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Abstract

Background: Recombination rate is non-uniformly distributed across the human genome. The variation of

recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic

factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate.

Results: We study the relationship between recombination rate and gene regulatory domains, defined by a gene

and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation

quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and

correlated activity links that we infer across cell types. Each link type shows a “recombination rate valley” of

significantly reduced recombination rate compared to matched control regions. This recombination rate valley is

most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and

constitutive regulatory elements, which are known to show increased evolutionary constraint across species.

Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and

increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap

of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high

accuracy.

Conclusions: Our results suggest the existence of a recombination rate valley at regulatory domains and provide a

potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.
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Background

Variation in recombination rates in humans and other

diploid organisms can be shaped by evolutionary and

molecular processes [1], but these forces are only par-

tially understood. High-resolution human recombination

maps have been estimated using both parent–offspring

transmission [2, 3] and patterns of linkage disequilib-

rium (LD) [4–7]. These have revealed localized regions

with higher or lower recombination rates, known as

recombination hotspots and coldspots, respectively [5].

Sequences analysis has shown that human recombin-

ation hotspots are associated with a number of sequence

features such as PRDM9 binding motifs [8], CpG islands,

and GC-rich repeats [4, 5, 9], and that recombination

coldspots are associated with repetitive elements, tran-

scribed regions, and telomeres [5, 6].

Outside recombination hotspots, differences in epige-

nomic signatures are associated with differences in re-

combination rate [10, 11]. In particular, the level of

DNA methylation, primarily established at prophase I

when recombination occurs [12], is reported to be posi-

tively correlated with recombination rate [11]. A causal

effect of DNA methylation on recombination rate was

established using a methylation-deficient strain of Arabi-

dopsis, which showed reduction of recombination rate in

euchromatic regions [13, 14].

Results

Gene regulatory domains defined using expression and

methylation quantitative trait loci show a recombination

rate valley

We examined the relationship between human recom-

bination rate and regulatory domains, defined as the
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genomic region spanned by a gene and the regulatory

regions linked to its promoter element within the same

chromosome. Recombination rates were estimated using

the 1000 Genomes genetic map [4], then related to gene

regulatory domains using four types of links.

We first used genetic links based on expression quan-

titative trait loci (eQTLs) and methylation quantitative

trait loci (meQTLs). These consist of 248,856 eQTL

links between regulatory regions and transcription start

sites (TSSs) of target genes, defined in whole blood using

168 individuals profiled by the Gene-Tissue Expression

(GTEx) Consortium [15], and 809,577 meQTL links be-

tween regulatory regions and CpG methylation mea-

sured in human brain, primarily in promoter regions, in

the ROS/MAP cohort of 575 individuals [16].

We found that the intervals between eQTLs and their

target genes, and between meQTLs and their target

methylation probes, showed substantial decreases in

recombination rate (Fig. 1a, b). We evaluated intervals at

three distance ranges, consisting of short (1–10 kb),

intermediate (10–100 kb), and long (100 kb–1 Mb) dis-

tances. The effect was most pronounced for links of

intermediate and long distances, which showed consist-

ently lower recombination rates compared to random

intervals, a phenomenon we call a “recombination

rate valley” (Fig. 1e, f; Additional file 1: Figure S1a, b). In

short intervals, the accuracy of recombination rate esti-

mation is affected by variable SNP density in different

genomic regions and genetic maps. Therefore, we did

not observe consistent recombination rate valleys within

short-range intervals. To evaluate the statistical signifi-

cance of the observed recombination rate valleys, we

sampled the same number of random genomic regions

with the same physical length in the same chromosome

(details in “Methods”). As an additional comparator, we

sampled the same number of random SNP-TSS/SNP-
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Fig. 1 Recombination valleys within genetic, physical, and activity links. Example genomic regions to show the enrichment of a meQTL pairs

(red), b eQTL pairs (orange), c top 10% Hi-C pairs (observed/expected (O/E), no CTCF motif, blue), d DNase–TSS pairs (no CTCF motif, purple) in

low recombination rate regions. Each pixel represents a 10-kb segment (for Hi-C, a 1-kb segment) and darker color indicates higher recombination

rate between two segments. Colored dots at each pixel indicate the genetic or physical links that exist between two genomic segments. The aver-

age recombination rate within e meQTL pairs (red), f eQTL pairs (orange), g top 10% of Hi-C pairs (O/E, no CTCF motif, blue), h DNase–TSS pairs

(no CTCF motif, purple) are significantly lower than the matched random intervals. Colored lines represent the mean recombination rate at each

interval distance between genomic features, while black links represent the mean value in matched random intervals. Shaded regions represent

the 95% confidence interval (mean ± standard deviation × 1.96/10). Recombination rate in three different genomic scales in i meQTL pairs, j eQTL

pairs, k top 10% of Hi-C pairs (O/E, no CTCF motif), l DNase–TSS pairs (no CTCF motif). Comparisons with p < 1e−4 (two-way paired Mann–Whitney

U test) are marked with an asterisk
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CpG pairs (details in “Methods”). We found significant

decreases in recombination rate at both intermediate

and long distances for both eQTL and meQTL links

(Fig. 1i, j) in both cases (two-way paired Mann–Whitney

U test with random matched intervals and permutation

test with random combinations of SNP-TSS/SNP-CpG,

p < 1e−4).

We next confirmed that our observation in genetics-

based links is not an artifact of linkage disequilibrium

(LD), which is a possibility as more genetic links are

found at regions with stronger LD. First, we only kept

the eQTL/meQTL with the most significant p value for

each gene/CpG. We further pruned these “best” eQTL/

meQTL links by excluding multiple counts from the

same genomic region (details in Additional file 2: Sup-

plemental method 1) and consistently found significant

recombination rate valleys in the regions defined by gen-

etic links (Additional file 1: Figure S2a–c, f–h, k–m).

Second, we made a small random shift around the best

genetic links and found a slightly but significantly higher

recombination rate (Additional file 1: Figure S3; Add-

itional file 2: Supplemental method 2). These observa-

tions suggest that causal genetics links show lower

recombination rates within LD.

We further evaluated whether our observation held in

independent datasets and with varying analytical param-

eters. First, we repeated the analysis using 16 additional

tissues and cell lines from the GTEx Consortium [15],

the Multiple Tissue Human Expression Resource

(MuTHER) Consortium [17], and Genetic European

Variation in Health and Disease (gEUVADIS) Consor-

tium [18] and again consistently found a significant re-

combination rate valley in the regions defined by genetic

links (Additional file 1: Figure S4). Second, we repeated

the analysis varying thresholds for the false discovery

rate (FDR) of eQTLs and meQTLs, and consistently

found recombination rate valleys. The strongest reduc-

tion in recombination rate was found at the most strin-

gent FDR thresholds for eQTL and meQTL discovery,

indicating that, with higher link confidence thresholds,

the signal becomes stronger (Additional file 1: Figure

S5a, b, e, f, i, j). Third, we repeated the analysis on gen-

etic maps estimated by the HapMap project [19] and by

deCODE Genetics [2, 3] and found the results largely

unchanged (Additional file 1: Figure S6a, b, e, f, i, l). To

account for sequence biases, we used a rejection sam-

pling approach to generate matched random intervals,

with equal GC content, CpG density, SNP density, and

PRDM9 motif density. We found the results robust to

this more stringent matching (Additional file 1: Figure

S7a, b, e, f, i, j, m, n, q, r). Since it is computationally

very expensive to generate random matched controls by

a rejection sampling approach in high dimensional

space, we implemented a k-d tree data structure to

organize all possible 1-kb to 1-Mb random intervals in

the genome and searched with even more stringent

matching criteria, including additional features of gene

density and distance to TSS (details in “Methods”; Add-

itional file 1: Figure S7u, v, y, z, ac–af ). To account for

the decreased recombination rate in transcribed regions,

we excluded intervals within 2 kb of gene annotations in

GENCODE v19 and still found recombination rate val-

leys in intergenic meQTL/eQTL links compared with

random intervals that were generated with our strin-

gent matched criteria. The conclusion did not change

when we averaged the recombination rate from only

non-coding bases (Additional file 1: Figure S8a, b, e, f,

i, j, m–p).

Gene regulatory domains by chromosome conformation

show a recombination valley

In addition to genetic links, we used 458,132 links be-

tween genomic regions in close proximity when folded

in the three-dimensional nucleus, based on high-

throughput chromosome conformation capture (Hi-C)

measured in the GM12878 cell line [20]. We found that

the recombination rate within regulatory domains

defined by Hi-C was also significantly lower (two-way

paired Mann–Whitney U test and permutation test, p <

1e−4) at both intermediate and long distances compared

with two different sets of random intervals (Fig. 1c, g, k;

Additional file 1: Figure S1c). This property held specific-

ally for Hi-C links not interrupted by CTCF motifs [21],

consistent with the role of CTCF loops as defining regula-

tory domain boundaries [20] (Fig. 1g, k; Additional file 1:

Figure S11o, p). We also excluded CTCF motifs from

random matched intervals and still found significant de-

pletions (Additional file 1: Figure S12a, b).

To avoid the bias introduced by relatively more Hi-C

links from the domains with lower recombination rate,

we generated the matched random intervals only within

the same loops detected by Hi-C computational un-

biased peak search (HiCCUPS loops) and still found re-

combination rate valleys (Additional file 1: Figure S9).

We also pruned the Hi-C links by excluding multiple

counts of each genomic region and consistently found

recombination rate valleys (Additional file 1: Figure S2d,

i, n; Additional file 2: Supplementary method 1). We

next varied the threshold for Hi-C links (no CTCF

motif ) included in the analysis and continued to observe

recombination rate valleys (Additional file 1: Figure S5c,

g). We also repeated the analysis in different genetic

maps (Additional file 1: Figure S6c, g) and compared this

with more stringent matched random intervals in the

whole genome by two methods (Additional file 1: Figure

S7c, g, k, o, s, w, aa) and in non-coding and intergenic

regions (Additional file 1: Figure S8c, g, k). We com-

bined Hi-C and eQTL evidence available in the same cell

Liu et al. Genome Biology  (2017) 18:193 Page 3 of 11



type (lymphoblastoid cell lines (LCLs), including

GM12878) [17, 20] and found that the depletion in the

recombination rate became even more pronounced

(Additional file 1: Figure S10; two-way paired Mann–Whit-

ney U test, p < 1e−4). This indicates that gene regulatory links

with increased confidence show an even more pronounced

recombination rate valley.

We repeated this analysis using physical chromosomal

interactions defined by chromatin interaction analysis

using paired-end tag sequencing (ChIA-PET), a comple-

mentary technique that defines long-range looping inter-

actions in the context of a specific regulator [22]. We

used regulatory domains based on ChIA-PET for both

polymerase (Pol)II and CTCF as defined by the EN-

CODE consortium. We found that the recombination

rate within ChIA-PET PolII linked regions was also sig-

nificantly depleted, but not in ChIA-PET CTCF linked

regions, which are not gene regulatory domains

(Additional file 1: Figure S11k–n).

These results indicate that the recombination rate val-

ley is a general property of gene regulatory domains de-

fined using long-range physical DNA interactions not

insulated by CTCF.

Gene regulatory domains defined using activity

correlation show a recombination valley

We next evaluated the relationship between the recom-

bination rate and gene regulatory links defined between

enhancer regions and their target genes as predicted

using histone modification, DNase accessibility, and gene

expression data from the ENCODE [23] and Roadmap

Epigenomics Consortia [24]. We used 29,557,079 unique

correlation-based links predicted between DNase-seq

peaks and gene expression of putative target transcripts

(details in Additional file 2: Supplemental method 10).

Given the role of CTCF motifs in guiding chromatin

loops [20], we focused on 164,409 unique links that were

not interrupted by CTCF motifs and thus more likely to

lie in the same chromatin loops. We found significantly

reduced recombination rate for regions within these en-

hancer–TSS domains relative to random pairs (two-way

paired Mann–Whitney U test and permutation test, p <

1e−4; Fig. 1d, h, l; Additional file 1: Figure S1d; Add-

itional file 1: Figure S11i, j).

To avoid multiple counts from the same genomic re-

gion, we pruned the DNase–TSS links using a similar

approach as for the Hi-C links (Additional file 2: Supple-

mental method 1) and found similar results

(Additional file 1: Figure S2e, j, o). We next repeated the

analysis using different thresholds for DNase–TSS links

(Additional file 1: Figure S5d–h), different genetic maps

(Additional file 1: Figure S6d–h), and more stringent

matched random intervals in whole genome (Add-

itional file 1: Figure S7d, h, l, p, t, x, ab), non-coding

bases, and intergenic regions (Additional file 1: Figure

S8d, h, l), and consistently found significant recombin-

ation rate valleys within DNase–TSS links.

We performed an additional analysis with 1,427,744

unique enhancer–TSS links predicted using a modified

version of a previously published strategy [23] based on

cell type-specific chromatin state assignments and cor-

relation between multiple histone modifications and

gene expression levels across cell types [24] (details in

Additional file 2: Supplementary methods 11). We found

that the resulting 139,043 gene regulatory domains with-

out CTCF motifs continued to show a significant deple-

tion in recombination rate at both intermediate and long

distances (Additional file 1: Figure S11a–d).

We repeated this analysis using 302,538 unique links

predicted using a module-based joint latent Dirichlet al-

location (joint-LDA) linking approach (Wang et al., in

preparation; the links of data and code are available in

Additional file 3: Table S1) that does not depend on cor-

relation and can predict cell type-specific links. Despite

these differences in predicting enhancer–TSS links, we

found a similar depletion in the recombination rate

within gene regulatory domains compared to random

controls (Additional file 1: Figure S11e–h).

Together, these results indicate that gene regulatory

domains defined based on functional genomics and

epigenomic information are associated with a recombin-

ation rate valley, indicating that genes tend to be co-in-

herited with their gene regulatory elements.

Constitutive and developmental domains show stronger

recombination rate depletion

We next evaluated how the strength of the recombin-

ation rate valley varies for different classes of genes. We

found that the recombination rate valley within physical

and activity links was more pronounced for housekeep-

ing genes [25] compared with non-housekeeping genes

(Fig. 2a–c; Additional file 1: Figure S13). It was also

more pronounced for genes that act in early embryonic

development stages [26, 27], especially for genes in the

oocyte stage and genes responsible for meiosis in the

primordial germ cell (PGC), but not for most of the

other cell type-specific gene groups [28] (Fig. 2d;

Additional file 1: Figure S14). To exclude the possibility

that the signal in housekeeping genes is due to the con-

tribution of genes actively expressed in oocyte and the

early developmental stage and thus not amenable to

recombination, we split housekeeping genes into three

categories: those highly expressed in early developmental

stages (top 10% of expression levels), those not in the

top 10%, and those not in the top 50%. Recombination

rate valleys were observed no matter the expression

levels (Additional file 1: Figure S15).
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We also evaluated how the strength of the recombin-

ation rate valley varies for different classes of regulatory

elements. We evaluated recombination rate depletion

using 43,236 constitutive eQTLs and 18,879 thyroid-

specific eQTL links from the GTEx project [15]. We

found that constitutive eQTL links showed consistently

larger discrepancies in recombination rates than tissue-

specific links, each compared to matched random con-

trols (Fig. 2e; Additional file 1: Figure S16). Similarly, we

found that gene regulatory domains recovered independ-

ently in multiple cell types showed a more pronounced

recombination rate valley than tissue-specific gene regu-

latory domains (Fig. 2f ).

Thus, the recombination rate valley is more strongly pro-

nounced in gene regulatory domains of constitutively

expressed genes, genes with developmental roles, and regu-

latory elements with constitutive activity, which all share

the feature that they are under stronger evolutionary con-

straint [29]. This suggests that a reduced recombination

rate between regulatory elements and their target genes

may be advantageous for genes and regulatory elements

under stronger selection in the germ line lineage, possibly

by facilitating maintenance of the paired gene and its regu-

latory elements in each allele, which are important during

early development, as a single unit of inheritance.

Recombination rate valleys in mice

We reasoned that if the recombination rate valley is a

selected feature of gene regulatory domains in human, it

should be an evolutionarily conserved feature in other
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Fig. 2 Recombination rate valleys are most prominent at functional links associated with housekeeping genes and constitutive links. a Average

recombination rate in the top 10% of Hi-C pairs (observed/expected (O/E), no CTCF), associated with housekeeping genes (blue) and not associated with

housekeeping genes (golden). b Average recombination rate in DNase–TSS pairs without intervening CTCF motifs, associated with housekeeping genes

(purple) and not associated with housekeeping genes (golden). c Average recombination rate in enhancer–TSS pairs called by the LDA method without

intervening CTCF motifs, associated with housekeeping genes (green) and not associated with housekeeping genes (golden). d Average recombination rate

in ChIA-PET PolII links at early embryonic development genes and other cell type-specific genes in K562 cells. Error bars indicate the standard deviation. e

The recombination rate valley is much more significant at constitutive eQTL links (orange) than that at tissue-specific eQTL links (magenta). f Recombination

rate within enhancer–TSS links (10–100 kb region) called by joint LDA method in different numbers of cell types. Error bars indicate the standard deviation
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mammals. To test this hypothesis, we repeated our ana-

lysis in the mouse genome.

We quantified recombination rates across the mouse

genome using the Mus musculus genetic map [30]. We

defined gene regulatory domains using both genetic and

physical interactions. For genetic interactions, we used

2659 eQTLs based on 100 strains in murine liver [31]

and 1035 eQTLs based on 39 strains in two murine im-

munological cell types [32]. For physical interactions, we

used 271,236 Hi-C links (no CTCF) [20] called in a mur-

ine lymphoblastoid cell line.

Evaluating the recombination rate of gene regulatory do-

mains, we found a significant depletion in the recombin-

ation rate relative to random pairs for both long genetic

interactions and physical interactions (two-way paired

Mann–Whitney U test and permutation test, p < 1e−4; Fig. 3;

Additional file 1: Figure S17). We did not observe recom-

bination rate valleys in intermediate-range intervals in gen-

etic links, likely due to the longer LD structure and much

lower resolution genetic maps in mouse. This suggests that

the recombination rate valley is not a feature solely of the

human genome, but may represent a more general mam-

malian property, possibly as an evolutionarily conserved

mechanism to preserve important regulatory domains.

Potential roles of DNA methylation and double-stranded

breaks in recombination rate valleys

We next sought to understand potential mechanistic pro-

cesses that could lead to the observed recombination

rate valleys. We found that a scarcity of recombination hot-

spots is associated with recombination rate valleys (Fig. 4a;

Additional file 1: Figure S18a). However, half of links do not

have recombination hotspots, and thus their recombination

rate variation must be explained using other mechanisms.

Given the previously proposed roles of DNA methyla-

tion in recombination rate [11], we studied the relation-

ship between DNA methylation and recombination

rate valleys. We used nucleotide-resolution genome-

wide methylation profiles in human primordial germ

cells (PGCs) [27] and oocytes [33], representing the

methylome state of human cells both before and during

meiotic arrest (Additional file 1: Figure S19a), in which

recombination occurs via crossover events.

We used 500-kb non-overlapping windows to scan the

genome and found a strong global negative correlation

between methylation levels in PGCs and recombination

rate (Additional file 1: Figure S19b; Additional file 1:

Figure S20a), indicating that DNA methylation levels im-

mediately prior to recombination events are highly pre-

dictive of recombination valleys. In contrast, we did not

find such a strong global anti-correlation in oocytes

(Additional file 1: Figure S19b); however, methylation

level within genetic links such as eQTL links showed

negative correlation with recombination rate in oocytes

(Fig. 4b; Additional file 1: Figure S18b; Additional file 1:

Figure S19c; Additional file 1: Figure S20b–d). These re-

sults suggest that DNA methylation may play a role in

reducing the frequency of meiotic recombination events

that impair paternal and maternal functional regulatory

links. We did not find strong global or local negative

correlations between methylation and recombination rate

in additional cell types in a number of developmental

stages (Additional file 1: Figure S19c; Additional file 1:

Figure S20b–d).

Recombination events are initiated by double-stranded

breaks, which are suggested to be associated with DNA

methylation [34]. Thus, methylation of the DNA in large

regulatory domains may explain the reduced recombination
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rate. To evaluate this model, we examined the correlation

between DNA methylation levels and double strand break

(DSB) initiation frequency, both profiled in sperm cells. We

found that DNA methylation showed a significant negative

correlation with DSB initiation frequency (Pearson −0.11,

p value = 1.71e−16; Additional file 1: Figure S21a). To further

investigate the relationship between DNA methylation and

DNA DSBs, we correlated DNA methylation levels profiled

in LCL with ChIP-Seq evidence for gamma-H2A.X,

markers of double-stranded break repair and active form of

H2A.X, profiled in CD4+ T cells [35, 36], and found a sig-

nificant positive correlation with evidence of DNA repair

(Pearson 0.36 with gamma-H2A.X, p value < 10−100,

Additional file 1: Figure S21b). We found a negative correl-

ation of DNA methylation with H2A.X (Pearson −0.211,

p value = 7.92e−59), ruling out the possibility that the associ-

ation between DNA methylation and gamma-H2A.X is due

to the background H2A.X level (Additional file 1: Figure

S21c). These results suggest the increased level of DNA

methylation in recombination rate valleys may reduce the

frequency of DSB initiation and increase the rate of DSB

repair, thus contributing to a reduced recombination rate

(Additional file 1: Figure S19d).

To quantify the variation in recombination rate due to

DNA methylation levels, and regulatory domains defined

by genetic, physical, and activity links, we built a random

forest regression model that utilizes DNA methylation

and regulatory links as features to predict the recombin-

ation rate in a genomic interval. The model included

adjustments for the varying recombination rate of differ-

ent chromosomes and at different genomic distances

(Additional file 2: Supplementary methods 12 and 13).

We found that the individual link types vary greatly in

predictive power, with meQTLs showing the strongest

predictive power for both medium-range and long-range

links. The combination of chromosome number, physical

distance, regulatory links, and DNA methylation level

resulted in high concordance between predicted and ob-

served recombination rate (Pearson correlation coeffi-

cient 0.622, p value < 10−100). Interestingly, the most

accurate predictor used a combination of all four link

types and DNA methylation (Fig. 5). In addition, a com-

bined predictor using recombination hotspots and DNA

methylation jointly could recapitulate up to 92% of the

observed recombination rate difference at long distance

and 80% at medium distance within each type of func-

tional link (Additional file 1: Figure S22).

Discussion

Human recombination rates vary across the genome due

to both evolutionary and molecular processes. It is well

established that recombination rates are depleted within

gene bodies, consistent with their functional role [5, 6].

In this study, we found “recombination rate valleys” of

reduced recombination rates between regulatory ele-

ments and their target genes defined using a multitude

of methods: genetic links (eQTLs and meQTLs), phys-

ical links (Hi-C and ChIA-PET), and activity links (en-

hancer–gene pairs based on histone modification,

DNase accessibility, and gene expression).

Our findings suggest that regulatory elements and

their target genes form larger functional units. Further

supporting this hypothesis, we found recombination

rate valleys in Hi-C and DNase–TSS links not
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indicate the standard deviation
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interrupted by a CTCF motif, but not links overlapping

a CTCF motif. Similarly, we found recombination

rate valleys in ChIA-PET PollI interactions, but not

ChIA-PET CTCF interactions. We found recombination

rate valleys between intergenic eQTL/meQTLs and their

target genes, suggesting they are not explained by prox-

imity to gene bodies. We also found recombination

rate valleys were enriched in housekeeping genes regard-

less of expression, suggesting they are not explained by

active transcription preventing recombination. Links

found in multiple tissue types also showed a greater de-

gree of recombination rate valleys than links only in a

single or a few tissues.

Fine-scale recombination maps across species have re-

vealed that recombination hotspots are evolutionarily

short-lived, but global patterns of recombination rate are

relatively conserved [9]. DNA methylation plays a casual re-

pressive role in meiotic recombination [13, 14, 37, 38], and

distantly related species have similar global DNA methyla-

tion patterns [39], suggesting that DNA methylation could

potentially drive global variation in recombination rate.

Supporting this hypothesis, we found a strong global nega-

tive correlation between methylation levels in PGCs and re-

combination which we did not find in oocytes. However,

we did find recombination rate valleys in oocytes, suggest-

ing that global DNA demethylation allows recombination

in PGCs, but methylation of regulatory links in oocytes

might establish recombination rate valleys by preventing

double stranded breaks and enhancing DNA repair. Recent

genetic variation could also affect DNA methylation, which

in turn could drive local variation in recombination rates

[10].

Together, our results establish the existence of de-

pleted recombination rates between regulatory elements

and their target genes and suggest a mechanistic model

involving DNA methylation at the crossover stage.

Further work is needed to check if specific combinations

of regulatory and genic alleles are under selection and

preserved by reduced recombination rates between

regulatory elements and their target genes. However,

recombination rate valleys might instead be explained by

depletion of PRDM9 motifs in the regulatory domains,

or by inaccessible chromatin during the crossover across

the regulatory links.

Conclusions

Our results indicate the existence of a recombination rate

valley at regulatory domains, consisting of regulatory

elements and their target genes. DNA methylation can ex-

plain both local and global variations in recombination

rate, providing a model to interpret the relationship be-

tween genetic and epigenetic variation across individuals.
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(Predicted vs. Observed)

Low High

Density

Mean Square ErrorPearson Correlationa b c

Long Long

MSE

3 7

Fig. 5 Recombination rate predictions within random intervals. a Predicted recombination rate vs. observed recombination rate within random

intervals (100 kb–1 Mb region, using chromosome, genomic distance, overlapped fraction with all functional links, and DNA methylation level).

The purple line represents the fitted linear relationship between the two variables. b Average Pearson correlation coefficient between predicted

recombination rate and observed recombination rate in medium (10–100 kb) and long (100 kb–1 Mb) distance regions. c Average mean squared

error between predicted recombination rate and observed recombination rate in medium (10–100 kb) and long (100–1 Mb) distance regions
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Methods
Generating matched random genomic intervals by iterations

For each functional link, one random interval with the

same exact physical length in the same chromosome was

generated by Java script “RandomMatchedInterval.java”.

The Java script could also produce more stringent

matched random intervals with matched GC percentage,

CpG density, SNP density, and PRDM9 motif density.

For each functional link, RandomMatchedInterval.java

will repeatedly generate one random interval with the

same length in the same chromosome and calculate the

Euclidean distance of these additional features between

this function link and the newly generated random inter-

val. It will stop when the Euclidean distance between the

functional link and random interval is less than 0.01 or

the algorithm reaches the maximum iterations (10,000

iterations). Random intervals with the exact same phys-

ical length in the same HiCCUPS domain [20] were gen-

erated by “generate_random_in_tads.pl” scripts. A two-

way paired Mann–Whitney U test was used to test the

significance level between functional links and matched

random pairs. P value less than 1e−4 was used as the sig-

nificance level threshold.

Generating matched genomic intervals by k-d tree

In order to obtain more meaningful matched control

intervals, we also generated more stringent matched in-

tervals by using a k-dimensional tree (k-d tree)

algorithm implemented in “RandomMatchedInterval-

ByKdtreeByChr.java”. We first generated intervals with

all possible lengths (length increases from 1 kb to 1 Mb

with 1-kb incremental steps, resulting in 3,083,677,136

intervals) in the human genome (hg19). We retrieved

the chromosome number, interval length, GC percent-

age, CpG density, SNP density, PRDM9 motif density,

gene density (for genetic intervals, and distance to the

nearest transcription start site (TSS)) for each interval.

Then we built a k-d tree for these intervals. For each

functional link, we searched its nearest 1000 neighbors

in this k-d tree. We filtered the matched intervals when

their distance was less than 1 kb away or more than 50%

overlapped with the original functional links to avoid

sampling the same position again. For physical links and

activity links not overlapped with CTCF motifs, we fil-

tered out random links that overlapped with CTCF mo-

tifs. Finally, we randomly chose one of these nearest

neighbors. Due to the large data size, we generated k-d

tree data structure and processed functional links

chromosome by chromosome.

Generating random pairs by bootstrapping

The null distribution of median recombination rate

within eQTL pairs was created by the following steps. 1)

All possible pairs between SNPs in the genotyping array

and TSS in the genome within three distance ranges of

the SNP were generated (short, 1–10 kb; medium, 10–

100 kb; long, 100 kb–1 Mb). 2) For each of the three

genomic intervals, the same number of random pairs

within the same genomic distance range as eQTL pairs

were randomly sampled. The median recombination

value from sampled random pairs was calculated. 3) Step

2 was repeated 10,000 times and the null distribution of

median recombination rate within each of these three

genomic intervals was obtained. 4) The median eQTL

pair recombination rate within the three intervals was

ranked in comparison to the three null distributions.

The permutation p value was therefore obtained. Similar

steps were applied to meQTL pairs, Hi-C links, DNase–

TSS links, enhancer–TSS links, and ChIA-PET links.

The detailed method was implemented as “CalPvalue-

NullDist.java”. P value less than 1e−4 was used as the sig-

nificance level threshold.
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