
s 

 

 

 
Baldini, F., Segata, N., Pompon, J., Marcenac, P., Shaw, W. R., Dabiré, R. 
K., Diabaté, A., Levashina, E. A., and Catteruccia, F. (2014) Evidence of 
natural Wolbachia infections in field populations of Anopheles gambiae. 
Nature Communications, 5(3985). 
 
 
Copyright © 2014 Macmillan Publishers Limited 

 

 

http://eprints.gla.ac.uk/103460 

 
 

 

Deposited on:  26 February 2015 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/103460
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


ARTICLE

Received 6 Mar 2014 | Accepted 29 Apr 2014 | Published 6 Jun 2014

Evidence of natural Wolbachia infections
in field populations of Anopheles gambiae
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Roch K. Dabiré6, Abdoulaye Diabaté6, Elena A. Levashina7 & Flaminia Catteruccia1,2

Wolbachia are maternally transmitted intracellular bacteria that invade insect populations by

manipulating their reproduction and immunity and thus limiting the spread of numerous

human pathogens. Experimental Wolbachia infections can reduce Plasmodium numbers in

Anopheles mosquitoes in the laboratory, however, natural Wolbachia infections in field ano-

phelines have never been reported. Here we show evidence of Wolbachia infections in

Anopheles gambiae in Burkina Faso, West Africa. Sequencing of the 16S rRNA gene identified

Wolbachia sequences in both female and male germlines across two seasons, and determined

that these sequences are vertically transmitted from mother to offspring. Whole-genome

sequencing of positive samples suggests that the genetic material identified in An. gambiae

belongs to a novel Wolbachia strain, related to but distinct from strains infecting other

arthropods. The evidence of Wolbachia infections in natural Anopheles populations promotes

further investigations on the possible use of natural Wolbachia–Anopheles associations to limit

malaria transmission.
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Faso. 7Vector Biology Unit, Max-Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany. * These authors contributed equally to the work.
w Present address: Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.

Correspondence and requests for materials should be addressed to E.A.L. (email: levashina@mpiib-berlin.mpg.de) or to F.C.

(email: fcatter@hsph.harvard.edu).

NATURE COMMUNICATIONS | 5:3985 | DOI: 10.1038/ncomms4985 | www.nature.com/naturecommunications 1

& 2014 Macmillan Publishers Limited. All rights reserved.

mailto:levashina@mpiib-berlin.mpg.de
mailto:fcatter@hsph.harvard.edu
http://www.nature.com/naturecommunications


M
alaria-transmitting Anopheles mosquitoes are the dead-
liest animals on this planet, causing the death of more
than 600,000 people each year and endangering the

lives of half of the world’s population1. Current insecticide-based
control strategies to stop malaria transmission by targeting the
mosquito vector are limited by the rapid spread of insecticide
resistance2. In addition, these interventions target only indoor
feeding and resting populations, with the use of insecticide-
treated bednets and the application of indoor residual sprays,
respectively. For decades, the use of Wolbachia endosymbionts
has been proposed as an alternative to chemical strategies because
of the ability of these bacteria to rapidly invade insect populations
via cytoplasmic incompatibility3, and successful Wolbachia
invasions in field settings have been demonstrated in the case
of the dengue and yellow fever vector Aedes aegypti4. Recent
proof that Wolbachia infections of Anopheles vectors limit the
development of the Plasmodium parasites that cause malaria5–8

makes these bacteria a particularly attractive tool for the control
of both endo- and exophagic populations of malaria-transmitting
anophelines. Long-standing limitations concerning the
introduction of Wolbachia into laboratory colonies of Anopheles
mosquitoes have been recently overcome5; however, the
usefulness of this system for the control of Anopheles
populations has been undermined by the apparent absence of
natural infections. Indeed, while Wolbachia strains have been
detected in many insects9,10, attempts to identify these bacteria in
field Anopheles have failed, promoting the belief that these
mosquitoes are not natural hosts for Wolbachia11–13.

In this study, we report evidence of natural Wolbachia
infections in two incipient species of the major malaria vector,
Anopheles gambiae. We isolate Wolbachia-specific 16S rRNA
sequences from the reproductive organs and carcasses of adult
mosquitoes and from larval carcasses in three different villages in
Burkina Faso, West Africa. Whole-genome shotgun sequencing
of two positive samples reveals a previously uncharacterized
Wolbachia strain that is maternally transmitted in laboratory
settings. These results open new avenues for exploitingWolbachia
infections for field applications targeting the malaria mosquito.

Results
Wolbachia sequences detected in field An. gambiae popula-
tions. We collected mating couples from natural An. gambiae
mating swarms in Burkina Faso, West Africa, to identify the
microbial populations of the male and female reproductive tracts.
We analysed two reproductively isolated populations of An.
gambiae, the M and S molecular forms, which do not interbreed
in the field14 and are now classified as two separate species
(An. coluzzii and An. gambiae, respectively15). For simplicity, in
the text and in the tables, we will refer to these two species as M
and S forms. Our collections included 81 couples captured in three
different villages: two villages in Vallée du Kou (VK5 and VK7),
where the M form is prevalent, and one village in Soumousso,
primarily populated with S form (Fig. 1, Supplementary Table 1).

An initial high-throughput sequencing of the 16S rRNA gene
(variable region V4, average 23,589, s.d. 16,070 assembled reads
per sample) amplified from ovaries and testes dissected from 30
mating couples produced a molecular fingerprint of the bacterial
population of these reproductive tissues. Surprisingly, this
analysis identified one sample, derived from the testes of an
S form male collected in Soumousso, infected with Wolbachia.
This sample contained 21.8% of reads (5,412 out of 24,800)
matching the V4 regions of the Wolbachia 16S rRNA gene, with a
percentage identity ranging between 95.3 and 97.6%. This
percentage is fully consistent with the overall diversity of known
Wolbachia V4 sequences (average identity 95.9%, s.d. 1.75%,

median 96.0% as estimated from available sequences, see
Methods), while it is incompatible with any other sequenced
bacterial 16S gene (closest matches at o89% identity). Phyloge-
netic analysis rooted theWolbachia sequences into one of the two
main subtrees of the genus, further confirming their taxonomic
placement (Fig. 2).

The identification of Wolbachia sequences in the testes of an
An. gambiae male prompted us to analyse the remaining
mosquito specimens collected from the same mating swarms in
the three villages. To this aim, a more sensitive PCR-based
amplification and sequencing of a 16S rRNA gene segment
comprising three variable regions (V6, V7 and V8) was utilized to
specifically detect Wolbachia in ovaries and testes dissected from
the remaining 51 mating couples, using previously validated
primers16. The mosquito carcasses were also examined using the
same method. Out of the 102 mosquitoes analysed, 11 were
positive for Wolbachia 16S rRNA, leading to a frequency of
infection of 10.8% similarly distributed between males and
females (5 males and 6 females) (Supplementary Table 1).
Interestingly, Wolbachia sequences were PCR amplified from
either the reproductive tissues or from the carcasses, but never
from both, with the exception of one male, where 16S sequences
were identified by high-throughput sequencing in the testes and
by PCR in the carcass. Although sequences corresponding to
these endosymbionts were more prevalent in M mosquitoes, the
difference in frequency between the two species was not
statistically significant (12.8% in M samples compared with
4.2% in S samples). We also amplified DNA from fourth instar
larvae collected from the same three villages (100 specimens from
Soumousso, 80 specimens from VK5 and 70 specimens from
VK7) using the same primer sets described above. Wolbachia
sequences were found in five larval samples (three from
Soumousso, one from VK5 and one from VK7), suggesting
occurrence of maternal transmission (Supplementary Table 2).

Wolbachia sequences group into two different clusters. Ana-
lysis of the amplified regions determined the presence of at least
two distinct clusters of Wolbachia sequences (Supplementary
Fig. 1). One cluster was identical to the reference strains wAlbB
isolated from A. albopictus17, while the second was closely related
to several wPip strains isolated from Culex mosquitoes and
Drosophila species18. The wAlbB-like cluster was detected only in
reproductive tissues (ovaries and testes), while wPip-like
sequences were more widespread and were found in ovaries,
carcasses and whole larvae (Supplementary Fig. 1). Although
these Wolbachia ribosomal sequences are not host specific, the
identification of two distinct clusters suggests the occurrence of
independent Wolbachia infections in An. gambiae, as observed in
other hosts19.

We next analysed the distribution of the Wolbachia sequences
among the different villages. A larger number of positive
individuals were isolated from mating swarms in VK5, where 7
out of the 36 collected mosquitoes showed evidence of infection
(19.4%). The other 4 positive samples were found in VK7
(3 samples out of 42, 7.1%) and Soumousso (1 sample out of 24,
4.2%) (Supplementary Table 1). Strikingly, six of the seven positive
samples isolated from VK5 had been collected in just two of the
seven mating swarms analysed in that village (Supplementary
Table 1). If confirmed, such clustering of Wolbachia-positive
individuals in specific swarms would suggest that ecological and
environmental factors might play a key role in the establishment of
Wolbachia infections in the An. gambiae host.

The Wolbachia strain belongs to a new phylogenetic group. To
expand the 16S rRNA-based analysis and better characterize the
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Wolbachia strain found in An. gambiae, we performed whole-
genome shotgun (WGS) metagenomic sequencing of two of the
Wolbachia-positive samples from mosquito ovaries
(Supplementary Table 3). Sequences corresponding to the An.
gambiae genome were screened out, and a pipeline for detecting
Wolbachia-specific sequences based on the unique marker
approach was applied20 (see Methods). A total of 571 reads
uniquely attributable to Wolbachia were detected (Fig. 3a,b,
Supplementary Fig. 3a,b) with 86±3.9 and 87.0±4.4% average
identity for the two samples analysed, which is in line with the
sequence divergence observed for Wolbachia strains in different
supergroups (Supplementary Fig. 2). These sequences matched
134 Wolbachia genes belonging to different functional categories
(Fig. 3c, Supplementary Fig. 3c). The majority of reads (32.2% on
average across the two samples) matched genes from metabolic
pathways, while a relevant number of reads (13.3%) corresponded
to Wolbachia-specific transposases; this is in line with the
observation that transposases abundantly populate the genome of
Wolbachia strains from many insects including mosquitoes (for
example, transposases correspond to 8.32% of all genes annotated
in the wPip genome18). Alignment of our reads to eight fully or
partially sequenced Wolbachia reference genomes
(Supplementary Table 4) demonstrated that the strain identified
here belongs to a potential Anopheles-specific phylogenetic
supergroup, distinct from the arthropod-associated and
evolutionarily related supergroups A and B (Fig. 3d,
Supplementary Fig. 3D). We henceforth call this strain wAnga.

wAnga is maternally transmitted. The presence of Wolbachia
DNA in the reproductive tissues of female adults prompted the
question of whether these bacteria are inherited from mother to
offspring, an essential prerequisite for their spread through a
population. To obtain irrefutable proof of vertical transmission
and estimate its efficiency, semi-gravid females were collected
from houses in VK5 two seasons after the initial collections. The
same sets of Wolbachia 16S fragments were identified at a

frequency of 21% (19 out of 91 females), and the progenies of the
5 Wolbachia-positive females that laid eggs were then analysed
for infection. Occurrence of maternal transmission was detected
in all progenies, with an average transmission frequency of
68% (ranging from 56 to 100%) (Fig. 4). Taken together, these
data confirm the presence of Wolbachia sequences over the
course of 2 years and indicate occurrence of vertical transmission
from mother to offspring, as normally observed in Wolbachia
infections.

Discussion
The identification of genomic sequences from a novel Wolbachia
strain in two incipient species of An. gambiae over the course of
different seasons suggests that anopheline mosquitoes naturally
harbour these bacteria, prompting renewed efforts to exploit
Wolbachia to block malaria transmission. Past attempts to
identify Wolbachia in these mosquitoes may have failed due to
possible methodological limitations in the detection systems used,
including non-optimal DNA amplification and extraction
methods, and size of the sampled mosquito population11–13. In
addition, the newly identified wAnga strain appears to be highly
divergent from Wolbachia strains isolated in other insects.
Indeed, our attempts to amplify by PCR two Wolbachia-specific
genes commonly used in phylogenetic analyses, the wolbachia
surface protein wsp and the fructose-biphosphate aldolase fbpA,
were unsuccessful despite numerous attempts (see Supplementary
Table 5 for primer sets used), suggesting a low degree of sequence
conservation. Interestingly, in some Wolbachia strains infecting
C. pipiens, the wspB gene is disrupted by the insertion of an IS256
transposon21, which belongs to the same family of transposons
identified in wAnga. Similar transposon insertions into wsp may
have occurred in the Wolbachia strain infecting An. gambiae,
compromising the amplification of this gene.

Although examples of horizontal gene transfer (HGT) between
Wolbachia and insect hosts are widespread22,23, two major
observations strongly argue against the possibility of HGT of
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Wolbachia sequences into the An. gambiae genome: (1) with one
exception, evidence of infection was identified in reproductive
tissues (ovaries and testes) from nine females and males but not
in the carcasses dissected from the same individuals, or vice versa,
ruling against a possible transfer into the mosquito chromosomes;
(2) the average coverage of Wolbachia in our WGS samples was
lower than 0.05� , which is incompatible with the three orders of
magnitude higher coverage of the An. gambiae genome in the
same samples (475� ). Alternatively, HGT may have occurred
into a bacterium or eukaryotic microorganism that infects the
Anopheles germline and is maternally inherited from mother to
progeny (based on the evidence of vertical transmission of 16S
sequences). Regardless of their origin, the Wolbachia sequences

identified here may still be sufficient to induce Wolbachia-like
reproductive phenotypes, such as bidirectional cytoplasmic
incompatibility, that would impact future field deployments of
experimental Wolbachia infections4.

The unexpected discovery in the mosquito germline of
maternally inherited Wolbachia organisms will prompt further
studies of the ecological, environmental and genetic determinants
of susceptibility of Anophelesmosquitoes toWolbachia infections.
It will also spark critical investigation into whether natural
Wolbachia–Anopheles associations limit the development of
Plasmodium parasites in the mosquito host, thus aiding the
design of novel effective bacterial infection strategies to control
malaria transmission.
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Methods
Mosquito collections. Mosquito samples were initially collected during August–
September 2011 in three different sites near Bobo-Dioulasso, Burkina Faso. The

village of Soumousso (11�000N; 4�020W) is located 55 km North-East of
Bobo-Dioulasso. It is characterized by wooded savannah and by temporary
breeding sites, more favourable to S form (An. gambiae)14. The two other collection
sites are located in Vallée du Kou, a large rice-growing area situated 30 km North-
West of Bobo-Dioulasso. The village of VK5 (11�230N; 4�240W) is completely
surrounded by rice fields, while VK7 (11�240N; 04�240W) is characterized by rice
fields to the South and by Savannah to the North. Because of the irrigation system,
rice fields form permanent mosquito breeding sites in which the M form (An.
coluzzii) thrives14. Nonetheless, few transient breeding sites could be found in
depressions and ponds within the villages. Male and female adult mosquitoes were
collected in copula24 from an average of six mating swarms per collection day.
Fourth instar larvae were also collected from temporary and permanent water pools
from each site. A schematic representation of the villages and swarm locations is
provided in Fig. 1. In August 2013, blood-fed An. gambiae females were collected
inside the houses in VK5 and allowed to individually oviposit in the insectary.

DNA extraction and species genotyping. Genomic DNA was extracted from
dissected reproductive tissues (testes and ovaries) using DNeasy kit (Qiagen), and
from carcasses using NucleoSpin 96 Tissue kit (Macherey-Nagel). In 2013, to
estimate Wolbachia maternal transmission, DNA was extracted using DNeasy kit
(Qiagen) from whole females that were allowed to oviposit, and from their pro-
genies. For M and S genotyping, DNA was extracted from a leg using a fast
extraction method. In brief, individual legs were incubated in 40 ml of grinding
buffer (10mM Tris-HCl pH 8.2, 1mM EDTA, 25mM NaCl) with 0.2mgml� 1

proteinase K for 45min at 37 �C, then 5min at 95 �C to inactivate the enzyme.
DNA extracts (1 ml) were then subjected to PCR amplification targeting the locus
S200 � 6.1 using specific primers (FWD: 50-TCGCCTTAGACCTTGCGTTA-30;
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and REV: 50-CGCTTCAAGAATTCGAGATAC-30)25. M and S genotyping was
also used on larvae and adult carcasses. Larval DNA was used to determine the
sex using Y-specific primers (F: 50-CAAAACGACAGCAGTTCC-30 ; and R:
50-TAAACCAAGTCCGTCGCT-30).

16S rRNA profiling and sequencing. The 16S rRNA gene data set consisted of
Illumina MiSeq sequences targeting the V4 variable region. Detailed protocols used
for 16S amplification and sequencing were previously described26. In brief,
genomic DNA from testes and ovaries was subjected to 16S rRNA amplifications
using primers incorporating the Illumina adapters and a sample barcode sequence,
allowing directional sequencing covering the variable region V4 (15F: 50-GTGCC
AGCMGCCGCGGTAA-30 ; and 806R: 50-GGACTACHVGGGTWTCTAAT-30).
PCR mixtures contained 10 ml of diluted template (1:50), 10 ml of HotMasterMix
with the HotMaster Taq DNA Polymerase (5 Prime) and 5 ml of primer mix (2 mM
of each primer). The cycling conditions consisted of an initial denaturation at 94 �C
for 3min, followed by 30 cycles of denaturation at 94 �C for 45 s, annealing at 50 �C
for 60 s, extension at 72 �C for 5min and a final extension at 72 �C for 10min.
Amplicons were quantified on the Caliper LabChipGX (PerkinElmer, Waltham,
MA), pooled in equimolar concentrations, size selected (375–425 bp) on the Pippin
Prep (Sage Sciences, Beverly, MA) to reduce nonspecific amplification products
from host DNA and a final library size and quantification was done on an Agilent
Bioanalyzer 2100 DNA 1000 chips (Agilent Technologies, Santa Clara, CA).
Sequencing was performed on the Illumina MiSeq v2 platform, according to the
manufacturer’s specifications with addition of 5% PhiX, generating paired-end
reads of 175 bp in length in each direction. The overlapping paired-end reads were
stitched together (B97 bp overlap) and size selected to reduce nonspecific
amplification products from host DNA (225–275 bp).

High-throughput 16S rRNA screening. We first applied the QIIME pipeline
version 1.6 (ref. 27) to the 16S rRNA data set that detected in the testis sample
G23656 (male SMS5.1 in Supplementary Fig. 1) a total of 19.9% of reads assigned
to Wolbachia. To specifically investigate and validate the prediction about the
presence of Wolbachia in the sample, we implemented an additional pipeline. We
first integrated all 16S rRNA sequences assigned to Wolbachia included in the
SILVA28 and NCBI repositories; we manually inspected those sequences with a
43% nucleotide divergence from any other Wolbachia 16S, which let us exclude
five sequences that were mislabeled with close endosymbionts such as Bartonella,
Rickettsia and Francisella. We obtained a set of 2,064 Wolbachia 16S sequences
from which the 253-nt-long V4 region was extracted and clustered at 99% identity,
generating 115 operational taxonomic units (OTUs) covering the diversity in the
Wolbachia genus. The all-versus-all mapping of the 115 OTU sequence
representatives provided a lower-bound estimate of the genus’ total diversity
(average identity of 95.9%, s.d. 1.75%, median 96.0%).

We then performed the mapping of the 24,800 reads of sample G23656 against
the full SILVA database, retaining only those sequences with full-length percentage
identity of at least 95% with a Wolbachia 16S. The resulting 5,412 reads have a best
hit other than Wolbachia at o89% identity, confirming that a fifth of the sample
(21.82%) consists of V4 fragments from Wolbachia 16S rRNA. The percentage
identity was in the 95.3–97.6% interval, which is fully consistent with the observed
diversity in the V4 hypervariable region of theWolbachia 16S rRNA genes (average
95.9%, s.d. 1.75% as reported above).

The V4 sequences from sample G23656 were then clustered into OTUs at 99%
identity, discarding those OTUs with o50 sequences. The resulting OTUs were
merged with the Wolbachia OTUs from the SILVA and NCBI repository
(generated as described above) and aligned with MUSCLE version 3.8.31 (ref. 29).
A V4 sequence representative of the Rickettsia 16S was added as outgroup. A
phylogenetic tree was then built using RAxML version 7.4.2 (ref. 30) with the
GTRGAMMA model, bootstrapping (1,000 replicates), best maximum likelihood
tree inference, and displayed with GraPhlAn (https://bitbucket.org/nsegata/
graphlan) representing the cardinality of the OTUs as circular barplots.

Wolbachia-specific PCR detection and sequencing. DNA from testes and
ovaries was rehydrated from the 96-well Qiasafe plate (Qiagen) using 30 ml of
water. A total of 2 ml of DNA was used for Wolbachia PCR detection using primers
specific for Wolbachia 16S rDNA (W-Specf 50-CATACCTATTCGAAGGGATA
G-30 , W-Specr 50-AGCTTCGAGTGAAACCAATTC-30) following standard pro-
cedures16. Positive samples showed a 438-bp band that was purified with QIAquick
Gel Extraction kit (Qiagen) and sequenced (Eurofins MWG Operon, Ebersberg,
Germany). Sample DNA quality was assessed with PCR using primers for the RpS7
(AGAP010592) An. gambiae gene (FWD 50-GGCGATCATCATCTACGTGC-30 ;
and REV 50-GTAGCTGCTGCAAACTTCGG-30). Similarly, a total of 2 ml of DNA
was used for PCR detection of wsp and fbpA genes following standard procedures
(see Supplementary Table 5 for primer sets used).

WGS sequencing and analysis pipeline. Shotgun metagenomic sequencing was
performed on two mosquito samples from infected ovaries using the remainder of
the DNA available after Wolbachia-specific PCR detection (1–2 ng). Due to this
limiting condition, libraries were prepared with 1 ng DNA according to the Nextera
XT protocol (Version Oct 2012). Briefly, the DNA was fragmented in 5 ml of

Amplicon Tagment Mix and 10 ml of Tagment DNA buffer (Illumina, San Diego,
CA, USA). Tagmentation reactions were completed by incubation for 5min at
55 �C followed by neutralization with 5 ml of Neutralise Tagment Buffer for 5min.
Tagmented DNA was used as the template in a 50-ml limited-cycle PCR (12 cycles)
and processed as described in the Nextera XT protocol. Amplified DNA was
purified with AMPure XP beads and then normalized to 2nM. Sequencing was
performed on a HiSeq2000 (Illumina, San Diego, CA, USA) employing one full
lane per library with 101 bp paired-end reads.

Raw WGS results consisting of 4400M 101-nt-long paired-end reads
(Supplementary Table 3) were subject to quality control and sliding window
trimming with a minimum resulting read length of 80 bp, and to sequencing
artefact removal using PRINSEQ version 0.20.3 (ref. 31). As expected, An. gambiae
DNA was quantitatively dominant in the read pool, and was removed by
BowTie2 mapping32 using the ‘very-sensitive’ preset option against the An.
gambiae PEST reference genome (http://www.vectorbase.org/). Supplementary
Table S2 reports the number of reads that were retained after each pre-
processing step.

The resulting read set was mapped against the seven available Wolbachia
genomes and the high-quality draft assembly of the Wolbachia strain wAlbB
(Supplementary Table 4). To quantify the expected sequence divergence between
Wolbachia strains and supergroups, we performed all-versus-all sequence mapping
(with BLASTN) with all open reading frames (ORFs), considering as pairwise
common ORFs those sequences with 480% identity over 50% of the ORF length
(Supplementary Fig. 2). Reads were uniquely attributable toWolbachia on the basis
of the concept of unique marker sequences20, performed in four steps. First step:
BowTie2 mapping against the eight Wolbachia reference genomes was performed
to identify Wolbachia candidate reads. The mapping was performed with enhanced
sensitivity (score-min L,-1.0,-1.0 -D 25 -R 5 -N 1 -L 12 -i S,2,0.25) to capture
Wolbachia sequence divergence and host specificity as assessed by ORFs’ sequence
comparison among available Wolbachia genomes (Supplementary Fig. 3).
The matches were also confirmed by BLASTN with word size of length 7.
Second step: candidate reads coming from the small and large ribosomal units (16S
rRNA and 23S rRNA genes) were screened out by sequence mapping against the
comprehensive ribosomal sequences in the SILVA database release 111. Third step:
the remaining ribosomal-free candidate reads were mapped against the full RefSeq
genomic database version 60 to identify any non-Wolbachia-specific hits using
BLASTN with word size of length 7. Fourth step: on the basis of the mapping
results of steps 1 and 3, the final set of reads from theWolbachia strain identified in
An. gambiae (wAnga) was compiled selecting all reads showing 480% identity
over495 nt to at least one Wolbachia strain, and no hits longer than 80 nt to other
organisms. Reads hitting non-Wolbachia genomes with identities below 80% and at
least one Wolbachia genome at 490% were also retained. As control, the same
procedure was also applied to the two genera closest to Wolbachia according to the
PhyloPhlAn tree of life33, namely, Anaplasma (six reference genomes) and
Ehrlichia (five reference genomes). No uniquely attributable reads were found in
this analysis.

wAnga reads mapping to all seven Wolbachia genomes were then retained for
phylogenetic analysis. The homologous sequences were extracted and aligned to
each wAnga reads with MUSCLE version 3.8.31 (ref. 29) and the alignments edited
to remove leading and ending gaps. Sequence-specific phylogenetic trees were built
using RAxML version 7.4.2 (ref. 30) with the GTRGAMMA model, bootstrapping
(1,000 replicates) and best maximum likelihood tree inference. Sequence-specific
phylogenetic distances were computed inferring the patristic distances within each
tree, and reported with box plots in Fig. 3b and Supplementary Fig. 3B. A final
phylogenetic tree was also built using RAxML (GTRGAMMA model, 1,000
bootstrapping replicates) on the concatenated alignments (Fig. 3d, Supplementary
Fig. 3D).
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