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Abstract

Background: Local adaptation of marine and diadromous species is thought to be a product of larval dispersal,

settlement mortality, and differential reproductive success, particularly in heterogeneous post-settlement habitats.

We evaluated this premise with an oceanographic passive larval dispersal model coupled with individual-based

models of post-settlement selection and reproduction to infer conditions that underlie local adaptation in

Sicyopterus stimpsoni, an amphidromous Hawaiian goby known for its ability to climb waterfalls.

Results: Our model results demonstrated that larval dispersal is spatio-temporally asymmetric, with more larvae

dispersed from the southeast (the Big Island) to northwest (Kaua‘i) along the archipelago, reflecting prevailing

conditions such as El Niño/La Niña oscillations. Yet connectivity is nonetheless sufficient to result in homogenous

populations across the archipelago. We also found, however, that ontogenetic shifts in habitat can give rise to

adaptive morphological divergence when the strength of predation-driven post-settlement selection crosses a

critical threshold. Notably, our simulations showed that larval dispersal is not the only factor determining the

likelihood of morphological divergence. We found adaptive potential and evolutionary trajectories of S. stimpsoni

were greater on islands with stronger environmental gradients and greater variance in larval cohort morphology

due to fluctuating immigration.

Conclusions: Contrary to expectation, these findings indicate that immigration can act in concert with selection to

favor local adaptation and divergence in species with marine larval dispersal. Further development of model

simulations, parameterized to reflect additional empirical estimates of abiotic and biotic factors, will help advance

our understanding of the proximate and ultimate mechanisms driving adaptive evolution, population resilience,

and speciation in marine-associated species.
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Background
The balance of migration and selection can determine

the likelihood of local adaptation and evolutionary diver-

gence within species [1–4]. For instance, migration can

result in populations failing to reach local fitness optima

for adaptive traits, even when natural selection favors

local adaptation, such as when species occupy heteroge-

neous habitats [5, 6]. The theory underlying outcomes

like this has been well studied, often with deterministic

models of genetic architecture [7–10]. However, few nat-

ural systems have been examined in which modeled pa-

rameters are well constrained by empirical estimates of

gene flow and the strength and direction of natural se-

lection [11, 12]. There is a particular deficit in under-

standing the conditions that favor evolution of local

adaptation in oceanic and migratory species with marine

dispersing larvae [13–17]. Most prior work has focused

on estimates of larval dispersal [1, 18–20] rather than in-

tegrative analysis of connectivity, post-settlement selec-

tion, and survival to reproduction [15, 21, but see 22].

Understanding how interactions between migration

and selection influence the evolution of species with

marine-dispersing larvae is challenging because the pro-

cesses that govern population connectivity have not been

well quantified. For example, a number of oceanographic

transport models [23, 24] suggest that species with a

longer pelagic larval duration (PLD) should have more

“open” populations, whereas species with a shorter PLD

should have more “closed” populations [25, 26]. Yet

PLDs are often unknown. Moreover, recent studies using

advanced modeling methods have not supported this

previously prevailing theory. For example, studies of spe-

cies with well constrained PLDs (e.g., via otolith micro-

chemistry analyses) indicate that transport models tend

to overestimate dispersal distance [27–30]. Recent com-

parisons of dispersal models with empirical larval drift

surveys also indicate that PLDs above a critical value do

not influence population connectivity [31]. In addition

to oceanographic features (e.g., eddies, currents, tides),

organismal attributes (e.g., larval swimming behavior,

vertical migration) can impede dispersal and thus govern

connectivity [19, 32–36]. Incongruent estimates of con-

nectivity may also be due to post-settlement selection,

which can mediate demographic contributions to larval

pools (i.e., individuals that reach settlement sites must

survive to reproduction in order to contribute to larval

pools). Thus post-settlement selection and differential

reproduction arising from habitat heterogeneity can po-

tentially shape connectivity [22, 37–40] and influence

evolutionary trajectories of species with marine larval

dispersal [21].

Spatio-temporal variability is a well-recognized under-

lying aspect of population connectivity via marine larval

dispersal. Not only can larval dispersal vary over space

and time [41–44], so can selective pressures [45–47].

For instance, selection can vary ontogenetically if life

history stages occur in different habitats (e.g., oceanic

versus stream environments). And, though most analyses

of connectivity assume that landscape features are deter-

ministically static over ecological timescales [48, 49],

shifts in physiographic features can generate further

changes in larval dispersal and post-settlement selection

[50–53]. This is well illustrated by predictions that con-

nectivity may be altered as a consequence of

climate-driven shifts in ocean currents [54–56]. Few at-

tempts have so far been made, however, to determine

whether spatio-temporal variability promulgates or con-

strains the likelihood of local adaptation in species with

marine dispersing larvae [57–59].

Empirically constrained, coupled modeling of larval

transport and post-settlement selection can be an in-

formative approach for assessing the likelihood of local

adaptation in species with marine larval dispersal.

Advection-diffusion (AD) oceanographic transport

models, which allow for directional or stochastic

spatial-temporal variation in larval dispersal [19, 60],

generate connectivity matrices that can inform

spatially-explicit, individual-based models (IBMs) of

post-settlement selection and reproduction [61–63]. Re-

ciprocally, by following the fate of individuals and entire

populations over time [64, 65], IBMs can inform larval

transport models by describing variation in larval pool

contributions arising from post-settlement selection.

Coupled AD-IBM modeling can thus be particularly use-

ful for tracking outcomes of migration and selection

across life history stages that occur in different habitats

or ecosystems.

Here we present the results of a spatially explicit

AD-IBM model developed to examine how migration

and selection shape population connectivity and local

adaptation in Sicyopterus stimpsoni, an amphidromous

fish endemic to the Hawaiian Islands known for its abil-

ity to climb waterfalls. We linked a modified Lagrangian

transport model of inshore and offshore oceanographic

processes for the Hawaiian Islands to IBMs for the

islands of Hawai‘i (hereafter referred to as the Big Is-

land), O‘ahu, and Kaua‘i. We utilized the AD-IBM model

to assess whether natural selection is sufficient to yield

morphological divergence between subpopulations that

are connected via marine larval dispersal. The model

was run to test the following scenarios: (1) in a closed

system (i.e., local reproduction, no immigration), stream

topography and discharge yield morphologically diver-

gent subpopulation among the islands; (2) the rate and

direction of morphological divergence will change by al-

tering the strength of post-settlement selection of preda-

tion evasion and/or climbing performance; (3)

alternatively, subpopulations across the archipelago are
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morphologically homogenous in an open system with no

local reproduction (i.e., immigration only); and (4) nat-

ural selection will counterbalance high, yet stochastic

larval dispersal due to variation in the strength of

post-settlement selection or immigration. We then com-

pared our modeling results to empirical estimates of the

strength of post-settlement selection [66–68] and ob-

served morphological differentiation [53] to determine

the relative influences of larval dispersal and selection

shaping empirical patterns of morphological divergence

among populations of S. stimpsoni juveniles and adults.

Results
Oceanographic simulations of passive larval dispersal

Passive larval dispersal was not spatially or temporally

uniform (Figure 1). In strong El Niño years (mid

2009-mid 2010), dispersal was asymmetric with more

larvae dispersed from the southeast to the northwest

(i.e., from the Big Island to Kaua‘i). This asymmetry was

less pronounced in strong La Niña years (mid 2010-mid

2012). The extent of asymmetry fluctuated during neu-

tral years (mid 2012-early 2014) of the El Niño Southern

Oscillation (ENSO) cycle, with an onset of asymmetry

(2012-2013) followed by symmetric dispersal

(2013-2014), which might have been driven by a brief

period of El Niño conditions in mid 2012 (U.S. Depart-

ment of Commerce, National Oceanographic and At-

mospheric Administration, NOAA Research: https://

www.esrl.noaa.gov/psd/enso/climaterisks/years/).

The proportion of successful larval settlement and

source contributions varied among islands. The Big Is-

land had the highest proportion (2.92%) of successful

settlement, whereas Kaua‘i had the lowest proportion

(1.4%) compared to all other islands (1.4-2.1%). Despite

very low probabilities of successful larval transport and

fluctuating patterns of passive larval dispersal, the high-

est percentage (42%) of local entrainment occurred on

the Big Island. The Big Island also served as a source of

larvae for all other islands, though with diminishing

contributions up the southeast-northwest axis of the ar-

chipelago. The second highest level of local entrainment

(24%) occurred on Kaua‘i, but unlike the Big Island,

Kaua‘i contributed relatively few larvae to other islands.

The lowest level of local entrainment (18%) occurred on

O‘ahu, which also contributed relatively few larvae to

other islands. Slightly higher self-recruitment occurred

on Maui and Moloka‘i (23% and 21%, respectively),

which contributed a similar number of larvae to other

islands (16-23%).

Linking larval dispersal with post-settlement selection

Scenario 1: Isolation without post-settlement selection

Differences in topographic structure and corresponding

differences in stream flow did not give rise to divergent

morphotypes across the archipelago. Rather, climbing

morphotypes evolved and remained prevalent across all

islands (Figure 2).

Scenario 2: Isolation with post-settlement selection

When post-settlement selection was allowed to act in

conjunction with isolation, morphological divergence

arose across islands in accordance with predictions: pre-

dation evasion morphologies arose on Kaua‘i, whereas

climbing morphologies arose on the Big Island. While

morphological divergence was driven by the strength of

selection from predation, the amount necessary for the

evolution of predation evasion morphotypes varied

across islands (Figure 3). Adult morphology does not di-

verge from larval morphology with increasing selection

probabilities, as would be expected in isolation (i.e., lar-

vae are products of only local reproduction and adults

are products of that larval composition) (Figure 3 &

Additional File 1: Figure S1).

The highest selection differentials occurred on Kaua‘i

whereas the lowest occurred on the Big Island (Table 1),

with a range of <0.0001 to 0.3909 across all islands. Se-

lection differentials significantly differed between stages

(Table 2). With the exception of O‘ahu, where the

Fig. 1 Passive larval dispersal connectivity matrices from May 2nd 2009 to March 31st 2014. The values in each cell are the rearward settlement

probabilities for each receiving stream and the corresponding island. Each panel represents a total of 365 days, which coincides with breaks in

the El Niño Southern Oscillation during the aforementioned time period. High values (yellow-orange) indicate high connectivity between streams

(islands) and low values (dark purple-black) indicate low connectivity between streams (islands)
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transition between Stage 9-10 exhibited the highest max-

imum selection coefficient, the largest maximum and

average values of selection differentials on other islands

occurred between the transition from Stage 3-4 (i.e., the

post-settlement stage; Tables 1 & 2). Stage was the only

significant predictor of mean selection differentials on

the Big Island, whereas stage and predation probability

were significant predictors of mean selection differentials

on Kaua‘i. On O‘ahu, all variables were significant pre-

dictors of selection differentials.

The RDAs explained 65-89% of the total variance in

morphotype evolution across all islands. Morphotype

evolution was significantly correlated with year, preda-

tion, climbing, and the interaction between predation

and climbing (Table 3). However, each parameter ex-

plained <1.52% of the variance in morphotype evolution

with the exception of predation (Table 3), which ex-

plained 16.10% of the observed morphotype variance on

Kaua‘i, 19.96% on O‘ahu, and 24.42% on the Big Island.

Scenario 3: Immigration without post-settlement selection

Under conditions of immigration without post-settlement

selection, populations on all islands evolved morphotypes

that are intermediate between climbing and predation

morphologies (Figure 4). Additionally, adult morphotypes

were reflective of larval morphotypes.

Scenario 4: Immigration with post-settlement selection

When post-settlement selection was allowed to act in

conjunction with immigration, morphological divergence

arose across islands in accordance with predictions: pre-

dation evasion morphologies arose on Kaua‘i, whereas

climbing morphologies arose on the Big Island. Morpho-

logical divergence was driven by both the strength of se-

lection from predation and its interaction with

immigration (Tables 2 & 3). The amount of predation

selection necessary for the evolution of predation eva-

sion morphotypes varied across islands (Figure 5).

Adult morphology diverged from larval morphology

with increasing predation probability relative to immigra-

tion, as would be expected if post-settlement selection

overcomes gene flow from immigration (Figure 5, Add-

itional File 2: Figure S2, & Additional File 3: Figure S3).

The highest selection differentials occurred on Kaua‘i

whereas the lowest occurred on the Big Island (Table 1),

ranging from <0.0001 to 0.56. Selection differentials dif-

fered significantly between stages across all islands

(Table 2). And with the exception of O‘ahu, where the

transition between Stage 9-10 exhibited the highest max-

imum selection coefficient, the largest maximum and

average values of selection differentials occurred during

the transition between Stage 3-4 (i.e., the

post-settlement stage; Table 1). Predation probability

was the only other predictor of mean selection

Fig. 2 Simulated counts of larval and adult morphotypes for 200 generations on the islands of Kaua‘i, O‘ahu, and the Big Island from the

individual-based models of isolation without post-settlement selection (scenario 1). Warm colors represent climbing morphotypes (M1-M4) and

cool colors represent predation evasion morphotypes (M7-M10)
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Fig. 3 Simulated counts of adult morphotypes for 200 generations on the islands of Kaua‘i (a), O‘ahu (b), and the Big Island (c) from the

individual-based models of isolation with varying levels (0 to 1) of post-settlement selection of predation (columns) and climbing (rows) (scenario

2). Warm colors represent climbing morphotypes (M1-M4) and cool colors represent predation evasion morphotypes (M7-M10)
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differentials on O‘ahu and the Big Island. It was not a

predictor of mean selection differentials on Kaua‘i, where

mean selection differentials were significantly correlated

with immigration rate and the interaction between im-

migration rate and predation probability (Table 2).

The RDAs explained 78-94% of the total observed vari-

ance in morphotype evolution across all islands. Morpho-

type evolution was correlated with year, immigration,

predation, and the interaction between immigration and

predation (Table 3). Predation explained the highest pro-

portion of variance in morphotype for each island (25.93%

- Kaua‘i, 43.23% - O‘ahu, and 33.28% - Big Island; Table 3).

The interaction between immigration and predation ex-

plained 11.50% of observed variance on O‘ahu, 6.57% on

the Big Island, and only 1.93% on Kaua‘i. Immigration and

year explained less than 3% and 0.01%, respectively, of

morphotype variance on each island.

Discussion

Coupled AD-IBM modeling demonstrated that the likeli-

hood of local adaptation in a diadromous fish depends on

the spatio-temporal balance of pelagic larval dispersal and

post-settlement selection [12]. Our results affirm theoret-

ical expectations that passive larval dispersal facilitated by

ocean currents can result in homogenization [23, 60, 69],

but we also found that dispersal asymmetries can arise

due to climate-driven (i.e., ENSO) fluctuations in oceanic

conditions. Our model simulations additionally showed

that spatio-temporal variation in post-settlement selective

pressures can override the homogenizing effects of passive

larval dispersal, where differential probabilities of survival

and reproduction result in adaptive evolution and mor-

phological divergence among populations. But contrary to

the expectation that post-settlement selection pressures

from both predation and climbing drive population diver-

gence, we found that predation alone is likely the primary

driver of population divergence in S. stimpsoni. Notably,

we also found that the amount of larval immigration was

not a strong determining factor of morphological evolu-

tion. Rather, the strength of predation-driven,

post-settlement selection and its interaction with immi-

gration appear to shape morphological divergence across

the Hawaiian archipelago, which is consistent with Fisher’s

Theorem of Natural Selection [12, 70]. In other words, the

strength of selection and rate of change in the mean mor-

photype increase as trait variance increases. In our simula-

tions, this is driven by the continued influx of maladaptive

morphotypes through immigration.

Passive larval dispersal

The complex oceanic hydrodynamics surrounding the

Hawaiian Islands makes it difficult to generalize about

Table 1: Selection differentials. Selection differentials calculated from the post-settlement selection IBMs for each island without

immigration (scenario 2) and with immigration (scenario 4)

Island Metric Stage change

Without immigration (scenario 2) 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

Kaua‘i min <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

max 0.14 0.29 0.39 0.31 0.30 0.31 0.29 0.26 0.29

average 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

O‘ahu min <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

max 0.10 0.23 0.25 0.25 0.25 0.22 0.23 0.29 0.26

average 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Big Island min <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

max 0.10 0.28 0.36 0.28 0.30 0.32 0.24 0.21 0.21

average 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

With immigration (scenario 4)

Kaua‘i min <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

max 0.09 0.43 0.56 0.38 0.38 0.36 0.33 0.29 0.30

mean 0.01 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03

O‘ahu min <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

max 0.11 0.24 0.32 0.30 0.25 0.27 0.30 0.26 0.36

average 0.01 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03

Big Island min <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

max 0.47 0.50 0.53 0.41 0.34 0.34 0.37 0.36 0.25

average 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
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the dispersal of pelagic propagules across the archipelago

[71]. Nonetheless, it has long been hypothesized that

mesoscale eddies that form on the leeward side of the

Hawaiian Islands prevent larvae from being swept away,

and thus promote retention and settlement near islands

[72–74]. Contrary to this idea, recent studies have found

little or no association between mesoscale eddies and

local larval retention in the Hawaiian Islands [75, 76],

but instead facilitated larval transport to other islands

[77]. Although, our AD model simulations do not dir-

ectly test for the independent influences of these factors,

they do indicate that the combination of mesoscale ed-

dies and prevailing current flow patterns (southeast to

northwest) contribute to local retention and larval trans-

port among islands [34, 78, 79]. While average estimates

of larval settlement were low across the Archipelago (<

3%), we found evidence of local larval retention around

each island with the highest proportions of local larval

retention occurring around the Big Island (42%). We

also found asymmetric larval dispersal from the south-

east (i.e., the Big Island) to the northwest (i.e., Kaua‘i).

These results suggest that mesoscale eddies could con-

tribute to increased larval transport among islands,

which is consistent with the findings of Wren et al.

(2016) [77]. However, future work should directly quan-

tify the independent effects of mesoscale eddies from

prevailing current flow patterns to understand their re-

spective influences on S. stimpsoni larval dispersal.

While it is evident that larval dispersal and spatial co-

agulation of larval cohorts [80] vary because of dynamic

nearshore and offshore oceanographic conditions [81–

85], our AD modeling also illustrates the importance of

considering large-scale, climatic variation in assessments

of population connectivity. ENSO and other large-scale

climate-driven phenomena can exhibit small

temporal-scale variability that enhance or suppress larval

dispersal [85–89]. Consistent with evidence of ENSO in-

fluencing population connectivity of ocean-dwelling

Table 2: Generalized linear models of selection coefficients. GLMs of selection coefficients for post-settlement selection IBMs for

each island (Kaua‘i, O‘ahu, and the Big Island) without immigration (scenario 2) and with immigration (scenario 4).

Island Parameter Coefficient t-value P-value

Without immigration (scenario 2)

Kaua‘i stage 0.0005 9.39 < 0.0001

predation probability -0.0047 -5.59 < 0.0001

climbing probability -0.0009 -1.17 0.24

predation probability × climbing probability 0.0018 1.33 0.18

O‘ahu stage 0.0007 7.06 < 0.0001

predation probability -0.006 -4.19 < 0.0001

climbing probability -0.004 -2.84 0.005

predation probability × climbing probability 0.004 2.09 0.038

Big Island stage 0.0006 6.81 < 0.0001

predation probability 0.0009 0.68 0.50

climbing probability -0.0001 -0.09 0.93

predation probability × climbing probability 0.0001 0.03 0.97

With immigration (scenario 4)

Kaua‘i stage 0.0012 4.61 < 0.0001

immigration rate -0.0105 -2.46 0.01

predation probability 0.0022 0.46 0.65

immigration rate × predation probability 0.0289 4.13 < 0.0001

O‘ahu stage 0.0015 6.63 < 0.0001

immigration rate 0.0053 1.49 0.14

predation probability 0.0193 4.90 < 0.0001

immigration rate × predation probability -0.0038 -0.66 0.51

Big Island stage 0.0008 5.24 < 0.0001

immigration rate -0.0003 -0.12 0.91

predation probability 0.069 2.37 0.02

immigration rate × predation probability 0.0013 0.31 0.76
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species across the Hawaiian archipelago and elsewhere

in the Pacific [19, 90], we found that ENSO likely influ-

ences S. stimpsoni larval dispersal (Figure 1). Parallel

patterns of temporal and spatial fluctuations in FST esti-

mates from microsatellite markers among subpopula-

tions of S. stimpsoni [53] serve as further evidence that

larval cohort aggregation and composition shift in re-

sponse to ENSO cycles.

Our AD model was conservative with respect to larval

behavior and life history (e.g., the model did not con-

sider larval mortality, vertical migration, or swimming

behavior). Incorporating other parameters into the

model- including life history variation [36], larval behav-

ior [79], and selection ‘at sea’ (i.e., selection against long

distance dispersal, which could increase the probability

of larval loss)- would likely improve estimates of larval

transport, local retention and self-recruitment (i.e., natal

homing [91]). In combination with persistent natural

and anthropogenic perturbations in oceanic island

streams [92–97], theory would predict that such condi-

tions would result in the evolution of dispersal polymor-

phisms [98] to protect against extirpation and

extinction. Accounting for the possibility of alternative

dispersal strategies [99–101], which have been found in

other diadromous species [102–108], could shift the bal-

ance between larval transport and self-recruitment esti-

mates. Indeed, self-recruitment could be many times

greater than predicted by our AD model [1, 109–111].

Accordingly, the modeling framework we have so far de-

veloped offers a basis for further investigations includ-

ing, but not limited to, modeling outcomes of alternative

dispersal strategies to better understand the implications

of life history variation in amphidromous gobies like S.

stimpsoni [102, 112, 113].

Settlement site topography

We expected that differences in stream topography (e.g.,

slope, waterfall locations, and discharge) would result in

Table 3: Redundancy analysis (RDA) models of morphological evolution. RDAs of morphological evolution for post-settlement

selection IBMs for each island without immigration (scenario 2) and with immigration (scenario 4). * P < 0.0001

Island R2adj F(4,250867) Model parameter Coefficient Variance partitioned (%)

Without immigration (scenario 2)

Kaua‘i 0.65 113964* year -0.99 0.63*

predation selection 0.99 16.10*

climbing selection -0.01 0.06*

predation selection × climbing selection 0.67 0.02*

O‘ahu 0.89 553293* year -0.02 0.06*

predation selection 0.99 19.96*

climbing selection -0.04 0.04*

predation selection × climbing selection 0.66 0.23*

Big Island 0.87 407005* year -0.13 1.52*

predation selection 0.98 24.42*

climbing selection 0.64 0.86*

predation selection × climbing selection 0.67 0.05*

With immigration (scenario 4)

Kaua‘i 0.94 896157* year -0.01 < 0.001 *

immigration rate -0.23 0.02 *

predation selection 0.96 25.93*

immigration rate × predation selection 0.60 1.93*

O‘ahu 0.92 587798* year -0.02 < 0.001*

immigration rate -0.29 1.37*

predation selection 0.89 43.23*

immigration rate × predation selection 0.43 11.50*

Big Island 0.78 187930* year -0.04 < 0.001 *

immigration rate -0.11 2.90*

predation selection 0.95 33.28*

immigration rate × predation selection 0.59 6.57*
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divergent morphotypes across the archipelago, where

steep-sloped streams with fast flows would harbor fish

with long, shallow bodies, while shallow-sloped streams

with slower flowing water have fish with short, deep

bodies. To the contrary, under conditions of no immi-

gration and selection probabilities turned off, we found

that streamlined “climbing” morphotypes evolved in all

populations, which were initially seeded with a

homogenous distribution of morphotypes, regardless of

prevailing topography (Figure 2). This finding suggests

that, upon initial colonization (likely during the Pleisto-

cene [14]), S. stimpsoni exhibited a streamlined body

shape that better enabled it to penetrate steep-sloped

watersheds across the archipelago. At that time, streams

on the fully-formed main islands (Maui, Moloka‘i, O‘ahu,

and Kaua‘i) were most likely steeper in slope and per-

haps more homogenous in topography compared to

current conditions. Thus our model results offer support

for the idea that initial colonization of the archipelago

by amphidromous fauna reflects temporally dynamic, yet

time specific opportunities, where habitat suitability and

availability shift with island age [114, 115].

Post-settlement selection

Selection differentials

Our findings illustrate that strong selection from

post-settlement mortality during juvenile recruitment

can promote divergence [13, 116, 117] because water-

sheds across the Hawaiian Islands are heterogeneous.

Though environmental gradients on each island are

similar in scale, there are stark contrasts between islands

across the archipelago - heavily eroded watersheds with

high sedimentary loads and waterfalls far inland on older

islands, and steep watersheds produced by recent vol-

canic flows with fast moving clear water and waterfalls

close to shore on younger islands. Thus larvae recruiting

from non-local sources may encounter highly unsuitable

habitat. Prior work has shown, for example, that newly

recruiting juveniles are exposed to strong directional se-

lection favoring either climbing performance on the Big

Island or predation performance on Kaua‘i [66–68, 118].

Our findings also are consistent with inferences that

variation in non-linear selection between islands and wa-

tersheds can result in complex fitness surfaces that allow

for the evolution of locally adapted populations [66].

IBM simulations intended to assess outcomes of

post-settlement selection without immigration (scenario

2) indicated that selection is strongest during recruit-

ment (ontogenetic Stage 3-4). This is consistent with ex-

pectations that post-settlement selection ought to be

strongest during this transition stage because stream

topographic structures (i.e., the proportion of reach

types and presence of waterfalls) dictate that selection

from predation and climbing occurs soon after stream

Fig. 4 Simulated counts of larval and adult morphotypes for 200 generations on the islands of Kaua‘i, O‘ahu, and the Big Island from the

individual-based models of immigration without post-settlement selection (scenario 3). Warm colors represent climbing morphotypes (M1-M4)

and cool colors represent predation evasion morphotypes (M7-M10)
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Fig. 5 Simulated counts of adult morphotypes for 200 generations on the islands of Kaua‘i, O‘ahu, and the Big Island from the individual-based

models of immigration (ranging from 25%-100%) with varying levels (0.25 to 1) of post-settlement predation selection (scenario 4). Warm colors

represent climbing morphotypes (M1-M4) and cool colors represent predation evasion morphotypes (M7-M10)
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re-entry. It is worth noting, however, that the influence

of associated model parameters (e.g., predation and

climbing probabilities, and the interaction of predation

and climbing probabilities) on selection differentials var-

ied for each island (Table 2).

Similarly, IBM simulations intended to assess out-

comes of post-settlement selection with immigration

(scenario 4) indicated that selection is strongest during

recruitment (ontogenetic Stage 3-4). But, in contrast to

simulations without immigration (scenario 2), allowing

for immigration resulted in selection differentials being

strongly correlated with either predation probability

(O‘ahu and the Big Island) or interactions between im-

migration and predation probability (Kaua‘i). Notably,

because our modeled selection differentials are congru-

ent with empirical estimates of predation selection on S.

stimpsoni [66, 68], this finding supports prior interpreta-

tions and inferences about the evolution of morpho-

logical divergence among populations of S. stimpsoni

[53, 66, 68].

Our IBM selection differentials and morphotype re-

sults were pooled averages within an island, whereas our

empirical estimates of the strength of selection and

morphology were measured on a stream basis [66–68,

118]. Despite these differences in geographic scale, our

simulation results and conclusions are comparable to

our empirical findings. In natural populations, the

strength of predation selection differentials on

fitness-related traits (e.g., mid-body) ranged between

0.021-0.28 [66, 68]. In our simulations, once the mean of

the selection differential exceeded 0.03, predation

morphologies could evolve on Kaua‘i regardless of immi-

gration rate. However, the degree of predation morpho-

type (i.e., 6, 7, 8, or 9) did vary with immigration rate

(Figure 5). In contrast, even when the selection differen-

tials reached or exceeded this threshold value on the Big

Island, predation morphologies never evolved even at

low levels of immigration, which is consistent with nat-

ural populations of S. stimpsoni residing in Big Island

streams [66].

Morphological divergence

Theoretical and empirical studies have demonstrated

that predators can engender adaptation and persistence

of prey in a fluctuating environment [12, 119–121]. This

may occur through a selective push, in which selection

moves the mean of a trait towards a local optimum by

predators consuming prey with lower fitness due to the

trait in question. It may also occur as a result of the

‘evolutionary hydra effect’, in which predation reduces

prey density and then increases prey birthrate, resulting

in more selective events per unit time, which effectively

reduces generation time [122]. Our results indicate that

with post-settlement selection, regardless of immigration

(i.e., whether it is included in the model or not, or

whether the rate varied), distinct morphologies evolve

on each island in accordance with prior predictions (i.e.,

predation evasion morphologies on Kaua‘i, climbing

morphologies on the Big Island). The recovered patterns

of divergence were principally driven by the strength of

predation-derived selection (Table 3), which is consistent

with the pattern of predation-driven divergence found

across a broad range of taxa [122–129]. However, the

strength of selection required for the evolution of preda-

tion evasion morphotypes varied among islands. Much

weaker predation-driven selection was necessary on

Kaua‘i compared to the Big Island or O‘ahu (Figure 3).

This is well illustrated in model runs with immigration,

which showed that predation evasion morphotypes do

not evolve on the Big Island even when predation-driven

selection is strong, whereas predation evasion morpho-

types could evolve on Kaua‘i regardless of the immigra-

tion rate (Figure 5). This is highlighted by the finding

that the interaction of predation-driven selection and

immigration, not the strength of predation-driven selec-

tion alone, was the driving factor for adaptive evolution

on Kaua‘i (Tables 2 & 3). These results suggest that the

adaptive potential and adaptive evolutionary trajectory

of S. stimpsoni may be greater on islands that have

strong environmental gradients and that receive recruits

with greater variance in morphology due to immigration

(Figure 5).

Contrary to expectations derived from observations of

natural populations of S. stimpsoni on the Big Island and

Kaua‘i [66], estimates of the opportunity for selection

were greater for the non-primary pressure on each is-

land (i.e., climbing on Kaua‘i, predator evasion on the

Big Island) than the primary pressures. Canonical rota-

tions of the nonlinear gamma matrix (i.e., a canonical

transformation that identifies the major axes of fitness

surfaces and facilitates the detection of stabilizing or dis-

ruptive selection) demonstrated that individuals from

Kaua‘i and the Big Island occupy regions near their local

fitness peaks for some traits [66]. Therefore, selection

for predator evasion on Kaua‘i and climbing on the Big

Island may be less effective in promoting morphological

change in S. stimpsoni than the non-primary pressures

because variation of functionally important traits may

have been reduced by directional or stabilizing selection.

Our model simulations do not recover this relationship

for two reasons. First, the modeled morphotypes are on

a linear axis of 1-10, with morphotype being coded as a

univariate trait. Consequently, the variance for some

fitness-related traits could not be reduced by selection

and non-selected traits maintain a high level of variance.

This increases the potential for greater non-primary se-

lective pressures to operate on each island (i.e., climbing

on Kaua‘i and predation on the Big Island) resulting in
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greater opportunities for selection in those directions;

however, this possibility could not be explored in our

models. Second, this inconsistency may instead be re-

flective of much lower connectivity in nature than was

accounted for in our oceanographic models, possibly

due to a range of factors (e.g., differential larval mortal-

ity, larval swimming behavior, vertical migration, or local

retention), which would be expected to greatly reduce

variance in larval cohort morphology through cohort co-

agulation [52, 53]. Resolving this incongruence thus war-

rants continued exploration, parameterization, and

quantification of spatio-temporally fluctuating processes

that contribute to population connectivity in marine and

diadromous species with marine dispersing larvae.

Connectivity and conservation

Further work on population connectivity also stands to

advance understanding of population resilience in an

ever changing, human-dominated environment. This is

particularly pertinent to species endemic to oceanic

islands, like the Hawaiian Islands, where escalating

growth of the resident human population is imposing

ever-greater pressures (e.g., via habitat alteration, pollu-

tion, resource divergence) and threats (e.g., increasing

temperatures, climate-driven shifts in oceanic currents,

invasive species, etc.) [56, 130–132]. Many of these con-

cerns are evident across the Hawaiian archipelago, espe-

cially on the island of O‘ahu. Home to over 80% of the

human population in the Hawaiian Islands, O‘ahu has

undergone extensive urbanization over the past century

[133, 134]. Populations of S. stimpsoni on O‘ahu are ei-

ther locally extirpated (i.e., within particular watersheds)

or significantly smaller than those found on other islands

[92], which reflects a sensitivity to perturbation and

habitat modification [97, 135]. While our model results

indicate that S. stimpsoni larvae can recruit and that

local adaptation can evolve on O‘ahu, prevailing condi-

tions appear to be overwhelming both processes on the

island. It is possible, however, that the extirpation and

decline of S. stimpsoni on O‘ahu is a consequence of sig-

nificantly lower larval dispersal than what we have mod-

eled, exacerbated by small adult populations producing

relatively few larvae. It is also possible that larval disper-

sal is sufficient to ‘seed’ watersheds across O‘ahu, but

that in-stream conditions are so unsuitable for S. stimp-

soni that post-settlement mortality is too high for local

populations to persist. Under either set of conditions,

resident populations likely cannot be “rescued” by immi-

gration. Further modeling that accounts for additional

abiotic and biotic parameters [136] could improve un-

derstanding of why S. stimpsoni (and other endemic

amphidromous species) are nearly extirpated on O‘ahu

and thus help identify strategies to best reverse losses

and prevent losses on other islands in the archipelago.

Conclusion
Unlike the terrestrial systems in the Hawaiian Islands,

which exemplify adaptive radiations [137–139], the en-

demic amphidromous fishes, as well as the marine bio-

diversity of Hawai‘i, are not the products of evolutionary

radiations [140–143], but see [144]. Even though the Ha-

waiian gobies reside within the islands like honey-

creepers, Drosophila, and silverswords, these gobies are

constrained by their phylogenetic history, which includes

a life cycle that dictates oceanic larval development

resulting in high gene flow amongst populations [53,

114, 135, 145]. It is this contrast between adaptive radia-

tions amongst terrestrial species but not marine species,

and the underlying evolutionary mechanisms of adapta-

tion and speciation, for which amphidromous gobies

provide distinct insight. Our study demonstrates that

despite strong local adaptation resulting from the com-

plex interplay between ocean currents, dispersal strat-

egies, and post-settlement selection, the opportunity for

ecological speciation amongst marine-associated organ-

isms is still most likely constrained as a result of gene

flow. However, with recent advances in technological

and bioinformatic methodologies, phylogeographic and

population genetic studies of anadromous and marine

species are increasingly finding evidence that barriers to

gene flow exist at fine spatial and temporal scales [22,

52, 146–155]. In combination with further development

of oceanographic model simulations, especially ones pa-

rameterized to reflect empirical estimates of abiotic and

biotic factors (e.g., dispersal potential, larval mortality

and swimming behavior, as well as post-settlement selec-

tion and ecological conditions), such studies can advance

our understanding of adaptive evolution, speciation, and

population resilience in an ever-changing aquatic

environment.

Methods
Study system

The amphidromous Hawaiian goby fish, Sicyopterus

stimpsoni, is well suited for studying how migration and

selection influence the evolution of species with

marine-dispersing larvae. While adult subpopulations of

S. stimpsoni predominantly reside in upper elevation

stream habitat, dispersal among streams occurs via

oceanic transport of pelagic larvae [156, 157]. Dispersal

distances and among-watershed connectivity are not

well known, however, as it is unclear how inshore and

offshore oceanic processes affect the spatio-temporal

structure of larval dispersal. It is known that recruitment

to streams results from pelagic larvae cueing on fresh-

water plumes [158], and evidence of life history variation

in another goby endemic to the Hawaiian Islands [102]

suggests that the probability of post-larvae returning to

natal streams may reflect a combination of active (e.g.,
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habitat use, larval swimming behaviors) and passive (e.g.,

oceanographic transport) factors. Thus, it is likely that

cohorts that recruit back to streams and migrate up-

stream to adult spawning habitat are composed of indi-

viduals originating from a combination of sources (i.e.,

natal and other streams). Consistent with this, patterns

of little to no neutral genetic differentiation in microsat-

ellite and mitochondrial markers, among adult subpopu-

lations across the Hawaiian archipelago, suggest that

recruiting cohorts draw from well-mixed larval pools

[53, 112, 114, 135, 145, 159, 160].

During upstream migration, both predation and water-

fall climbing produce brief, but intensive, episodes of se-

lection on juvenile S. stimpsoni [66–68]. Juvenile recruits

must escape predation (e.g., by the endemic, piscivorous

sleeper, Eleotris sandwicensis), and individuals who sur-

vive predation face the additional selective pressure of

climbing waterfalls before reaching predator-free adult

habitats where S. stimpsoni grow, mature, and reproduce

[161, 162]. Both forms of selection may lead to local

adaptation in morphology among streams if additive

genetic variation exists for shape differences [53, 66–68].

The strength of natural selection from predation and

waterfall climbing varies according to watershed topog-

raphy. The geomorphology of Hawaiian watersheds

spans a topographic gradient that tracks the progression

of erosion with island age [163]. Variation in topography

translates to differences in the steepness of stream slope,

stream depth and breadth, and surface flow rates [53,

92]. For example, streams on the Big Island are charac-

teristically steep-sloped, and often terminate in waterfalls

with little to no estuarine habitat. Individuals recruiting

to “Big Island-like” streams must climb waterfalls within

a few days of settlement. Therefore, natural selection

should favor individuals with streamlined morphologies

(i.e., long, shallow bodies) for reduced drag and better

waterfall-climbing performance [164, 165]. On the other

hand, streams on Kaua‘i are characteristically

shallow-sloping with waterfalls that are often located ki-

lometers inland. Individuals recruiting to “Kaua‘i-like”

streams thus may have to swim upstream for weeks be-

fore escaping predation by climbing waterfalls. There-

fore, natural selection should favor individuals with

short, deep bodies that facilitate greater thrust produc-

tion for predator evasion [164–166]. Accordingly, differ-

ences in stream topography likely constitute a mosaic of

selection pressures that underlies observed patterns of

divergence in body shape among sub-populations [53,

66–68] under conditions of high gene flow.

Modeling passive larval dispersal: oceanographic

simulations

Patterns of larval dispersal can change in both space and

time [41–44], therefore we used a modified version of

the 2D Lagrangian transport model described in Polo-

vina et al. (1999) [167] and Wren & Kobayashi (2016)

[31] to simulate larval dispersal and recruitment. As im-

plemented here, the transport model tracks individual

larvae (i.e., particles) through physical oceanographic

models from spawning to settlement, moving them

through ocean velocity fields. We set the diffusivity coef-

ficient to 250 m2/sec ([168], Jia pers. comm.) and we

used a settlement radius of 5 km around each stream

mouth. For physical flow fields we used a regional imple-

mentation of the daily Hybrid Coordinate Ocean Model

(HYCOM) [169], with a K-profile parameterization

(KPP) mixed layer formulation for our current solutions

(http://apdrc.soest.hawaii.edu/datadoc/hycom_hawaii_0.

04_kpp.php). The domain of the regional HYCOM

model spans 194°E-210°E and 16°N-26°N and has a 1/

25° horizontal resolution and 28 active vertical layers.

This model is eddy resolving, which accurately predicts

mesoscale eddies that are often present in the lee of the

Hawaiian Islands [170]. For simulation runs, we

depth-averaged current velocities in the top 100 m (i.e.,

the top 7 layers of the HYCOM), excluding the surface

layer (0-5 m). We used this approach because it has

been shown to best predict the position and settlement

of larval reef fishes from empirical studies within the

Hawaiian Islands [31] and there is no evidence from

plankton and midwater trawl surveys that larval goby

distributions are neustonic or epipelagic (i.e., under the

sole influence of the HYCOM surface layer) [171].

A total of 51 stream mouth locations on Kaua‘i, O‘ahu,

Moloka‘i, Maui, and the Big Island were used as release

and settlement sites in the model (Figure 6). One hun-

dred virtual larvae were released daily from each stream

mouth location from 2 May 2009 until 31 March 2014

(1594 days), totaling over 8 million (8,129,400) virtual

larvae released during the simulation. We conducted

separate preliminary AD model simulations with PLD

set to 55 and 150 days post-release and found slightly

but not significantly higher levels of connectivity at 150

PLD compared to 55 PLD. Further, the patterns we ob-

served when running these preliminary simulations were

very similar to the overall patterns of connectivity found

when using a continuous range of PLDs. Therefore, in

an effort to best represent the entire range of possible

PLDs of S. stimpsoni, we used a continuous bimodal

range of 50 days to 200 days based on estimates of age

and PLD from otolith microchemistry studies [102,

172–174]. Each larva could settle as early as 50 days

after release and up to 200 days after release, after

which mortality occurred. In all AD simulations, lar-

vae were assumed to be passive throughout their

PLD. Simulation results were averaged across three

runs (to account for stochasticity) with daily time

steps.
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Linking larval dispersal with post-settlement selection:

IBM development

Three independent, spatially explicit, individual-based

models (IBMs) were developed and parameterized in

NetLogo (6.0.3) [175] for Kaua‘i, O‘ahu, and the Big Island

(respectively). We limited our IBMs to these three islands

because our prior work quantified selection and morpho-

logical divergence on Kaua‘i and the Big Island [53, 66–68]

allowing for direct comparisons of simulation results with

empirical data. In addition, populations of S. stimpsoni on

O‘ahu are extremely rare and perhaps locally extirpated,

making this island of interest for conservation concerns.

Each IBM was divided into habitat cells of 1 km2 and scaled

to island size. The habitat cell types represented the pri-

mary habitats utilized by S. stimpsoni: offshore ocean and

nearshore ocean, which are larvae-only cells, and estuarine

and upstream, which are juvenile- and adult-only cells, ac-

cording to the species life history [81, 176].

We selected eight to ten watersheds on each island

representative of habitat type and elevation to include in

the island-specific IBMs. Physical characteristics (length,

elevation, slope) for each of the selected watersheds were

determined from the Atlas of Hawaiian Watersheds and

their Aquatic Resources (http://www.hawaiiwatersheda-

tlas.com/index.html). Additional data gathered from

Google Earth enabled us to develop metrics for water-

falls in the IBMs. The highest elevation areas within wa-

tersheds were excluded from the IBMs because S.

stimpsoni do not inhabit headwater reaches [176, 177].

Patch conditions were watershed-specific with weekly

discharge estimates based on historical records from

United States Geological Survey stream gauges (http://

hi.water.usgs.gov). Weekly discharge rates (ft3/sec) were

averaged across all years, and an annual sine curve

model was calculated for each watershed (Additional File

4: Supplemental Equations). For watersheds without

gauge data (22 streams), we used log(stream channel

length km), log(watershed area km2), and log(max eleva-

tion m) in a principal component analysis to calculate

the nearest neighbor distance. Nearest neighbor distance

(√((x2-x1)
2+(y2-y1)

2+(z2-z1)
2)) was determined using

principal component axes 1-3, and used to assign annual

sine curve models of discharge rates to watershed with-

out gauges.

Each IBM followed the survival of individual S. stimp-

soni through ten life history stages, from late-stage pela-

gic larvae to adults on a weekly time step basis. Stage 1

corresponded to the final marine larval stage, with corre-

sponding individuals having reached the nearshore wa-

ters surrounding the island but not yet having detected

freshwater plumes. Thus, Stage 1 movement is randomly

oriented in the offshore marine environment with re-

spect to stream locations. Stage 2 represented the near-

shore post-larval stage, during which individuals exhibit

strong orientation toward freshwater plumes depending

on the width and flow from each watershed. Stage 3

constituted juvenile stream fish with fully developed

benthic feeding and climbing structures that orient

Fig. 6 Locations of Hawaiian streams used as release/recapture points in the passive larval dispersal model
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upstream and continue to migrate until reaching suitable

adult habitat and conspecific density. Stages 4 through

10 consisted of reproductively mature adult fishes that

retain upstream orientation until reaching suitable adult

habitat and conspecific density [176]. Each stage differ-

entiated by growth in approximately 1 cm increments

[178], which influences the probabilities of predation,

growth and net reproductive output.

Each individual agent (fish) in the model possessed the

following characteristics: stage (1-10), sex (male or fe-

male), position (x-y coordinates), direction (degrees),

and morphotype (0-1). Morphotype consisted of a single

trait on a scale from 0 to 1 that describes a continuum

of body shape from long, shallow bodies (climbers) to

short, deep bodies (predator evaders). Because S. stimp-

soni morphotype heritability is unknown, we treated trait

heritability as the average of the two parental morpho-

types +/- 5% of the average difference between parental

morphotypes, which falls within the range of

narrow-sense heritability estimates for morphological

traits in fishes [179, 180] and is calculated as:

Offspring morphotype ¼
mother morphotypeð Þ þ father morphotye

2

� �

þrandom 0:05 þ jmother morphotype−father morphotypejð Þð Þ−randomð0:05

þ jmother morhotype−father morphotypejð ÞÞ

ð1Þ

Each IBM was populated with initial agents of each

stage with an equal distribution of all morphotypes.

Above a threshold that could cause random extinction,

the initial number of agents had little effect on model

output, and was therefore set at 3000 gobies to minimize

that probability. Upon initiation of the model run, the

IBM proceeds as a continuous loop of six subroutines

executed on a weekly time step: patch conditions, move-

ment, mortality, reproduction, growth, and immigration.

Larvae (Stage 1) begin in the offshore zone of the model

and undergo mortality if natural_mortality calculated as:

natural mortality ¼
1

1þ stage

� �

ð2Þ

is greater than a random probability (between 0 and <

1 assigned at each time step), or move into the near-

shore zone if they survive to Stage 2. Stage 2 larvae must

then find a watershed inlet habitat cell in order to move

into a stream or else perish. Upon entering the water-

shed (Stages 3-10), the probability of moving upstream

depends upon the elevation gradient between the

current patch and the next patch, the current hydro-

logical discharge conditions of the patch, and the mor-

photype of the individual. Thus, the probability of

upstream movement was calculated as:

P climbð Þ ¼ exp−morphotype
� �

− 1− exp
−

discharge

3

� �

þ
depthdiff

50

� �� �

 !

� climb threshold

 !

ð3Þ

where discharge is the logarithmic stream-specific sine

curve equations (Supplemental Materials Eq. 1.1) scaled

by a factor of 1/3 that converts discharge to a unit of

climbing difficulty between 0-1. The parameter depthdiff,

a proxy for waterfall height, is the absolute value of the

elevation difference between the current patch and the

next patch. depthdiff is scaled by a factor of 1/50 that

converts this parameter to a unit of climbing difficulty,

resulting in a similar distribution of climbing success as

observed by Blob et al. 2008, 2010 [67, 68] and a longi-

tudinal distribution of individuals within a stream simi-

lar to that observed in nature (Atlas of Hawaiian

Watersheds and their Aquatic Resources, http://hawaii-

watershedatlas.com). The climb_threshold parameter is

user-defined on a scale from 0 to 1, which is a primary

parameter that is changed between our simulated

scenarios.

Individuals that fail to climb to the next patch during

the current time step remain in the same patch until the

next time step or until they experience mortality. Mor-

tality is stage-specific and can result from natural mor-

tality (i.e., aging), predation, or competition. Natural

mortality is calculated as in Equation 2. Predation mor-

tality is calculated as:

predation mortality ¼

�

natural mortality � predation risk � exp−morphotype
� �

−0:35
� �

�
1

1þ elevation

� ��

ð4Þ

where predation_risk is user-defined on a scale from 0

to 1 as primary parameter that is changed between our

simulated scenarios. An individual experiences predation

mortality when predation_mortality is greater than a

random probability between 0 and < 1 assigned at each

time step. Mortality due to competition is based on

carrying-capacity and is calculated as:

competition mortality ¼ 1−
carrying capacity−n indivduals r1ð Þ

carrying capacity

� �

ð5Þ

where n_individuals_r1 is the number of individuals

within a 1 cell radius of an individual and carrying_capa-

city is user-defined. We set carrying_capacity to 100 go-

bies per cell, because this value resulted in an

asymptotic population growth curve, whereas values

below this threshold resulted in population extinction,

and above this threshold resulted in exponential popula-

tion growth. If competition is greater than a random

probability between 0 and < 10, then an individual expe-

riences mortality from competition.
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Male S. stimpsoni, which are territorial, not only have

an elaborate courtship ritual that precedes pair-forming

and spawning but also guard fertilized egg clutches [161,

176]. Therefore only individuals of reproductive size

(Stages 4-10) were allowed to reproduce if an individual

of the opposite sex was within one habitat cell.

Reproduction, though year-round, is also linked to

stream discharge, which is seasonally variable [96]. Thus

we calculated reproduction probability as:

P reproductionjdischargeð Þ

¼ 1:355 � discharge−0:459 � discharge2 ð6Þ

resulting in a normal distribution of probabilities that

are scaled to a unit of reproduction between 0 and 1.

The number of offspring was determined by:

offspring number ¼ reproduction � birthsð Þj j ð7Þ

where births is a user-defined parameter ranging from

0-500, and reproduction is:

reproduction ¼
2 stage−4ð Þ

100

� �

ð8Þ

Newly-produced larvae were assigned a morphotype as

described above.

In nature, both female and male S. stimpsoni have in-

determinate growth [95]. In the IBMs, growth rate was

expressed as a logistic curve determined by stage

dependent size (i.e., faster relative growth of younger,

smaller individuals compared to older, larger individuals)

and an annual sine curve of temperature (i.e., faster

growth in warmer waters) calculated as:

P growth stagejð Þ ¼ 1−
temperature

29

� �� �

þ random5

<
age

1þ stage−1ð Þ2
� �

 !

ð9Þ

where,

temperature ¼ 18:22þ 0:9814 � sin 6:283 �
week

52

� �

þ 3:545

� �

�
180

π

� �� �

ð10Þ

and is scaled by a factor of 1/29 and added to a ran-

dom number between 0 and < 5 for conversion to a unit

of growth. Stage 10 individuals were determined to

undergo senescence when the conditions for growth to

the next stage were met, which occurred on average at

~165 weeks (i.e., 3.17 years after obtaining the size

maximum).

Immigration rules in the IBMs consisted of weekly

connectivity matrices from the AD model. Predicted pe-

lagic larval morphotype distributions for these AD

connectivity matrices were determined by the slope of

the stream from which larvae were released, as stream

slope gradient is correlated with morphotype in natural

populations (i.e., individuals from steep sloping streams

have long, shallow bodies, whereas, shallow sloping

streams have individuals with shorter, deeper bodies

[53]). The slopes of the 51 streams in the AD model

were determined by regressing the distance from the

mouth by the elevation of the site every 1000 meters up-

stream. The slope values were then used in a linear re-

gression to predict a numerically scaled morphotype for

individuals from each of the 51 streams. Predicted mor-

photype distributions were used to seed immigrant mor-

photypes (Additional File 5: Figure S4).

Linking larval dispersal with post-settlement selection:

IBM simulation scenarios

Scenario 1: Isolation without post-settlement selection

With age, islands progressively erode and eventually sub-

side into the ocean [163, 181]. Thus, topographic differ-

ences of Hawaiian watersheds should shape the

morphological distributions of S. stimpsoni such that fish

on older islands (i.e., Oʻahu and Kauaʻi) have shorter,

deeper bodies (e.g., a predator evader morphotype) com-

pared to fish on younger islands (i.e., Molokaʻi, Maui and

the Big Island). We therefore ran each island IBM in isola-

tion (i.e., local reproduction only) with climbing and pre-

dation selection parameters turned off, in order to assess

whether island topographic differences alone give rise to

morphological divergence.

Scenario 2: Isolation with post-settlement selection

Similar to patterns of larval dispersal, selective pressures

can change over space and time [45–47]. Because

in-stream selection pressures of predation and climbing

are predicted to shape morphological variation, S. stimp-

soni in the model should evolve morphotype distribu-

tions similar to those observed in nature, consistent with

biomechanical predictions of optimal shapes for

predator-evasion or waterfall-climbing performance [67,

68]. Accordingly, we ran each island IBM in isolation

and with varying climbing and predation post-settlement

selection probabilities (incrementally from 0 to 1) to as-

sess whether and how, post-settlement selection gives

rise to morphological divergence.

Scenario 3: Immigration without post-settlement selection

Immigration may erode local adaptation because larval

recruits from different sources may arrive at settlement

sites with suboptimal morphotype distributions [12].

Natal retention might therefore be expected to increase

survival and population persistence. Immigration also

may be key to population persistence, however, because

oceanic island streams are prone to natural and
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anthropogenic perturbation [92, 93]. We thus ran each

island IBM with immigration only (i.e., no local

reproduction) and without climbing and predation

post-settlement selection to assess whether passive larval

dispersal gives rise to morphological homo/heterogeneity

and how immigration influences local demography.

Scenario 4: Immigration with post-settlement selection

Post-settlement selection may be strong enough to over-

ride the homogenizing effect of immigration via larval

dispersal. We thus ran each island IBM with varying

(0-1) climbing and predation post-settlement selection

probabilities and varying levels of immigration, to assess

the potential for morphological divergence of S. stimp-

soni under conditions of migration and selection. The

extent of immigration was set by weighting the connect-

ivity matrices by 0.25, 0.5, 0.75, and 1, since the connect-

ivity matrices reflect purely passive larval dispersal and

thus represent a conservative estimate of dispersal across

the archipelago. The weighting parameter therefore esti-

mates the effect of reduced larval dispersal from biotic

(i.e., active swimming behavior, vertical migration) or

abiotic processes (i.e., temperature, salinity, chlorophyll)

demonstrated in other marine and diadromous species

[18] but not taken into account in our larval dispersal

model. Because simulations of scenario 2 (see results)

showed that climbing selection exerted negligible influ-

ence, we left climbing probability set to 1 and did not

further analyze climbing for scenario 4. All IBM simula-

tions were run 10 times for 200 generations.

Statistical Analyses

From the oceanographic AD simulations, successful lar-

val settlement was defined as any larvae occurring

within a 5 km distance of a stream mouth. To capture

inter-annual variation in larval transport success, a rear-

ward probability connectivity matrix for each year was

calculated as:

Pij ¼
Sij
P

S j

ð11Þ

where Sij is the number of larvae release from stream i

(source stream) that successfully settled at stream j (re-

ceiving stream), and Sj is the total number of larvae that

successfully settled at a stream regardless of release

stream. Each of the cells of the Pij matrices shows the

probability of a particle transported to stream j having

originated from stream i each year, averaged across the

three simulation replicates, where each row in a matrix

sums to 1. The diagonal of the probability matrices

shows the amount of local entrainment for each stream,

which is defined as the proportion of successfully trans-

ported larvae at each stream that originated from that

same stream. We also calculated the overall proportion

of local entrainment for each island across all years of

the model by dividing the number of released larvae

from all streams on an island that were successfully

transported back to any stream on that same island.

To determine if our modeled selection parameters

were within the range of empirical selection differentials

[67, 68], we calculated the simulated selection differen-

tials (s) for each island in tests of scenario 2 and scenario

4. Selection differentials were calculated as the difference

between the mean morphotype of stage Jn+1 minus the

mean morphotype of Jn within each time step of the

IBMs [182]. The modeled selection differential encom-

passed both the effects of climbing and predation selec-

tion. Consequently we used generalized linear models

(GLMs) to quantify the degree to which age, predation,

climbing or the interaction of predation and climbing

contributed to our modeled selection differentials from

IBM simulations of post-settlement without immigration

(scenario 2). For IBM simulations of post-settlement se-

lection with immigration (scenario 4), we used GLMs to

quantify the degree to which age, immigration, preda-

tion, or the interaction of immigration and predation

were contributing to our modeled selection differentials.

Because simulations of scenario 2 showed that climbing

selection exerted negligible influence on selection differ-

entials (see results), we set the climbing probability in all

IBM simulations of scenario 4 to a value of 1. Subse-

quently we did not use climbing as a parameter in the

GLMs for scenario 4.

We used Redundancy Analysis models (RDA), a mul-

tiple linear regression ordination method [183], com-

puted with the vegan package in R [184], to quantify the

contribution of each model parameter to morphotype

evolution under conditions of isolation and selection

(scenario 2), as well as immigration and selection (sce-

nario 4). We conducted independent RDAs for each is-

land for isolation with selection, with predictor variables

of year, predation, climbing, and the interaction of

climbing and predation (scenario 2). For models of im-

migration and selection (scenario 4), we conducted inde-

pendent RDAs for each island with the predictor

variables of year, immigration, predation, and the inter-

action of immigration and predation. Because simula-

tions of scenario 2 showed that climbing selection

exerted negligible influence on morphological change

(see results), we set climbing probability in all IBM sim-

ulations of scenario 4 to a value of 1. Subsequently we

did not include climbing as a parameter in our RDAs for

scenario 4.

We estimated the adjusted coefficient of determination

(R2
adj) for each model, with statistical significance deter-

mined using permutation tests to compare observed and

randomized model R2
adj. Since morphotypes at time t+1
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are correlated with morphotypes at time t, we conducted

variance partitioning with partial RDAs to estimate the

variance in morphotype evolution that was independ-

ently explained by each predictor variable [185, 186],

thereby controlling for covariance between time points.

Additional files

Additional File 1: Figure S1. Simulated counts of larval morphotypes

for 200 generations on the islands of Kaua‘i (a), O‘ahu (b), and the Big

Island (c) from the individuals-based models of isolation with varying

levels (0 to 1) of post-settlement selection of predation (columns) and

climbing (rows) (scenario 2). Warm colors represent climbing morpho-

types (M1-M4) and cool colors represent predation evasion morphotypes

(M7-M10). (PDF 4133 kb)

Additional File 2: Figure S2. Simulated counts of immigrant larval

morphotypes for 200 generations on the islands of Kaua‘i (a), O‘ahu (b),

and the Big Island (c) from the individual-based models of immigration

(ranging from 25%-100%) with varying levels (0.25 to 1) of post-

settlement predation selection (scenario 4). Warm colors represent climb-

ing morphotypes (M1-M4) and cool colors represent predation evasion

morphotypes (M7-M10). (PDF 4221 kb)

Additional File 3: Figure S3. Simulated counts of self-recruitment larval

morphotypes for 200 generations on the islands of Kaua‘i (a), O‘ahu (b),

and the Big Island (c) from the individual-based models of immigration

(ranging from 25%-100%) with varying levels (0.25 to 1) of post-

settlement predation selection (scenario 4). Warm colors represent climb-

ing morphotypes (M1-M4) and cool colors represent predation evasion

morphotypes (M7-M10). (PDF 4769 kb)

Additional File 4: Supplemental Equations. Sine curve equations of

monthly stream discharge estimates from UGSS stream gauge data.

(DOCX 101 kb)

Additional File 5: Figure S4. Predicted morphotype frequency

distribution and island of origin of settled pelagic larvae from the

dispersal. These frequency distributions were used as the inputs for

pelagic larval morphology (Stage 1) in the individual-based models that

included immigration (scenarios 3, and 4). (PDF 36 kb)
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