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Abstract

Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of

corn in the United States, and recent management of western corn rootworm has included planting of Bt corn.

Beginning in 2009, western corn rootworm populations with resistance to Cry3Bb1 corn and mCry3A corn were

found in Iowa and elsewhere. To date, western corn rootworm populations have remained susceptible to corn

producing Bt toxin Cry34/35Ab1. In this study, we used single-plant bioassays to test field populations of west-

ern corn rootworm for resistance to Cry34/35Ab1 corn, Cry3Bb1 corn, and mCry3A corn. Bioassays included

nine rootworm populations collected from fields where severe injury to Bt corn had been observed and six con-

trol populations that had never been exposed to Bt corn. We found incomplete resistance to Cry34/35Ab1 corn

among field populations collected from fields where severe injury to corn producing Cry34/35Ab1, either singly

or as a pyramid, had been observed. Additionally, resistance to Cry3Bb1 corn and mCry3A corn was found

among the majority of populations tested. These first cases of resistance to Cry34/35Ab1 corn, and the presence

of resistance to multiple Bt toxins by western corn rootworm, highlight the potential vulnerability of Bt corn to

the evolution of resistance by western corn rootworm. The use of more diversified management practices, in

addition to insect resistance management, likely will be essential to sustain the viability of Bt corn for manage-

ment of western corn rootworm.

Key words: bioassay, Diabrotica virgifera virgifera, insect resistance management, integrated pest management, refuge strategy

The western corn rootworm, Diabrotica virgifera virgifera LeConte

(Coleoptera: Chrysomelidae), is among the most serious pests of corn

in the United States and imposes annual economic losses to farmers in

excess of $1 billion US, as a result of management costs and lost yield

(Gray et al. 2009, Dun et al. 2010). Larvae from this univoltine spe-

cies feed on corn roots while adults feed primarily on corn silk, pollen,

and developing ears (Meinke et al. 2009). With the exception of

rotation-resistant western corn rootworm, eggs are deposited by fe-

males in the soil of cornfields, and the egg is the overwintering stage

for this insect (Spencer et al. 2009). The vast majority of yield loss

from western corn rootworm arises from feeding of larval rootworm

on corn roots, although adult feeding on developing corn ears also

may reduce yield (Gray et al. 2009). On average, yield is reduced by

15–17% for every node of roots lost to larval feeding by western corn

rootworm (Dun et al. 2010, Tinsley et al. 2013). Management of

western corn rootworm has included use of soil-applied insecticides to

reduce larval feeding on corn roots, rotation of fields to crops other

than corn to kill larvae, and aerial application of insecticides to reduce

egg laying by females, and in some cases, to reduce adult feeding on

corn ears (Levine and Oloumi-Sadeghi 1991). The most recent innov-

ation for management of western corn rootworm is genetically modi-

fied corn that produces insecticidal toxins derived from the bacterium

Bacillus thuringiensis (Bt) (EPA 2016b).

Bt corn targets rootworm larvae, and feeding on Bt corn by west-

ern corn rootworm larvae imposes larval mortality and reduces feed-

ing injury to corn roots (Petzold-Maxwell et al. 2013a, 2013b;

Keweshan et al. 2015). Bt corn was first registered for management

of western corn rootworm in 2003, and this type of Bt corn

VC The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.
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produced Bt toxin Cry3Bb1 (EPA 2010). Additional Bt toxins for

the management of western corn rootworm have included Cry34/

35Ab1 corn and mCry3A corn, which were registered in 2005 and

2006, respectively (EPA 2005, 2006). All of these Bt toxins were ini-

tially released singly. More recently, Bt toxins have been released as

pyramids, including Cry34/35Ab1 with Cry3Bb1 in 2009 and

Cry34/35Ab1 with mCry3A in 2011 (EPA 2009, 2011a, 2012).

Challenges surrounding management of western corn rootworm

have been compounded by the evolution of resistance to multiple

management strategies, including Bt corn, crop rotation, and con-

ventional insecticides. In the 1980s, rotation-resistant western corn

rootworm were identified in eastern Illinois, and this variant of the

western corn rootworm was found to circumvent management with

crop rotation by ovipositing outside of cornfields, often in soybean

fields, which were then rotated to corn the following year (Spencer

et al. 2005, 2014). Additionally, during the 1990s, resistance by

adults to methyl parathion and carbaryl was identified in Nebraska,

and greatly limited the ability of farmers to manage rootworm popu-

lations by killing adult rootworm (Meinke et al. 1998). Beginning in

2009, fields in Iowa were identified with severe feeding injury to

Cry3Bb1 corn, and subsequent bioassays found that this injury was

associated with resistance to Cry3Bb1 corn (Gassmann et al. 2011).

Fields with Cry3Bb1-resistant western corn rootworm also were col-

lected in Iowa during 2010 and 2011, and cross-resistance was iden-

tified between Cry3Bb1 corn and mCry3A corn (Gassmann et al.

2012, 2014). Similarly, resistance to Cry3Bb1 corn and cross-

resistance between Cry3Bb1 and mCry3A was identified for western

corn rootworm populations from Nebraska (Wangila et al. 2015),

and resistance to Cry3Bb1 corn has been confirmed in Illinois

(Schrader et al. 2016). To date, however, western corn rootworm

populations have not developed resistance to Cry34/35Ab1 corn

(Gassmann et al. 2011, 2012, 2014; Wangila et al. 2015).

Management of resistance to Bt corn by western corn rootworm

relied initially on the refuge strategy, with non-Bt corn grown in con-

junction with Bt corn to promote the survival of Bt-susceptible pests.

The refuge strategy is expected to be most effective at delaying resist-

ance when a Bt crop produces a high dose of Bt toxin, because high-

dose Bt crops will kill both susceptible and heterozygous individuals

and render resistance a functionally recessive trait (Gould 1998).

However, none of the currently commercialized Bt events targeting

western corn rootworm are considered high dose (Gassmann 2012,

Andow et al. 2016). More recently, resistance management for western

corn rootworm also has incorporated pyramiding of multiple Bt toxins.

Although pyramids can delay resistance when Bt traits do not produce

a high dose of toxin, resistance-allele frequency will affect how quickly

pest populations adapt to a pyramid, with more rapid resistance evolu-

tion expected at higher initial frequencies for resistance alleles (Roush

1998). Cases of resistance to Cry3Bb1 and mCry3A increase the vul-

nerability of some pyramids to the rapid evolution of resistance, and all

current rootworm pyramids contain either mCry3A or Cry3Bb1

(Cullen et al. 2013). As a result, there is the potential for western corn

rootworm to adapt to Cry34/35Ab1 corn, and past laboratory studies

have found that resistance to Cry34/35Ab1 corn can evolve following

four generations of on-plant selection (Deitloff et al. 2015).

In the present study, we conducted plant-based bioassays to measure

susceptibility of western corn rootworm populations to three types of Bt

corn: Cry34/35Ab1 corn, Cry3Bb1 corn, and mCry3A corn. Western

corn rootworm were collected from fields where injury to various types

of Bt corn occurred, including Cry34/35Ab1 corn, Cry3Bb1 corn, and

corn that was pyramided with Cry34/35Ab1 and either mCry3A or

Cry3Bb1. The goal of this study was to determine if injury in the field

to corn producing Bt toxin Cry34/35Ab1 was associated with resistance

to Cry34/35Ab1, and the extent to which field populations were resist-

ant to multiple Bt toxins. The results of this study will be useful for

understanding resistance to Bt corn by western corn rootworm, and im-

proving approaches for managing Bt resistance by this pest.

Materials and Methods

Cornfields were visited during the summer of 2013 in response to

complaints by farmers and crop consultants of rootworm feeding in-

jury to Bt corn (Fig. 1). Field visits followed established protocols

described in Gassmann et al. (2014). At each field, the location was

recorded using a global positioning system (GPS; Legend HCX,

Garmin, Olathe, KS). The relative proportion of western corn root-

worm and northern corn rootworm in each field was estimated

based on visual observation of adult rootworm on corn plants. In all

cases, the vast majority (i.e., �95%) of adult corn rootworm in each

field were western corn rootworm. Adult western corn rootworm

(N¼81–398; mean¼217) were collected from each field to obtain

eggs for subsequent bioassays. Corn roots (N¼11–24) were

sampled from each field along two to four transects. Transects were

at least 15 m from the edge of the field and separated from each

other by at least 15 m. Roots (N¼5–7) were sampled every 2 m

along each transect. The presence or absence of rootworm active Bt

toxin in each corn plant was tested with ELISA using a kit

(Envirologix, Portland, ME), and for the majority of fields, a mix-

ture of Bt and non-Bt corn plants were sampled (Table 1). Soil was

washed from roots, and roots were rated for rootworm feeding in-

jury following the 0 to 3 node injury scale of Oleson et al. (2005).

Adult western corn rootworm from each field were held in separ-

ate cages (18 by 18 by 18 cm; L by W by H; Megaview Science,

Taiwan) housed in an incubator (25�C and a photoperiod of 16:8

[L:D] h). Insects were provided with a complete adult diet (western

corn rootworm adult diet, product # F9768B-M, Bio-Serv,

Frenchtown, NJ), corn leaf tissue, a 1.5% agar solid as a source of

water, and sieved soil (<180 lm) held in a Petri dish (diam-

eter¼10 cm) as an oviposition substrate. Eggs collected from each

population were placed in a cold room at 6�C for at least 5 mo to

break diapause, after which time eggs were removed from the cold

room and placed in an incubator (25�C and a photoperiod of 16:8

[L:D] h) where they hatched two weeks later.

Newly hatched neonates were used in plant-based bioassays fol-

lowing Gassmann et al. (2014). Briefly, plants were grown singly in

Fig. 1. Location of field visited in 2013. Codes for each field (e.g., P1) corres-

pond to data presented in Table 1. Location of sites is accurate to the level of

an individual county.
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1-liter containers in the greenhouse to the V5 to V6 stage (i.e., five

to six leaf stage (Abendroth et al. 2011)). None of the corn seed

used in this study contained a pesticidal seed treatment, but all seed

was soaked in a 10% bleach solution for 1 h and then rinsed thor-

oughly 10 times prior to planting. This was done to remove any

traces of pesticide that may have been present on seeds from process-

ing and handling prior to arrival at Iowa State University. Plants at

the V5 to V6 stage (ca. 4 wk after planting) were brought to the la-

boratory and used in plant-based bioassays. Plants were trimmed to

a height of 20 cm and all but two leaves removed, which were

trimmed to a length of 8 cm. This was done so plants would fit

within an environmental chamber. Each plant received 12 neonate

larvae (<1 d old), which were placed at the base of the plant on

roots that were exposed by moving a small amount of soil. Once lar-

vae were placed on plants, roots were gently covered with soil again.

A barrier was placed around the top of each container (Tree

Tanglefoot, The Tanglefoot Company, Grand Rapids, MI) to ensure

that no larvae escaped from bioassay containers. Bioassay containers

with larvae and corn plants then were placed in an incubator (24�C,

60% RH, and a photoperiod of 16:8 [L:D] h) for 17 d.

After 17d, plants were removed from the incubator, the above-

ground vegetative tissue was removed, and roots, soil, and larvae were

transferred to a Berlese funnel for 4 d to extract larvae from the soil.

Larvae from each plant were collected in a 15-ml glass vial containing

85% ethanol. The proportion of larvae surviving on each plant was

calculated as the number of larvae recovered divided by the number of

neonates placed on a plant. Larval head capsule width was measured

using a microscope (Leica MZ6, Wetzlar, Germany) with a digital

camera (Moticam 2500, Meyer Instruments, Houston, TX) and image

analysis software (Motic Images Plus 2.0 ML, Motic Images Inc.,

British Columbia, Canada), and larval instar was determined based on

head capsule width following Hammack et al. (2003). For each plant

from which larvae were recovered, the proportion of larvae in each in-

star was calculated as the number of larvae in a specific instar (e.g.,

first) divided by the total number of larvae recovered.

One population was tested per week and bioassays alternated be-

tween field populations and control populations. Control popula-

tions consisted of diapausing strains of western corn rootworm that

were brought into laboratory culture before 2003, the year that Bt

corn was commercialized for management of western corn

rootworm (EPA 2016b). Control populations were provided as eggs

in diapause from USDA Agricultural Research Service’s North

Central Agricultural Research Laboratory (Brookings, SD). For con-

trol populations, the location and year of collection were: Phelps

Co., NE, 1995; Potter Co., SD, 1995; York Co., NE, 1996; Butler

Co., NE, 1999; Centre Co., PA, 2000; Finney Co., KS, 2000.

In total, nine field populations were tested in bioassays and these

fields were distributed among each of four population classes: 1)

fields with >2 nodes of injury to Cry34/35Ab1 corn (P1 and P2 in

Table 1), 2) fields with >1 node of root injury to corn pyramided

with Cry34/35Ab1 and either mCry3A or Cry3Bb1 (fields P3 and

P4 in Table 1), 3) fields with >0.5 nodes but <1.0 node of injury to

corn pyramided with Cry34/35Ab1 and Cry3Bb1 (fields P5 and P6

in Table 1), and 4) fields with >2 nodes of injury to Cry3Bb1 corn

(fields P7, P8, and P9 in Table 1).

Populations were grouped into these four classes to test specific

hypothesis about the type of Bt resistance that may be contributing

to injury in the field. The specific hypotheses tested were: H1) for

fields with >2 nodes of injury to Cry34/35Ab1 corn, western corn

rootworm populations with resistance to Cry34/35Ab1 would be

present, H2) for fields with >1 node of root injury to corn pyra-

mided with Cry34/35Ab1 and either mCry3A or Cry3Bb1, western

corn rootworm populations with resistance to Cry34/35Ab1,

mCry3A, and Cry3Bb1 would be present, H3) for fields with >0.5

nodes but <1.0 node of injury to corn pyramided with Cry34/

35Ab1 and Cry3Bb1, western corn rootworm populations with re-

sistance to Cry34/35Ab1, mCry3A, and Cry3Bb1 would be present,

but this resistance would be less than fields where greater than a

node of injury was observed to pyramided corn, H4) for fields with

>2 nodes of injury to Cry3Bb1 corn, western corn rootworm popu-

lations with resistance to Cry3Bb1 and mCry3A corn would be pre-

sent. In general, we hypothesized that resistance to a specific Bt

toxin would be present in a western corn rootworm population

when corn with that Bt toxin suffered high levels of injury in the

field (e.g., severe feeding injury to Cry3Bb1 corn would be associ-

ated with Cry3Bb1 resistance). In cases where resistance to Cry3Bb1

was present, we hypothesized that mCry3A resistance also would be

present because of previous research indicating cross-resistance be-

tween these Bt toxins (Gassmann et al. 2014, Wangila et al. 2015).

Table 1. Date sampled, root injury, and field history of populations used in bioassays

Site Bt corna,b Date sampled Root injuryc Bt Root injuryc non-Bt Field historyb,d

1 e 2 3 4 5 6

P1 4 10 Sept. 2.34 6 0.68 (12) unknown 2 0 0 1 0 0

P2 4 12 Aug. 2.04 6 0.64 (17) 1.77 6 0.25 (3) 3 1 0 1 0 0

P3 5 10 Sept. 1.61þ 0.93 (20) 1.80 6 1.30 (4) 7 3 to 4f 0 1 to 2f 1 0

P4 6 12 Sept. 1.11þ 0.51 (17) 1.14 6 NA (1) 11 1 to 2f 0 4 to 6f 0 1

P5 5 06 Aug. 0.96þ 0.16 (14) unknown 8 1 1 2 1 0

P6 5 06 Aug. 0.70þ 0.90 (12) 1.58þ 0.80 (6) 2 0 0 0 1 0

P7 2 03 Sept. 2.76þ 0.26 (10) 2.00þNA (1) 2 to 4f 2 to 3f 0 0 0 0

P8 2 03 Sept. 2.41þ 0.41 (9) 2.03þ 0.95 (3) 2 to 4f 2 to 3f 0 0 0 0

P9 2 01 Aug. 2.40þ 0.50 (12) unknown 10 7 0 1 0 0

a Type of Bt corn evaluated for root injury.
b Types of Bt corn were: 2¼Cry3Bb1, 3¼mCry3A, 4¼Cry34/35Ab1, 5¼Cry3Bb1þCry34/35Ab1, 6¼mCry3AþCry34/35Ab1.
c Mean 6 SD for root injury on a 0 to 3 node injury scale (Oleson et al. 2005). Numbers in parentheses are sample sizes.
d Number of years corn was planted (column 1) and number of years each type of Bt corn was planted (column 2 to 6). Data on Bt corn exclude the first year

corn was grown in a field because western corn rootworm larvae were not present to experience selection.
e Number of years corn was planted since either 2003 (the year Bt corn was commercialized for western corn rootworm) or the field was last planted to a crop

other than corn, whichever is smaller.
f There was uncertainty regarding field history and this is reflected in the range of values.
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Each of these 15 populations (six control populations and

nine field populations) was tested against six corn hybrids: 1)

Cry34/35Ab1 corn (event DAS-59122-7), 2) non-Bt near isoline

to Cry34/35Ab1 corn, 3) Cry3Bb1 corn (event MON 88017), 4)

non-Bt near isoline to Cry3Bb1 corn, 5) mCry3A corn (event MIR

604), and 6) non-Bt near isoline to mCry3A corn. The same six

corn hybrids were used in bioassays to evaluate each of the 15

populations. For each combination of population by hybrid, be-

tween 5 and 10 single-plant bioassays were conducted (mean-

¼8.77; SD¼1.25) for a total of 789 single-plant bioassays for the

entire experiment (15 populations�6 hybrids�8.77 replica-

tions). Bioassays were conducted between April and September of

2014.

Data Analysis
Data on proportion survival in bioassays were analyzed separately

by hybrid with a mixed-model analysis of variance ANOVA

(PROC MIXED) in SAS (SAS 2013). Data were analyzed separ-

ately by hybrid to ensure the data met the ANOVA assumption of

homogeneity of variance. Data were transformed by the arcsine of

the square root to ensure normality of the residuals. The fixed fac-

tor in each ANOVA was population class, which consisted of: 1)

fields with >2 nodes of injury to Cry34/35Ab1 corn, 2) fields with

>1 node of root injury to corn pyramided with Cry34/35Ab1 and

either mCry3A or Cry3Bb1, 3) fields with >0.5 node but <1.0

node of injury to corn pyramided with Cry34/35Ab1 and

Cry3Bb1, 4) fields with >2 nodes of injury to Cry3Bb1 corn, and

5) control populations. The random factor in the ANOVA was

population nested within population class. When a significant ef-

fect of population class was present, pairwise comparisons were

made among all classes of populations using the PDIFF statement

in PROC MIXED with P values adjusted based on a Bonferroni

correction. Data on the proportion of larvae in each of the three in-

stars (i.e., first, second, and third) were analyzed separately by in-

star and hybrid using the same approach applied to analyze

proportion mortality.

For each population on each type of Bt corn, corrected pro-

portional survival was calculated as 1� corrected proportional

mortality based on the correction of Abbott (1925), which was

[(proportion survival on non-Bt near isoline�proportion sur-

vival on Bt corn) � proportion survival on non-Bt near isoline].

Values for corrected survival per population were then used to

calculate mean corrected survival for each class of populations:

1) fields with >2 nodes of injury to Cry34/35Ab1 corn, 2) fields

with >1 node of root injury to corn pyramided with Cry34/

35Ab1 and either mCry3A or Cry3Bb1, 3) fields with >0.5 node

but <1.0 node of injury to corn pyramided with Cry34/35Ab1

and Cry3Bb1, 4) fields with >2 nodes of injury to Cry3Bb1 corn,

and 5) control populations. A value of 1 for corrected survival

would indicate equal survival between Bt and non-Bt corn (i.e.,

complete resistance). As such, a one-tailed t-test was conducted

to test whether corrected survival of each class of populations on

each type of Bt corn was significantly less than one (PROC

TTEST). The null hypothesis was that a specific class of popula-

tions (e.g., populations from fields with >2 nodes of injury to

Cry3Bb1 corn) was completely resistant to a specific type of Bt

corn (e.g., Cry3Bb1 corn), and the alternative hypothesis was

that a specific class of populations showed incomplete resistance

to a specific type of Bt corn. Additionally, for each class of field

populations on each type of Bt corn, a resistance ratio (RR) was

calculated as corrected survival on a specific type of Bt corn

divided by corrected survival for control populations on the same

type of Bt corn.

Results

No significant differences were detected among classes of popula-

tions for survival on non-Bt corn, and this was the case for the non-

Bt near isoline to Cry34/35Ab1 corn, the non-Bt near isoline to

Cry3Bb1 corn, and the non-Bt near isoline to mCry3A corn (Fig. 2;

Table 2). This indicates that all population classes had similar larval

viability in the absence of Bt toxin. By contrast, significant differ-

ences among populations were detected for survival on all types of

Bt corn tested, which included Cry34/35Ab1 corn, Cry3Bb1 corn,

and mCry3A corn (Fig. 2; Table 2).

Compared with control populations, survival on Cry34/35Ab1

corn was significantly greater for western corn rootworm from fields

where Cry34/35Ab1 corn suffered >2 nodes of root injury

(RR¼5.85) and fields where corn pyramided with Cry34/35Ab1

and either Cry3Bb1 or mCry3A suffered >1 node of root injury

(RR¼6.16), which indicates the presence of resistance to Cry34/

35Ab1 corn in these field populations (Fig. 2A; Table 3). By con-

trast, no significant difference in survival on Cry34/35Ab1 corn was

detected between control populations and populations from fields

with >2 nodes of injury to Cry3Bb1 corn (RR¼1.66) or fields with

>0.5 nodes but <1.0 node of injury to corn pyramided with Cry34/

35Ab1 and Cry3Bb1 (RR¼1.53; Fig. 2A; Table 3). In all cases, cor-

rected survival on Cry34/35Ab1 corn was significantly less

than one, indicating that resistance, when present, was incomplete

(Table 3).

For survival on Cry3Bb1 corn, all classes of field populations had

significantly greater survival on Cry3Bb1 corn than was observed for

control populations (Fig. 2B). Resistance ratios among these classes of

field populations ranged from 15.2 to 21.9, and in all cases, corrected

survival on Cry3Bb1 corn did not differ from 1 (Table 3), indicating

complete resistance to Cry3Bb1 corn for each class of field populations.

Results were similar for survival on mCry3A corn. With the ex-

ception of fields where >0.5 nodes but <1.0 node of injury was

observed for corn pyramided with Cry34/35Ab1 and Cry3Bb1

(RR¼2.33), all other classes of field populations had significantly

greater survival on mCry3A corn than was observed for control

populations, and resistance ratios ranged from 4.59 to 6.48

(Fig. 2C; Table 3). This indicates resistance to mCry3A corn for

fields with >2 nodes of injury to Cry34/35Ab1 corn, fields with >1

node of root injury to corn pyramided with Cry34/35Ab1 and either

mCry3A or Cry3Bb1, and fields with >2 nodes of injury to

Cry3Bb1 corn. Corrected survival on mCry3A corn did not differ

from 1 for populations from fields with >2 nodes of injury to

Cry34/35Ab1 corn and from fields with >1 node of root injury to

corn pyramided with Cry34/35Ab1 and either mCry3A or Cry3Bb1,

indicating complete resistance to mCry3A in those classes of field

populations (Table 3). However, for populations from fields with

>2 nodes of injury to Cry3Bb1 corn, resistance to mCry3A was in-

complete (Table 3).

In general, few differences were found among classes of popula-

tions for larval developmental rate, which was measured as the pro-

portion of larvae in each of the three instars. For non-Bt corn, only

the non-Bt near isoline to Cry3Bb1 corn was associated with differ-

ences in developmental rate (Table 4). While a significant effect of

population type was present for both the proportion of second- and

third-instar larvae on the non-Bt near isoline to Cry3Bb1 corn, no

significant pairwise differences were detected (Table 4). For Bt corn,

4 Journal of Economic Entomology, 2016, Vol. 0, No. 0

  

Deleted Text: . 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: &ndash;
Deleted Text: &ndash;
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
http://jee.oxfordjournals.org/


differences in larval developmental rate were only detected on

mCry3A corn (Table 5). Significantly fewer third-instar larvae were

found for control populations on mCry3A corn compared with field

populations associated with >1 node of root injury to corn pyra-

mided with Cry34/35Ab1 and either mCry3A or Cry3Bb1.

Discussion

In this study, we found incomplete resistance to Cry34/35Ab1 corn

by western corn rootworm populations from fields in Iowa with se-

vere feeding injury to Cry34/35Ab1 corn (>2 nodes of injury) and

Table 2. Analysis of variance for larval survival in plant-based bio-

assays among classes of populations

Type of corn tested in bioassays df F P

Cry34/35Ab1 corna 4,10 7.98 0.004

Non-Bt (near isoline to Cry34/35Ab1)b 4,10 0.33 0.854

Cry3Bb1 cornc 4,10 22.50 <0.001

Non-Bt (near isoline to Cry3Bb1)d 4,10 0.60 0.670

mCry3Ae 4,10 7.20 0.005

Non-Bt (near isoline to mCry3A)f 4,10 0.66 0.631

The five population classes evaluated in each analysis of variance were: 1)

fields with >2 nodes of injury to Cry34/35Ab1 corn, 2) fields with >1 node of

root injury to corn pyramided with Cry34/35Ab1 and either mCry3A or

Cry3Bb1, 3) fields with >0.5 node but <1.0 node of injury to corn pyramided

with Cry34/35Ab1 and Cry3Bb1, 4) fields with >2 nodes of injury to

Cry3Bb1 corn, and 5) control populations.
a Random factor in the model was Population(Population Type): v2¼ 2.0;

df¼ 1; P¼ 0.08.
b Random factor in the model was Population(Population Type): v2¼ 2.7;

df¼ 1; P¼ 0.05.
c Random factor in the model was Population(Population Type): v2¼ 0.2;

df¼ 1; P¼ 0.33.
d Random factor in the model was Population(Population Type): v2¼ 4.5;

df¼ 1; P¼ 0.02.
e Random factor in the model was Population(Population Type): v2¼ 13.4;

df¼ 1; P< 0.001.
f Random factor in the model was Population(Population Type): v2¼ 3.5;

df¼ 1; P¼ 0.03.

Table 3. Corrected survival, standard error for corrected survival,

and resistance ratio among classes of populations

Population classa Cry34/35Ab1 Cry3Bb1 mCry3A

1 0.270* 1.06 0.997

(0.035) (0.374) (0.320)

5.85 21.9 6.48

2 0.284* 0.736 0.739

(0.023) (0.169) (0.104)

6.16 15.2 4.80

3 0.0705* 0.892 0.358*

(0.035) (0.242) (0.108)

1.53 18.4 2.33

4 0.0767* 1.00 0.706*

(0.012) (0.218) (0.079)

1.66 20.6 4.59

5 0.0461* 0.0485* 0.154*

(0.021) (0.029) (0.029)

Data from each combination of population class by type as Bt corn are pre-

sented, from top to bottom, as corrected survival, followed by standard error

for corrected survival in parentheses, followed by resistance ratio, when ap-

plicable, at the bottom.
a Classes of populations were: 1) fields with >2 nodes of injury to Cry34/

35Ab1 corn, 2) fields with >1 node of root injury to corn pyramided with

Cry34/35Ab1 and either mCry3A or Cry3Bb1, 3) fields with >0.5 node but

<1.0 node of injury to corn pyramided with Cry34/35Ab1 and Cry3Bb1, 4)

fields with >2 nodes of injury to Cry3Bb1 corn, and 5) control populations.
*Corrected survival was significantly less than 1.0 (P� 0.05) based on a

one-tailed t-test. A lack of a significant difference indicates complete resist-

ance to a specific type of Bt corn by a specific class of populations.

Fig. 2. Survival of western corn rootworm larvae on (A) Cry34/35Ab1 corn,

(B) Cry3Bb1 corn, and (C) mCry3A corn. In each panel, non-Bt corn repre-

sents the non-Bt near isoline of the Bt hybrid. Population classes are: 1)

fields with >2 nodes of injury to Cry34/35Ab1 corn, 2) fields with >1 node of

root injury to corn pyramided with Cry34/35Ab1 and either mCry3A or

Cry3Bb1, 3) fields with >0.5 node but <1.0 node of injury to corn pyramided

with Cry34/35Ab1 and Cry3Bb1, and 4) fields with >2 nodes of injury to

Cry3Bb1 corn. Bar heights are sample means and error bars are the stand-

ard error of the mean. Letter indicate significant differences between

classes of populations within each hybrid (e.g., Cry3Bb1 corn) and NS indi-

cates that no significant difference among classes was detected with ana-

lysis of variance (see Table 2).
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corn pyramided with Cry34/35Ab1 and either Cry3Bb1 or mCry3A

(>1 node of injury). These populations also showed complete resist-

ance to both Cry3Bb1 corn and mCry3A corn. Fields sampled for

this study were visited in 2013, and past work has identified field

populations of western corn rootworm in Iowa during 2009, 2010,

and 2011 with resistance to Cry3Bb1 corn and mCry3A corn, how-

ever, not to Cry34/35Ab1 corn (Gassmann et al. 2011, 2012, 2014).

As such, this work represents the first detection of field-evolved re-

sistance to Cry34/35Ab1 corn by western corn rootworm in Iowa.

It is possible for substantial variation in root injury to exist

among hybrids that contain the same Bt event targeting western

corn rootworm (Gray et al. 2007). It may be the case that the par-

ticular hybrid varieties in the fields visited as part of this study pro-

duced lower levels of Bt protein than might occur for other hybrids,

and that this decreased production of Bt toxin contributed to the

level of injury observed in the field. Nonetheless, these high levels of

feeding injury to Cry34/35Ab1 corn in the field were associated

with increased survival on Cry34/35Ab1 corn in laboratory bio-

assays, indicating that severe injury to Cry34/35Ab1 corn in the field

was associated with resistance to Cry34/35Ab1 corn. In addition to

variation in the level of root injury observed in the field, level of sur-

vival for western corn rootworm can vary. For example, on Cry34/

35Ab1 corn, larval survival in the field can range from <1% to ca.

20% (Storer et al. 2006, Petzold-Maxwell et al. 2013a). These levels

of survival are consistent with a Bt crop that does not produce a

high dose of toxin against a target pest, as is the case for Bt corn tar-

geting western corn rootworm (Gassmann 2012, Andow et al.

2016). In cases where a baseline survival of 20% is present for a sus-

ceptible population, adding three- to sixfold resistance on top of this

20% survival may result in similar survival between Bt and non-Bt

corn and high levels of feeding injury to Bt corn, as has been

observed in the field when Cry3Bb1 resistance was present

(Gassmann 2012).

Past work has found an absence of cross-resistance between

Cry3Bb1 and Cry34/35Ab1 (Gassmann et al. 2011, 2012, 2014),

and between mCry3A and Cry34/35Ab1 (Gassmann et al. 2014).

Additionally, the mode of action likely differs between Cry34/

35Ab1, a binary toxin, and either Cry3Bb1 or mCry3A, which are

three domain toxins (Li et al. 2013). The lack of cross-resistance

found between these Cry3 toxins and Cry34/35Ab1 in previous

work, coupled with the structural differences between these Bt tox-

ins, suggests that the mechanism of resistance to Cry34/35Ab1 may

differ from the mechanism of resistance to Cry3 toxins.

Past research with the single-plant bioassay used in this study

has focused on resistance to Cry3Bb1 corn, and has found that re-

sistance ratios of 3 to 6 are associated with severe feeding injury to

Cry3Bb1 corn in the field (Gassmann et al. 2011, 2014; Andow

et al. 2016). Across multiple years and multiple states, severe injury

to Cry3Bb1 corn has been associated with increased survival in

plant-based bioassays (Gassmann et al. 2011, 2012, 2014; Wangila

et al. 2015; Schrader et al. 2016). On-farm studies in fields where

Cry3Bb1 resistance has been detected with plant-based bioassays

have found elevated injury to Cry3Bb1 corn and elevated survival

by western corn rootworm compared to known susceptible controls

or compared to Cry34/35Ab1 corn (Gassmann 2012, Shrestha et al.

2016). Additionally, US EPA recommends the use of plant-based

bioassays for monitoring of Bt resistance by western corn rootworm

(EPA 2013, 2016a). Taken together these data suggest that

increased survival on Cry34/35Ab1 corn in this study, observed for

populations sampled from fields where Cry34/35Ab1 corn suffered

Table 4. Mean percentage in each larval instar on non-Bt hybrids and associated standard errors

Population classa Non-Bt near isoline of Cry34/35Ab1 corn Non-Bt near isoline of Cry3Bb1 corn Non-Bt near isoline of mCry3A corn

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

1 00 (00) 35 (08) 65 (08) 00 (00) 29A (05) 71A (05) 00 (00) 26 (03) 74 (26)

2 00 (00) 24 (06) 76 (06) 01 (01) 19A (02) 79A (03) 00 (00) 21 (01) 79 (01)

3 00 (00) 46 (00) 54 (00) 00 (00) 53A (10) 47A (10) 00 (00) 45 (09) 55 (09)

4 02 (01) 48 (03) 50 (03) 00 (00) 59A (08) 41A (08) 02 (02) 46 (05) 53 (06)

5 00 (00) 33 (04) 66 (04) 00 (00) 45A (04) 55A (04) 03 (01) 35 (03) 62 (03)

Data are presented as mean followed by standard error in parentheses.
a Classes of populations were: 1) fields with >2 nodes of injury to Cry34/35Ab1 corn, 2) fields with >1 node of root injury to corn pyramided with Cry34/

35Ab1 and either mCry3A or Cry3Bb1, 3) fields with >0.5 node but <1.0 node of injury to corn pyramided with Cry34/35Ab1 and Cry3Bb1, 4) fields with >2

nodes of injury to Cry3Bb1 corn, and 5) control populations.

*Significant differences among population classes were present based on one-way analysis of variance and letters indicate pairwise differences between means.

Table 5. Mean percentage in each larval instar on Bt hybrid and associated standard errors

Population classa Cry34/35Ab1 corn Cry3Bb1 corn mCry3A corn

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd*

1 00 (00) 65 (22) 35 (22) 03 (01) 43 (04) 54 (05) 00 (00) 40 (03) 60AB (03)

2 00 (00) 84 (04) 16 (04) 00 (00) 42 (15) 58 (15) 00 (00) 33 (01) 67B (01)

3 00 (00) 50 (50) 50 (50) 00 (00) 45 (14) 55 (14) 08 (08) 56 (02) 36AB (11)

4 08 (08) 92 (08) 00 (00) 05 (05) 42 (05) 53 (10) 01 (01) 42 (09) 57AB (10)

5 25 (25) 75 (25) 00 (00) 00 (00) 80 (20) 20 (20) 02 (02) 69 (08) 29A (08)

Data are presented as means followed by standard errors in parentheses.
a Classes of populations were: 1) fields with >2 nodes of injury to Cry34/35Ab1 corn, 2) fields with >1 node of root injury to corn pyramided with Cry34/

35Ab1 and either mCry3A or Cry3Bb1, 3) fields with >0.5 node but <1.0 node of injury to corn pyramided with Cry34/35Ab1 and Cry3Bb1, 4) fields with >2

nodes of injury to Cry3Bb1 corn, and 5) control populations.

*Significant differences among population classes were present based on one-way analysis of variance and letters indicate pairwise differences between means.
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high levels of feeding injury, is indicative of the development of re-

sistance to Cry34/35Ab1 by these populations (Fig 2A; Table 3).

However, lower survival on Cry34/35Ab1 corn, compared to non-

Bt corn, indicates that this resistance is incomplete.

When resistance to Cry3Bb1 corn was first detected in 2009, all

fields where resistance was found were characterized by a history of

continuous corn cultivation (i.e., �7 yr) and continuous use of

Cry3Bb1 corn for 3–7 yr. In this study, resistance to Cry34/35Ab1

corn followed a similar pattern in some cases but not others. Fields

with >1 node of injury to pyramided corn had been in continuous

corn cultivation for 7–10 yr, and there was a history of cultivation

of Bt corn, although the intensity of use for either Cry34/35Ab1 or

Cry3Bb1 was only 1–2 yr in each field (Table 1). By contrast fields

with >2 nodes of injury to Cry34/35Ab1 corn had only been planted

to corn for 2–3 yr and did not have a history of Cry34/35Ab1 corn

(Table 1). This suggests that the resistance to Cry34/35Ab1 observed

in fields with >2 nodes of injury to Cry34/35Ab1 corn arose

through selection in other fields with subsequent dispersal of root-

worm into fields where injury was observed. To date, routine moni-

toring of western corn rootworm populations has not detected

resistance to Cry34/35Ab1, suggesting that investigations of field

failures may be more useful for early detection of resistance (Andow

et al. 2016).

Cry3Bb1 corn for management of western corn rootworm was

registered in 2003, and Cry34/35Ab1 corn was registered in 2005

(EPA 2005, 2010). Initially, in 2009, field populations with resist-

ance to Cry3Bb1 corn displayed incomplete resistance (i.e., lower

survival on Bt corn compared to non-Bt corn), but over time the

level of resistance increased and complete resistance was present for

field populations studied in both 2010 and 2011 (Gassmann et al.

2011, 2012, 2014). Similarly, incomplete resistance to Cry34/

35Ab1 corn was found among the populations tested in this study.

The rate at which resistance to Cry34/35Ab1 corn may increase in

the field will be due in part to the intensity of selection for resistance

in subsequent years. The recent pyramiding of Cry34/35Ab1 with ei-

ther mCry3A or Cry3Bb1, and the continued cultivation of corn

producing Cry34/35Ab1 singly, may result in a greater proportion

of the landscape being planted to corn containing Cry34/35Ab1

than occurred in previous years. As a result, the level of resistance

observed among field populations may increase over time, as was

observed for resistance to Cry3Bb1 corn (Gassmann et al. 2014).

Adaptation of western corn rootworm to Bt corn in the field was

likely facilitated by the lack of a high dose produced by all commer-

cialized Bt corn targeting western corn rootworm (Gassmann 2012,

Andow et al. 2016). High-dose Bt crops delay resistance by killing

heterozygous resistant individuals, which in turn results in function-

ally recessive resistance (Tabashnik et al. 2008, Carrière et al.

2010). Bt crops that produce less than a high dose of toxin permit

some survival of heterozygous individuals, which can increase the

rate of resistance evolution compared to high-dose events

(Tabashnik et al. 2008, Tabashnik and Gould 2012). Additionally,

low rates of dispersal by adult western corn rootworm prior to mat-

ing likely limited mixing between refuge individuals and Bt-selected

individuals, especially when structured refuges (i.e., block refuges)

were planted, which also will facilitate resistance to Bt corn

(Spencer et al. 2009, Gassmann 2012, Hughson and Spencer 2015,

Andow et al. 2016). Furthermore, high rates of adoption of Bt corn

by farmers and a lack of compliance in planting of non-Bt refuges

may further hasten resistance development (Jaffe 2009, James

2013). Recent adoption of integrated refuges (i.e., seed blends) may

help to increase both compliance with refuge planting and spatial

proximity of refuge plants to Bt plants (EPA 2011b, 2012).

However, these factors will not decrease the intensity of selection

for resistance. By contrast, using Bt corn more judiciously as part of

a broader integrated pest management (IPM) approach should de-

crease the intensity of selection for resistance.

In general, our hypotheses about the association between injury

in the field and resistance were supported, but with a few excep-

tions. In the case of pyramided corn with >0.5 nodes but <1.0

nodes of root injury, resistance to Cry3Bb1 corn was present but re-

sistance to Cry34/35Ab1 corn was not detected. This suggests that

the feeding injury observed in the field arose because of resistance to

one of the two toxins in the pyramid. Additionally, a co-occurrence

of resistance to Cry3Bb1 and mCry3A corn was not found in all

cases. Past work has found cross-resistance to mCry3A and

Cry3Bb1 (Gassmann et al. 2014, Wangila et al. 2015), and that led

to the hypothesis that resistance to either Cry3Bb1 or mCry3A

should be accompanied by resistance to the other toxin. In general,

for three out of four classes of field populations, this was the case,

with significantly greater survival on both Cry3Bb1 corn and

mCry3A corn observed among field populations compared to ex-

perimental controls. However, one class of field populations (pyra-

mided corn with >0.5 nodes but <1.0 nodes of root injury)

displayed significantly greater survival than control populations on

Cry3Bb1 corn but not on mCry3A corn (Fig. 2), and for populations

sampled from fields with >2 nodes of injury to Cry3Bb1 corn, resist-

ance to Cry3Bb1 was complete but resistance to mCry3A was in-

complete (Table 3). Among field populations, seven of nine had

been exposed to Cry3Bb1 corn in the field from which they were

collected but only two of nine populations were exposed to

mCry3A, implying that resistance to both Cry3Bb1 and mCry3A

corn arose primarily from exposure to Cry3Bb1 corn (Table 1).

These results suggest that there may be multiple mechanisms of re-

sistance to Cry3Bb1 corn and only some of those mechanisms confer

resistance to mCry3A corn.

For single-plant bioassays with western corn rootworm, data on

larval survival are informative for detecting resistance, but data on

larval development are not consistently associated with the presence

or absence of resistance. For example, Gassmann et al. (2014) found

no difference in the proportion of larvae in the various instars be-

tween resistant and susceptible populations, although significant dif-

ferences in survival were present. In the present study, larval

developmental rate on Bt corn only differed among populations on

mCry3A corn, and was positively associated with resistance only for

populations from fields with >1 node of root injury to pyramided

corn (Table 5). By contrast, no differences in larval development

were observed among classes of populations for either Cry34/35Ab1

corn or Cry3Bb1 corn (Table 5). Additionally, in past studies, resist-

ance to mCry3A corn did not significantly affect larval development

rate in single-plant bioassays with mCry3A corn (Gassmann et al.

2014). While developmental rate may not be a reliable indicator of

resistance with single-plant bioassays, it may be an informative met-

ric in other bioassay approaches such as bioassays with seedling

mats (Lefko et al. 2008, Nowatzki et al. 2008, Deitloff et al. 2015).

The bioassay data reported here show the first cases of resistance

to Cry34/35Ab1 corn by western corn rootworm. While resistance

was incomplete, it was associated with severe feeding injury to

Cry34/45Ab1 corn. Using IPM approaches such as crop rotation

may help to mitigate the injury to Cry34/35Ab1 corn that is associ-

ated with resistance by reducing the abundance of western corn

rootworm in fields. Additionally, more diversified management

plans will help to reduce selection for resistance. Because of resist-

ance to Cry3Bb1 and mCry3A corn by western corn rootworm, pre-

serving susceptibility of rootworm populations to Cry34/35Ab1
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corn is important for management of this pest. Recent pyramiding

of Cry34/35Ab1 corn with either Cry3Bb1 or mCry3A likely will in-

crease selective pressure on pest populations for resistance to Cry34/

35Ab1, especially in cases where western corn rootworm popula-

tions are resistant to Cry3Bb1 and mCry3A. Judicious use of Cry34/

35Ab1 corn, in a broader IPM context, will likely be essential for

preserving the utility of this pest management tool.
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