBM at the Γ point [27]. To exclude matrix element effects and

dispersion in the direction orthogonal to the sample surface (k⊥), we performed energy-

and polarization-dependent ARPES measurements [27], which reveal no signature of an

additional VBM at the Γ point. The observation of a larger k-space periodicity is not

compatible with the scenario of a surface reconstruction. The additional potential associated

with a periodic lattice distortion, such as that occurring in the orthorhombic phase, generally

manifests itself with the appearance of back-folded bands and gaps opening at the novel

Bragg planes. However, the spectral weight transfer to the novel bands is proportional
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FIG. 2. Photoemission intensity as a function of energy and parallel momentum, along the path

Γ−M −X − Γ, indicated in the top right panel. The computed DFT bands (cyan) for the cubic

phase are overlaid on the data.

to the strength of the perturbing potential and often hardly observable [35], e.g. for

the methylammonium lead triiodide perovskite (MAPbI3) [36, 37], where no signatures of

back-folded orthorhombic bands were observed by ARPES, despite a clear orthorhombic

diffraction pattern.

The absence of a significant spectral weight transfer to the orthorhombic periodicity

implies that the bands calculated for the cubic phase overlap well with the ARPES spectra.

The data are compared to theoretical results for the cubic phase on the right half of each

panel of Fig. 1 (e) and (f). The finite experimental momentum resolution in k⊥, due to the

short photoelectron mean free path, is accounted for by integrating the DFT bands over a

range of 0.1 Å−1 along the k⊥ direction, corresponding an estimated escape depth of 5 Å [38].

The material’s band structure has been investigated as a function of the photon energy, and

Fig. 2 shows the result for 33.5 eV, which is found to be close to the bulk R point [27]. The
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data correspond to the band dispersion along three high-symmetry directions (Γ−M , X−M

and Γ−X) and are compared with the calculated bands in the bulk X-M-R plane. The upper

valence band disperses for approximately 1.5 eV below the VBM, before reaching a deeper

valence manifold, where bands are not individually resolved. Simulated element-projected

partial density of states reveals that the highest-energy VB is mainly composed of Pb 6s

and Br 4p orbitals derived from the PbBr6 octahedra, in accord with previous calculations

[39].
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FIG. 3. ARPES intensity as a function of energy and parallel momentum showing the VBM

along the Γ−M −Γ direction . The fitted band maxima are indicated as blue points. Cyan curve:

parabolic band fitted around the band maximum.

Although in the room-temperature orthorhombic phase the ARPES spectral weight

follows qualitatively the DFT bands for the cubic phase, the band dispersion is modified by

the structural distortion. In fact, a comparison between DFT calculations of the two phases

reveals that the effective mass computed for the orthorhombic phase is 0.17 me, higher than

the cubic phase mass of 0.15 me [27]. To determine the experimental hole effective mass,

we turn to a quantitative analysis of the upper valence band dispersion which we compare

with ab-initio calculations for the orthorhombic structure. ARPES data along the Γ − M

direction are shown in Fig. 3. The VB energy distribution curves are well fitted by a

Gaussian line shape whose width (which is not resolution-limited) is likely determined by

thermal broadening with possible contributions from disorder and orthogonal momentum
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dispersion. To determine mexp, the valence band was fitted with a parabolic dispersion

around the band maximum, until convergence was observed [27], the corresponding best fit

is shown in Fig. 3. The obtained value mh = 0.26 ± 0.02me is in good agreement with

optical measurements on CsPbBr3 [40], where a reduced exciton mass of mexc = 0.126me

was deduced, if one assumes balanced electron and hole effective masses, which appears

justified by our DFT calculations.
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FIG. 4. (a) Comparison between the experimental dispersion (mexp, cyan line, the shaded area

indicates the experimental uncertainty) and the theoretical effective mass m0 computed from theory

(black dot-dashed line). The renormalized mass including electron-phonon interaction mpol is

plotted in red. (b) Computed dieletric function, real (blue line) and imaginary (red line) part

are shown on the left-hand axis; the loss function −Im(1/ǫ) is plotted on the right-hand axis.

(c) Logarithmic plot of the density of coupling d(g2)/dω to optical phonons [27], the shaded area

indicates the integration region for determining the coupling constant g2LO. d(g
2)/dω was broadened

by convolution with a Gaussian function (1.2 meV FWHM) for clarity.

The effective mass calculated at the HSE level of theory for the orthorhombic phase

(m0) is compared to mexp in Fig. 4 (a). Theory substantially underestimates mexp, with an

experimental mass enhancement of ≈ 50%, implying the presence of a mass renormalization

mechanism. Comparison between HSE and G0W0 effective masses shows minor changes

(≈ 8%), indicating that the hybrid HSE functional gives a reasonable description of the
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band structure [27]. These findings seems to rule out electronic correlation effects as the

main reason for the mass enhancement observed.

An important mechanism, not accounted for by the DFT calculations and relevant

for polar materials, is the interaction between electrons and longitudinal optical phonons.

ARPES is sensitive to such many-body interactions, encoded in the single particle spectral

function [41]. In particular, for polaronic systems, such interactions manifest themselves

as a renormalization of the bare band dispersion and with the appearence of satellite

peaks in the photoemission spectrum [42, 43]. The satellites appear on the low-energy

side of the main quasi-particle peak, at an energy separation corresponding to the relevant

longitudinal optical (LO) phonon mode. In CsPbBr3 optical phonons have a energies ≤ 25

meV [44, 45], and replicas cannot be resolved within the experimental linewidth. In contrast,

our analysis of the quasi-particle dispersion captures the effective mass renormalization,

which we attribute to electron-phonon interaction.

This interpretation is supported by recent theoretical predictions for CsPbBr3 and

related compounds, e.g. MAPbI3, which exhibits the same lattice structure and similar

phase diagram. Simulations of the electron-phonon interaction in MAPbI3 predict a mass

enhancement of ≈ 30%, where the interaction is dominated by coupling with longitudinal

optical phonon modes, the most important being the Pb-I stretching and bending modes,

and the librational-translational modes of the methylammonium cation [46]. Since the latter

modes are absent in the fully inorganic compound, we expect the largest contribution to arise

from the Pb-Br bond. Simulations of hole addition into the CsPbBr3 lattice were performed

by Miyata et al. [12], showing that the largest structural relaxation occurs on the Pb-Br

bond and on the Pb-Br-Pb bond angle, resulting in a reduction of the canting angle of the

PbBr6 octahedra towards the undistorded cubic lattice.

To validate this picture, we performed ab-initio calculations of the phonon bandstructure

of orthorhombic CsPbBr3 and of its dielectric function, reported in Fig. 4 (b). To estimate

the Fröhlich interaction, we follow a method recently developed for polar semiconductors

[34, 46]. The Fröhlich vertex, which represents the matrix element for electron scattering by

long-wavelength longitudinal optical phonons, can be written [33, 34] as:

gν(q) = −i
4πe2

Ω

∑

k

√

~

2Mkωqν

q̂ · Z∗
k · ekν(q)

q̂ · ε∞ · q̂ (1)

where e is the electron charge, Ω is the volume of the unit cell, Mk the mass of the atom
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k, Z∗
k the Born effective charge tensor, ε∞ the high-frequency dielectric tensor, and ωqν and

ekν(q) the eigenvalue and eigenvector associated with the mode ν of momentum q. To assess

the relative importance of different phononic contributions in our calculations, the energy

density of coupling d(g2)/dω [27] is plotted as a function of phonon energy in Fig. 4 (c).

The coupling is dominated by a maximum at an effective energy of ~ω̃LO = 18.2 meV, in

the energy region of Pb-Br stretching modes [12]. The effective electron-phonon coupling to

such modes is obtained integrating d(g2)/dω from 12 to 25 meV [see Figure 4 (b)], resulting

into g̃2LO = 3.34 × 10−5 eV2/Å−2. Our calculation reveals that the coupling to the Pb-Br

stretching modes is two orders of magnitude stronger compared to modes appearing in the

energy range between 2 and 13 meV in Figure 4 (c), which can be associated with coupled

stretching-bending modes of Pb-Br [12].

Following these calculations, we proceed to estimate the mass renormalization from

the Fröhlich model [32], valid for a parabolic band dispersion and coupling to a single

dispersionless LO phonon mode. In this limit, it can be shown that the coupling matrix

elements gν(q) reduces to the well-known Fröhlich coupling matrix elements [34]. The

dimensionless Fröhlich coupling parameter, α, can be expressed in term of the ab-initio

effective coupling strength g̃2LO as:

α =
Ω

4πe2
g̃2LO

(~ω̃LO)2

(

2m0ω̃LO

~

)1/2

. (2)

withm0 the bare effective mass. We obtain α = 1.82, which fall into the small to intermediate

coupling regime. In this regime, the Feynman polaron model provides a good approximation

for the quasi-particle mass [46–48]:

mpol = m0(1 +
α

6
+ 0.025α2 + ..), (3)

Here mpol is the renormalized polaron mass, and m0 is the bare quasi-particle mass

extracted from our DFT calculations. The resulting mpol = 0.24me is compared to the

experimental result in Fig. 4. The result, in agreement with experiment within the

experimental uncertainty, indicates that our model captures the main physics behind the

hole quasi-particle dressing. The coupling of carriers to the Pb-Br bond modes, might play

an important role also on the optical properties of LHPs, which critically depend on the

Pb-Br-Pb bond angle [16]. Within the Feynman model, it is also possible to estimate the

polaron binding energy and radius to be 33.5 meV and 58 Å, respectively. Thus, the polaron
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resulting from an excess hole in CsPbBr3 single-crystals is large, extending over several lattice

unit cells. Interestingly, in the case of CsPbBr3 nanocrystals, signatures of hole self-trapping

were reported [49], suggesting that the electron-phonon interaction in LHPs nanostructures

may be altered [50, 51]. The adopted theoretical method can be readily generalized to

multiple coupled LO phonon modes [46], as in the case of hybrid organic-inorganic LHPs.

Therefore, we expect it to be capable of predicting the carrier effective masses in the whole

family of LHPs.

In conclusion, our work provides the first experimental reference for the momentum-

resolved electronic structure of CsPbBr3 in the orthorhombic phase. Fits of the electronic

dispersion provide an experimental value for the effective mass mexp = 0.26 ± 0.02me,

which we found to exceed the theoretical result of m0 = 0.17me. The observed mass

renormalization is ascribed to electron-phonon interaction dominated by Pb-Br stretching

modes, responsible for the formation of large Fröhlich polarons. Ab-initio calculations are

in quantitative agreement with the experiment demonstrating that the employed theoretical

method can correctly predict the carrier effective mass of LHPs from first principles. Our

findings provide direct experimental evidence in the electronic structure that charge carriers

in single-crystalline LHPs form large polarons and that the corresponding modification to the

microscopic scattering rates must be taken into account to explain the exceptional transport

properties of LHPs.
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Evidence of large polarons in photoemission band mapping of the

perovskite semiconductor CsPbBr3

Supplemental information

(Dated: September 4, 2019)

EXPERIMENTAL METHODS

ARPES experimental details.

45°

φ
CsPbBr

3

Analyser slit

E
TE

k
ph E

TM

k
e

θα
FIG. S1. ARPES experimental geometry, the scattering plane, relative to the analyser slit is

indicated in gray. The sample is installed on a manipulator where the azimutal angle α and polar

angle θ can be adjusted.

The geometry of the ARPES experiment is sketched in Fig. S1. The XUV beam is linearly

polarized and the polarization can be continuously rotated between transverse electric (TE)

and transverse magnetic (TM). For all the data shown in the main text, the polarization

was fixed in the TE configuration, with the electric field vector ETE in the scattering plane,

which is defined by the wavevector of the incoming XUV photon and the wavevector of

photoelectrons emitted toward the center of the analyser’s slit (gray plane in Fig. S1).

The analyser is fixed at an angle of 45◦ from the incoming photons. The analyzer slit is

orthogonal to the scattering plane and the analyser has an angular acceptance of ±15◦. By
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changing the azimuthal angle α the sample was oriented along the (ΓM) direction. The whole

surface BZ was sampled by varying the polar angle Θ (between the surface normal and the

analyzer) using a motorized manipulator. The XUV radiation is produced by high-harmonic

generation of a femtosecond laser in Argon, followed by a monochromator tunable between

20 and 40 eV. The spot size on the sample has a 100 µm diameter, with a flux on the order

of 1010. For the scan displayed in Fig. 1 and 2 of the article, the estimated energy resolution

originating from the finite bandwidth of the XUV source is ∆Es ≈ 200 meV at 37 eV,

while the resolution of the photoelectron analyser is approximately ∆Es ≈ 150 meV. The

experimental energy resolution can be estimated as ∆Eexp ≈ 250 meV. In the case of Fig.

3 of the main text the energy resolution of the photoelectron analyzer was set not worsen

significantly the light source resolution, which was better than ≈ 150 meV at 33.5 eV.

Γ point evolution with photon energy and light polarization.

The experimental data collected along the M − Γ −M direction is reported in Fig. S2,

together with HSE-DFT calculations in both the cubic and orthorhombic phase. For the

orthorhombic phase, theory predicts an additional valence band maximum (VBM) at the Γ

point, which is not observed in our data. To discard the possibility of a matrix element effect

or an incorrect location in reciprocal space, we performed polarization- and energy-resolved

measurements. Selected ARPES spectra are shown along the M − Γ−M direction in Fig.

S3. In both TE and TM polarizations and also in the second BZ, no band was resolved,

which makes a strong-matrix element effect unlikely. Furthermore the energy was varied at

normal emission condition between 20 and 40 eV, without the appearance of a VBM at the

Γ point. These findings support the interpretation that the spectral intensity transferred to

the backfolded VB at the Γ point is below our detection sensitivity.

Experimental determination of effective masses

The VBM fit function is illustrated in Fig. S4 (a): the peak is well fitted by a Gaussian

function (blue curve). A Shirley-type integral background was used (black dash-dot curve),

with a coefficient taken to match the offset in a lower-lying portion of the spectrum, free of

spectral features. The tail of the lower-lying valence band was approximated by a second

2
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FIG. S2. Experimental ARPES data compared along the M − Γ − M direction, HSE-DFT

calculations are reported for the cubic phase (red line) and the orthorhombic phase (blue lines).

The BZ border for the orthorhombic phase is marked by vertical dashed lines

Gaussian peak at lower binding energy (cyan curve). The resulting fit function (red curve)

well approximate the data in a region of ±0.2 Å−1 around the M . The position of the VBM

peak is shown in in Fig. S4 (b). A parabolic curve was fitted for increasingly narrower regions

kmax ±∆k/2 around the maximum. The corresponding effective mass, together with the fit

error (plus or minus one standard deviation), are indicated in Fig. S4 (c). The parabolic

model fits well the data below ∆k = 0.2Å−1, the region was decreased symmetrically by one

data point below and after the maximum, until the variation of the fit value was less than

1% for two successive steps, the chosen condition for fit convergence.

Determination of k⊥.

The finite photoelectron escape depth determines an uncertainty in the value of the

electron momentum in the direction orthogonal to the sample surface k⊥. In the case of lead

halide perovskites, the inelastic mean free path (IMFP) was estimated from the universal
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FIG. S3. ARPES images across the MΓM direction showing the absence of photoemission

intensity developing at the Γ point for different photon energy, probe polarization, temperature,

and observation in the second Brillouin zone (2BZ): (a), (b) for the TE and TM polarized probe,

respectively, at 33.5 eV photon energy; (c), (d) - same at 40 eV photon energy; (e) – at the Γ point

in the 2BZ, with TE polarized probe; (d) at liquid nitrogen temperature (LN ≈ 77 K), with TE

polarized probe.

curve taking into account the presence of heavy Pb and Br atoms in reference [52]. For

an IMFP of 5 Å, the FWHM width the k⊥ distribution is ≈ 0.1 Å−1, which corresponds to

about ±20% of the M to R distance in reciprocal space. Under these conditions, ARPES

still provides reasonable k⊥ selectivity [53].

To determine k⊥ we follow the evolution of the M point as a function of energy. The

fitted VBM is shown in Fig. S5 (a), the corresponding theoretical dispersion is shown in
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FIG. S4. (a) Energy distribution curves along the M − Γ − M direction, offset vertically for

different values of k‖. The fit (red line) is illustrated for the curve at the M point: in blue and

cyan, Gaussian peaks, fitting the valence band maximum and a lower lying band, respectively. The

dash-dotted line is an integral Shirley-type background. (b) .(c).
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FIG. S5. (a) Measured dispersion of the VBM at the M point as a function of the photon energy,

the cyan curve is a sinusoidal curve fitted to the data as a function of k⊥(~ω) (b) Theoretical

energy dispersion extracted at the M point in the orthorhombic phase

Fig. S5 (b). We used a free-electron final state model:

k⊥ =

√
2me

~

√

EK cos2(θ) + V0 (S1)

and fitted the band dispersion with a sinusoidal function E0 sin(2πk⊥(~ω)/k0 + φ), whose

periodicity k0 was fixed to match the known lattice parameter, and those phase φ was fixed
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to match the theoretical energy oscillation phase. We obtain a value of V0 = 0.7 ± 0.7 eV,

from which we obtain a value k⊥ = 0.49± 0.04 Å−1 for the M point measured at a photon

energy of 33.5 eV, close to a high symmetry plane (R point in the cubic phase).
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FIG. S6. (a) Theoretical effective mass extracted from theory (PBE) as a function of k⊥ at the

M point. (b) Experimental band dispersion for three photon energies, parabolic band are fitted to

the data, following the method illustrated in the main text.

The theoretical k⊥ evolution of the band dispersion at the M point is plotted in Fig.

S6 (a) and predicts a minimum hole effective mass ≈ 0.15me at k⊥ = 0.54 Å−1. The

experimental dispersion is plotted for three photon energies (27, 33.5 and 40 eV) in Fig.

S6 (b): the lighter mass observed at 33.5 eV well agrees with the free electron final state

results.

X-ray diffraction characterization

Fig. S7 shows the powder X-ray diffraction pattern measured at room temperature. It

yields the following crystal cell parameters: a=8.257 Å, b=8.2160 Å, c=11.716 Å, which

confirms the orthorhombic symmetry of the crystal, in agreement with previously reported

data by Stoupmpos et al. [54].
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FIG. S7. In black: measured powder X-ray diffraction pattern of the samples at room temperature;

in red: diffraction pattern from the ICSD database.

THEORETICAL METHODS

Electronic Structure calculation

All density functional theory (DFT) calculations were carried out using the Quantum

ESPRESSO distribution [55, 56]. We performed DFT calculation for both the cubic and

the orthorhombic phase (corresponding to the room-temperature stable phase) and set the

lattice parameters equal to the experimental ones [54]. The electron-ion interactions were

modeled using Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials [57] as

developed by Schlipf and Gygi [58]. The electronic-structure calculations were performed

at the generalized Kohn-Sham level using the hybrid functional scheme proposed by Heyd,

Scuseria and Ernzerhof [59, 60] (HSE) for the exchange and correlation energy functional,

and including the spin-orbit coupling. An energy cut-off of 80 Ry was used for the plane-wave

expansion of the wave-functions (320 Ry for the charge density) and the Brillouin zone (BZ)

was sampled with a uniform Γ-centered mesh of 6 × 6 × 4 points ( 6 × 6 × 6 for the cubic

phase). A reduced (density-) cutoff of 90 Ry and a grid of 3 × 3 × 2 points was used for

7



the evaluation of the non-local component of the exchange energy and potential (the full

6× 6× 6 grid was used for the cubic structure).

To further check the reliability of the HSE functional, the quasi-particle band structure for

the cubic phase was also evaluated within the G0W0 approximation using the PBE ground

state density and wave-functions as starting point and including spin-orbit coupling as

implemented in the Yambo code [61, 62]. Pseudopotentials including all semi-core electrons

were used in this case. The parameters used for the calculation are: 80 Ry plane wave

cut-off for the PBE ground state calculation, 15 Ry plane wave cut-off for the polarizability

calculation, 500 bands, 1 Ry plasmon-pole energy and a 6 × 6 × 6 Γ-centered grid for the

BZ integration.

Maximally localized Wannier functions [63] were computed with the Wannier90 code [64,

65] and used to interpolate the HSE (and the G0W0) band structure on an arbitrary k-

point mesh. Interpolated band structure has been used to evaluate the effective masses, as

described in the next section.

The contributions of electronic states of each individual chemical element of CsPbBr3:

Br, Cs, and Pb, to the total density of electronic states (DOS) were calculated and shown

in Fig. S8.

Determination of effective mass from ab-initio DFT bands

The theoretical effective masses at the top of the valence band (R point for the cubic

phase, Γ point in the orthorhombic phase) were calculated by evaluating numerically the

second derivative of the Wannier-interpolated band structure ε(k).

[m0]
−1 =

1

~2

d2ε(k)

dk2
(S2)

For the cubic phase a small step ∆k has been taken along the [110] direction (ΓM

direction). For the orthorhombic phase we calculated the effective masses along the three

crystallographic direction [100], [010], [001]. The ∆k is reduced until convergence in the

second derivative is achieved (typically for ∆k ∼ 0.01 Å−1, see Fig. S10). The converged

results, reported in Tab. I show that an improved description of the electronic correlation,

i.e. going from PBE to HSE to G0W0 band structure, leads to an increase of the effective

masses. Moreover for the cubic phase we notice that the HSE and G0W0 effective masses
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FIG. S8. Total and projected density of states for valence and conduction band. The orbital

character is indicated in the legend for the three constituents Br, Pb and Cs. The indicated

maximum of the valence band, was in this case set to the onset of the DOS.

are quite similar and differ by ∼ 8%, indicating that the HSE functional gives a reasonable

description of the band structure close to the VBM.

Despite the good quality of the Wannier interpolation (see a comparison between the fully

ab-initio PBE band structure and the interpolated one in Fig. S9), we point out that a small

error in the absolute value of the effective masses evaluated from the interpolated bands

might still be present. For the PBE functional a direct evaluation of the eigenvalues at any

k point is also possible (this is not the case for the HSE functional). A comparison between

the PBE effective masses obtained without the interpolation and after the interpolation

is reported in Tab. I, and reveals a small overestimation of the effective masses (∼ 7%).

Overall, we are confident that our estimation of the effective masses from the interpolated

band structure is correct within 0.01 me.
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FIG. S9. Comparison between the ab-initio and Wannier-interpolated valence band structure for

the orthorhombic phase at the PBE level.

FIG. S10. Convergence of the PBE (right panel) and HSE (left panel) effective masses for the

orthorhomibc phase with respect to the k-point sampling around the Γ point. The distance in

the reciprocal space is expressed in unit of 2π/a with a the lattice parameter along the direction

considered.
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PBE HSE G0W0

Cubic [110] 0.123 0.148 0.139

Ortho [100] 0.161 (0.149) 0.171 –

Ortho [010] 0.155 (0.142) 0.165 –

Ortho [001] 0.138 (0.128) 0.160 –

TABLE I. Hole effective masses at the top of the valence band. The number in parenthesis are the

values obtained without the interpolation (only possible for the PBE functional).

Electron-phonon interaction

The electron-LO phonon (longitudinal optical phonons) interaction was accounted for

within a multi-phonon Fröhlich model [66, 67], i.e. assuming parabolic electronic bands and

dispersionless LO phonons, and neglecting acoustic and TO phonons. The scattering by

LO phonons is believed to be the most relevant process for this class of materials. [67, 68]

We obtained the parameters of the model averaging the ab-initio Fröhlich vertex over Nq

= 1000 q vectors of length 0.001 Bohr−1 uniformly distributed around the BZ center. The

Fröhlich vertex is defined [69, 70] as

gν(q) = −i
4πe2

Ω

∑

k

√

~

2Mkωqν

q̂ · Z∗
k · ekν (q)

q̂ · ε∞ · q̂ (S3)

where Ω is the volume of the unit cell, Mk the mass of the atom k, Z∗
k the Born effective

charge tensor, ε∞ the high-frequency dielectric tensor, and ωqν and ekν(q) the eigenvalue

and eigenvector associated to the mode qν. All the ingredients above were computed using

density functional perturbation theory as implemented in the PHONON code of Quantum

ESPRESSO and using the PBE [71] functional to account for exchange-correlation effects.

The dynamical matrix has been computed in reciprocal space on a coarse grid of 4× 4× 4

q-point and then interpolated with standard techniques [72] and with a separate treatment

of the long-range dipole-dipole interaction [73].

In Fig. (4b) of the main text the density of polar coupling [67] defined as

dg2(~ω)

dω
=

1

Nq

∑

qν

δ(~ω − ~ωqν
)|gν(q)|2, (S4)

is shown, together with the frequency dependent dielectric function in the infrared region.

The plots highlight that there is one dominant contribution at an average energy of ~ω̃ = 18.2
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meV. The corresponding interaction strength, averaged over the Nq q-points is |g̃|2 = 3.34×
10−5 (eV/Å)2. Following Ref. [66], a dimensionless parameter αν can be defined for each

relevant mode (only one in this case):

αν =
Ω

4πe2
|g̃ν |2
(~ω̃ν)2

(

2m∗ω̃ν

~

)1/2

. (S5)

with m∗ the hole effective mass. Inserting the effective phonon frequency and interaction

strength for the unique relevant LO phonon found from the analysis above, ad using the

HSE effective mass (m∗ = 0.171), we obtain α = 1.82, which fall into the moderate-coupling

regime.
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[70] C. Verdi and F. Giustino, “Fröhlich electron-phonon vertex from first principles,” Physical

Review Letters, vol. 115, p. 176401, Oct. 2015.

[71] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made

Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996.

[72] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal

properties from density-functional perturbation theory,” Reviews of Modern Physics, vol. 73,

pp. 515–562, July 2001.

[73] X. Gonze and C. Lee, “Dynamical matrices, Born effective charges, dielectric permittivity

tensors, and interatomic force constants from density-functional perturbation theory,” Physical

Review B, vol. 55, pp. 10355–10368, Apr. 1997.

20


	Evidence of large polarons in photoemission band mapping of the perovskite semiconductor CsPbBr3
	Abstract
	 Experimental methods
	 ARPES experimental details.
	  point evolution with photon energy and light polarization.
	 Experimental determination of effective masses
	 Determination of k.
	 X-ray diffraction characterization

	 Theoretical methods
	 Electronic Structure calculation
	 Determination of effective mass from ab-initio DFT bands
	 Electron-phonon interaction

	 References


