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ABSTRACT

We present a comprehensive analysis of weak gravitational lensing by large-scale structure in the Hubble Space Telescope Cosmic
Evolution Survey (COSMOS), in which we combine space-based galaxy shape measurements with ground-based photometric red-
shifts to study the redshift dependence of the lensing signal and constrain cosmological parameters. After applying our weak lensing-
optimized data reduction, principal-component interpolation for the spatially, and temporally varying ACS point-spread function, and
improved modelling of charge-transfer inefficiency, we measured a lensing signal that is consistent with pure gravitational modes
and no significant shape systematics. We carefully estimated the statistical uncertainty from simulated COSMOS-like fields ob-
tained from ray-tracing through the Millennium Simulation, including the full non-Gaussian sampling variance. We tested our lensing
pipeline on simulated space-based data, recalibrated non-linear power spectrum corrections using the ray-tracing analysis, employed
photometric redshift information to reduce potential contamination by intrinsic galaxy alignments, and marginalized over system-
atic uncertainties. We find that the weak lensing signal scales with redshift as expected from general relativity for a concordance
ΛCDM cosmology, including the full cross-correlations between different redshift bins. Assuming a flat ΛCDM cosmology, we mea-
sure σ8 (Ωm/0.3)0.51

= 0.75 ± 0.08 from lensing, in perfect agreement with WMAP-5, yielding joint constraints Ωm = 0.266+0.025
−0.023,

σ8 = 0.802+0.028
−0.029 (all 68.3% conf.). Dropping the assumption of flatness and using priors from the HST Key Project and Big-Bang

nucleosynthesis only, we find a negative deceleration parameter q0 at 94.3% confidence from the tomographic lensing analysis, pro-
viding independent evidence of the accelerated expansion of the Universe. For a flat wCDM cosmology and prior w ∈ [−2, 0], we
obtain w < −0.41 (90% conf.). Our dark energy constraints are still relatively weak solely due to the limited area of COSMOS.
However, they provide an important demonstration of the usefulness of tomographic weak lensing measurements from space.

Key words. cosmological parameters – dark matter – large-scale structure of Universe – gravitational lensing: weak

1. Introduction

During the past decade strong evidence of an accelerated ex-
pansion of the Universe has been found with several inde-
pendent cosmological probes including type Ia supernovae
(Riess et al. 1998; Perlmutter et al. 1999; Riess et al. 2007;
Kowalski et al. 2008; Hicken et al. 2009), cosmic microwave
background (de Bernardis et al. 2000; Spergel et al. 2003;

⋆ Based on observations made with the NASA/ESA Hubble Space
Telescope, obtained from the data archives at the Space Telescope
European Coordinating Facility and the Space Telescope Science
Institute, which is operated by the Association of Universities for
Research in Astronomy, Inc., under NASA contract NAS 5-26555.

Komatsu et al. 2009), galaxy clusters (Allen et al. 2008; Mantz
et al. 2008, 2009; Vikhlinin et al. 2009), baryon acoustic oscil-
lations (Eisenstein et al. 2005; Percival et al. 2007, 2009), in-
tegrated Sachs-Wolfe effect (Giannantonio et al. 2008; Granett
et al. 2008; Ho et al. 2008), and strong gravitational lensing
(Suyu et al. 2010). Within the standard cosmological frame-
work, this can be described with the ubiquitous presence of a
new constituent named dark energy, which counteracts the at-
tractive force of gravity on the largest scales and contributes
∼70% to the total energy budget today. There have been various
attempts to explain dark energy, ranging from Einstein’s cosmo-
logical constant, via a dynamic fluid named quintessence, to a
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possible breakdown of general relativity (e.g. Huterer & Linder
2007; Albrecht et al. 2009), all of which lead to profound im-
plications for fundamental physics. In order to make substantial
progress and to be able to distinguish between the different sce-
narios, several large dedicated surveys are currently being de-
signed.

One technique with particularly high promise for constrain-
ing dark energy (Albrecht et al. 2006; Peacock et al. 2006;
Albrecht et al. 2009) is weak gravitational lensing, which utilizes
the subtle image distortions imposed onto the observed shapes
of distant galaxies, while their light bundles pass through the
gravitational potential of foreground structures (e.g. Bartelmann
& Schneider 2001). The strength of the lensing effect depends
on the total foreground mass distribution, independent of the
relative contributions of luminous and dark matter. It there-
fore provides a unique tool to study the statistical properties of
large-scale structure directly (for reviews see Schneider 2006;
Hoekstra & Jain 2008; Munshi et al. 2008).

Since its first detections by Bacon et al. (2000), Kaiser et al.
(2000), Van Waerbeke et al. (2000) and Wittman et al. (2000),
substantial progress has been made with the measurement of
this cosmological weak lensing effect, which is also called cos-
mic shear. Larger surveys have significantly reduced statisti-
cal uncertainties (e.g. Hoekstra et al. 2002; Brown et al. 2003;
Jarvis et al. 2003; Massey et al. 2005; Van Waerbeke et al. 2005;
Hoekstra et al. 2006; Semboloni et al. 2006; Hetterscheidt et al.
2007; Fu et al. 2008), while tests on simulated data have led to
better understanding of PSF systematics (Heymans et al. 2006a;
Massey et al. 2007a; Bridle et al. 2010, and references therein).
Finally, because it is a geometric effect, gravitational lensing
depends on the source redshift distribution, where most earlier
measurements have had to rely on external redshift calibrations
from the small Hubble Deep Fields. Here, the impact of sam-
pling variance was demonstrated by Benjamin et al. (2007), who
recalibrated earlier measurements using photometric redshifts
from the much larger CFHTLS-Deep, significantly improving
derived cosmological constraints.

Dark energy affects the distance-redshift relation and sup-
presses the time-dependent growth of structures. Because it is
sensitive to both effects, weak lensing is a powerful probe of dark
energy properties, also providing important tests for theories of
modified gravity (e.g. Benabed & Bernardeau 2001; Benabed
& van Waerbeke 2004; Schimd et al. 2007; Doré et al. 2007;
Jain & Zhang 2008; Schmidt 2008). Yet, in order to significantly
constrain these redshift-dependent effects, the shear signal must
be measured as a function of source redshift, an analysis often
called weak lensing tomography or 3D weak lensing (e.g. Hu
1999, 2002; Huterer 2002; Jain & Taylor 2003; Heavens 2003;
Hu & Jain 2004; Bernstein & Jain 2004; Simon et al. 2004;
Takada & Jain 2004; Heavens et al. 2006; Taylor et al. 2007).
Redshift information is additionally required to eliminate po-
tential contamination of the lensing signal from intrinsic galaxy
alignments (e.g. King & Schneider 2002; Hirata & Seljak 2004;
Heymans et al. 2006b; Joachimi & Schneider 2008). In general,
weak lensing studies have to rely on photometric redshifts (e.g.
Benitez 2000; Ilbert et al. 2006; Hildebrandt et al. 2008), given
that most of the studied galaxies are too faint for spectroscopic
measurements.

So far, tomographic cosmological weak lensing techniques
have been applied to real data by Bacon et al. (2005),
Semboloni et al. (2006), Kitching et al. (2007) and Massey
et al. (2007c). Dark energy constraints from previous weak lens-
ing surveys were limited by the lack of the required individual
photometric redshifts (Jarvis et al. 2006; Hoekstra et al. 2006;

Semboloni et al. 2006; Kilbinger et al. 2009a) or small sur-
vey area (Kitching et al. 2007). The currently best data set for
3D weak lensing is given by the COSMOS Survey (Scoville
et al. 2007a), which is the largest continuous area ever im-
aged with the Hubble Space Telescope (HST), comprising
1.64 deg2 of deep imaging with the Advanced Camera for
Surveys (ACS). Compared to ground-based measurements, the
HST point-spread function (PSF) yields substantially increased
number densities of sufficiently resolved galaxies and better con-
trol of systematics due to smaller PSF corrections. Although
HST has been used for earlier cosmological weak lensing anal-
yses (e.g. Refregier et al. 2002; Rhodes et al. 2004; Miralles
et al. 2005; Heymans et al. 2005; Schrabback et al. 2007), these
studies lack the area and deep photometric redshifts that are
available for COSMOS (Ilbert et al. 2009). This combination of
superb space-based imaging and ground-based photometric red-
shifts makes COSMOS the perfect test case for 3D weak lens-
ing studies. Massey et al. (2007c) conducted an earlier 3D weak
lensing analysis of COSMOS, in which they correlated the shear
signal between three redshift bins and constrained the matter
density Ωm and power spectrum normalization σ8. In this paper
we present a new analysis of the data, with several differences
compared to the earlier study: we employ a new, exposure-based
model for the spatially and temporally varying ACS PSF, which
has been derived from dense stellar fields using a principal com-
ponent analysis (PCA). Our new parametric correction for the
impact of charge transfer inefficiency (CTI) on stellar images
eliminates earlier PSF modelling uncertainties caused by confu-
sion of CTI- and PSF-induced stellar ellipticity. Using the latest
photometric redshift catalogue of the field (Ilbert et al. 2009), we
split our galaxy sample into five individual redshift bins and also
estimate the redshift distribution for very faint galaxies forming
a sixth bin without individual photometric redshifts, doubling
the number of galaxies used in our cosmological analysis. We
study the redshift scaling of the shear signal between these six
bins in detail, employ an accurate covariance matrix obtained
from ray-tracing through the Millennium Simulation, which we
also use to recalibrate non-linear power spectrum corrections,
and marginalize over parameter uncertainties. In addition to Ωm
and σ8, we also constrain the dark energy equation of state pa-
rameter w for a flat wCDM cosmology, and the vacuum energy
density ΩΛ for a general (non-flat) ΛCDM cosmology, yielding
constraints for the deceleration parameter q0.

This paper is organized as follows. We summarize the most
important information on the data and photometric redshift cat-
alogue in Sect. 2, while further details on the ACS data reduc-
tion are given in Appendix A. Section 3 summarizes the weak
lensing measurements including our new correction schemes for
PSF and CTI, for which we provide details in Appendix B. We
conduct various tests for shear-related systematics in Sect. 4. We
then present the weak lensing tomography analysis in Sect. 5,
and cosmological parameter estimation in Sect. 6. We discuss
our findings and conclude in Sect. 7.

Throughout this paper all magnitudes are given in the
AB system, where i814 denotes the SExtractor (Bertin &
Arnouts 1996) MAG_AUTO magnitude measured from the ACS
data (Sect. 2.1), while i+ is the MAG_AUTO magnitude deter-
mined by Ilbert et al. (2009) from the Subaru data (Sect. 2.2.1).
In several tests we employ a reference WMAP-5-like (Dunkley
et al. 2009) flat ΛCDM cosmology characterized by Ωm = 0.25,
σ8 = 0.8, h = 0.72, Ωb = 0.044, ns = 0.96, where we use the
transfer function by Eisenstein & Hu (1998) and non-linear
power spectrum corrections according to Smith et al. (2003).

Page 2 of 26



T. Schrabback et al.: Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS

2. Data

2.1. HST/ACS data

The COSMOS Survey (Scoville et al. 2007a) is the largest
contiguous field observed with the Hubble Space Telescope,
spanning a total area of ∼77′ × 77′ (1.64 deg2). It comprises
579 ACS tiles, each observed in F814W for 2028 s using four
dithered exposures. The survey is centred at α = 10h00m28.6s,
δ = +02◦12′21.′′0 (J2000.0), and data were taken between
October 2003 and November 2005.

We have reduced the ACS/WFC data starting from the flat-
fielded images. We apply updated bad pixel masks, subtract
the sky background, and compute optimal weights as detailed
in Appendix A. For the image registration, distortion correc-
tion, cosmic ray rejection, and stacking we use MultiDrizzle1

(Koekemoer et al. 2002), applying the latest time-dependent dis-
tortion solution from Anderson (2007). We iteratively align ex-
posures within each tile by cross-correlating the positions of
compact sources and applying residual shifts and rotations.

In tests with dense stellar fields we found that the default
cosmic ray rejection parameters of MultiDrizzle can lead
to false flagging of central stellar pixels as cosmic rays,
especially if telescope breathing introduces significant PSF
variations (see Sect. 3) between combined exposures. Thus,
stars will be partially rejected in exposures with deviating PSF
properties. On the contrary, galaxies will not be flagged due
to their shallower light profiles, leading to different effective
stacked PSFs for stars and galaxies. To avoid any influence
on the lensing analysis, we create separate stacks for the
shape measurement of galaxies and stars, where we use close
to default cosmic ray rejection parameters for the former
(driz_cr_snr=“4.0 3.0”, driz_cr_scale=“1.2 0.7”,
see Koekemoer et al. 2002, 2007), but less aggres-
sive masking for the latter (driz_cr_snr=“5.0 3.0”,
driz_cr_scale=“3.0 0.7”). As a result, the false mask-
ing of stars is substantially reduced. On the downside some
actual cosmic rays lead to imperfectly corrected artifacts in
the “stellar” stacks. This is not problematic given the very low
fraction of affected stars, for which the artifacts only introduce
additional noise in the shape measurement.

For the final image stacking we employ the LANCZOS3 inter-
polation kernel and a pixel scale of 0.′′05, which minimizes noise
correlations and aliasing without unnecessarily broadening the
PSF (for a detailed comparison to other kernels see Jee et al.
2007). Based on our input noise models (see Appendix A) we
compute a correctly scaled rms image for the stack. We match
the stacked image WCS to the ground-based catalogue by Ilbert
et al. (2009).

We employ our rms noise model for object detec-
tion with SExtractor (Bertin & Arnouts 1996), where we
require a minimum of 8 adjacent pixels being at least
1.4σ above the background, employ deblending parameters
DEBLEND_NTHRESH = 32, DEBLEND_MINCONT = 0.01, and mea-
sure MAG_AUTO magnitudes i814, which we correct for a mean
galactic extinction offset of 0.035 (Schlegel et al. 1998). Objects
near the field boundaries or containing noisy pixels, for which
fewer than two good input exposures contribute, are auto-
matically excluded. We also create magnitude-scaled polyg-
onal masks for saturated stars and their diffraction spikes.
Furthermore, we reject scattered light and large, potentially in-
correctly deblended galaxies by running SExtractor with a
low 0.5σ detection threshold for 3960 adjacent pixels, where we

1 MultiDrizzle version 3.1.0.

further expand each object mask by six pixels. The combined
masks for the stacks were visually inspected and adapted if nec-
essary.

Our fully filtered mosaic shear catalogue contains a to-
tal of 446 934 galaxies with i814 < 26.7, corresponding to
76 galaxies/arcmin2, where we exclude double detections in
overlapping tiles and reject the fainter component in the case
of close galaxy pairs with separations < 0.′′5. For details on the
weak lensing galaxy selection criteria see Appendix B.6.

In addition to the stacked images, our fully time-dependent
PSF analysis (see Sect. 3, Appendix B.5) makes use of individ-
ual exposures, for which we use the cosmic ray-cleansed COR
images before resampling, provided by MultiDrizzle during
the run with less aggressive cosmic ray masking. These are only
used for the analysis of high signal-to-noise stars, which can be
identified automatically in the half-light radius versus signal-to-
noise space2. Here we employ simplified field masks only ex-
cluding the outer regions of a tile with poor cosmic ray masking.

2.2. Photometric redshifts

2.2.1. Individual photometric redshifts for i
+ < 25 galaxies

We use the public COSMOS-30 photometric redshift catalogue
from Ilbert et al. (2009), which covers the full ACS mosaic and is
magnitude limited to i+ < 25 (Subaru SExtractor MAG_AUTO
magnitude). It is based on the 30 band photometric catalogue,
which includes imaging in 20 optical bands, as well as near-
infrared and deep IRAC data (Capak et al. 2009, in prepara-
tion). Ilbert et al. (2009) computed photometric redshifts us-
ing the Le Phare code (S. Arnouts & O. Ilbert; also Ilbert
et al. 2006), reaching an excellent accuracy of σ∆z/(1+z) = 0.012
for i+ < 24 and z < 1.25. The near-infrared (NIR) and infrared
coverage extends the capability for reliable photo-z estima-
tion to higher redshifts, where the Balmer break moves out of
the optical bands. Extended to z ∼ 2, Ilbert et al. (2009) find
an accuracy of σ∆z/(1+zs) = 0.06 at i+ ∼ 24. The comparison to
spectroscopic redshifts from the zCOSMOS-deep sample (Lilly
et al. 2007) with i+median = 23.8 indicates a 20% catastrophic out-
lier rate (defined as |zphot − zspec|/(1 + zspec) > 0.15) for galax-
ies at 1.5 < zspec < 3. In particular, for 7% of the high-redshift
(zspec > 1.5) galaxies a low-redshift photo-z (zphot < 0.5) was as-
signed. This degeneracy is expected for faint (i+ >∼ 24) high-
redshift galaxies, for which the Balmer break cannot be iden-
tified if they are undetected in the NIR data (limiting depth
J ∼ 23.7, K ∼ 23.7 at 5σ). Due to the employed magnitude prior
the contamination is expected to be mostly uni-directional from
high to low redshifts.

We tested this by comparing the COSMOS-30 catalogue
to photometric redshifts estimated by Hildebrandt et al. (2009)
in the overlapping CFHTLS-D2 field using only optical u∗griz
bands and the BPZ photometric redshift code (Benitez 2000).
Here we indeed find that 56% of the matched i+ < 25 galaxies
with COSMOS-30 photo-zs in the range 2 ≤ zC30 ≤ 4 are identi-
fied at zD2 ≤ 0.6 in the D2 catalogue, if only a weak cut to reject
galaxies with double-peaked D2 photo-z PDFs (ODDS > 0.7) is
applied3.

2 ∆rh = 0.25 pixel wide kernel; S/N > 20, defined as in Erben et al.
(2001); peak flux <25 000 e−.
3 A more stringent cut ODDS > 0.95 reduces this fraction to 14%. Yet,
it also reduces the absolute number of galaxies by a factor 4.7. Note
that, in contrast, 26% (22%) of the matched galaxies with a D2 photo-z
2 ≤ zD2 ≤ 4 are placed at zC30 ≤ 0.6 for ODDS > 0.7 (ODDS > 0.95).
These could be explained by Lyman-break galaxies, which are better
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If not accounted for, such a contamination of a low-photo-z
sample with high-redshift galaxies would be particularly severe
for weak lensing tomography, given the strong dependence of the
lensing signal on redshift. In Sect. 5 we will therefore split galax-
ies with assigned zphot < 0.6 into sub-samples with expected low
(i+ < 24) and high (i+ > 24) contamination, where we only in-
clude the former in the cosmological analysis. Matching our
shear catalogue to the fully masked COSMOS-30 photo-z cat-
alogue yields a total of 194 976 unique matches.

2.2.2. Estimating the redshift distribution for i+ > 25 galaxies

In order to include galaxies without individual photo-zs in our
analysis, we need to estimate their redshift distribution. Figure 1
shows the mean photometric COSMOS-30 redshift for galaxies
in our shear catalogue as a function of i814. In the whole magni-
tude range 23 < i814 < 25 the data are very well described by the
relation

〈z〉 = (0.276 ± 0.003)(i814 − 23) + 0.762 ± 0.003. (1)

For comparison we also plot points from the Hubble Deep Field-
North (HDF-N, Fernández-Soto et al. 1999) and Hubble Ultra
Deep Field (HUDF, Coe et al. 2006)4 for the extended mag-
nitude range 23 < i814 < 27, where both catalogues are redshift
complete. The HDF-N data agree very well with the COSMOS
fit over the whole extended range, on average to 2%. In con-
trast, the mean photometric redshifts in the HUDF are on av-
erage higher than (1) by 16% for 23 < i814 < 25 and 10% for
25 < i814 < 27. The difference between the HDF-N and HUDF
can be regarded as a rough estimate for the impact of sampling
variance in such small fields. The fact that the HUDF galaxies
systematically deviate from (1) not only for i814 > 25 but also
for i814 < 25 where COSMOS-30 photo-zs are available, indi-
cates that it is most likely affected by sampling variance con-
taining a relative galaxy over-density at higher redshift. Given
the excellent fit for the COSMOS galaxies and very good agree-
ment for the HDF-N data we are thus confident to use (1) for a
limited extrapolation to i814 < 26.7 for our shear galaxies. This
is also motivated by the fact that i814 < 25 and i814 > 25 galax-
ies are not completely independent, but partially probe the same
large-scale structure at different luminosities.

Due to the non-linear dependence of the shear signal on red-
shift it is not only necessary to estimate the correct mean redshift
of the galaxies, but also their actual redshift distribution. In weak
lensing studies the redshift distribution is often parametrized as
p(z) ∝ (z/z0)α exp

[

−(z/z0)β
]

(e.g. Brainerd et al. 1996), which
Schrabback et al. (2007) extended by fitting α, β in combina-
tion with a linear dependence of the median redshift on magni-
tude, leading to a magnitude-dependent z0. Yet, it was noted that
this fit was not fully capable to reproduce the shape of the red-
shift distribution of the fitted galaxies. Given the higher accuracy
needed for the analysis of the larger COSMOS Survey we use a
modified parametrization

p(z|i814) ∝

(

z

z0

)α ⎛
⎜

⎜

⎜

⎜

⎝

exp

⎡
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⎢
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−

(

z
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)β⎤
⎥

⎥

⎥
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−

(
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)γ]⎞
⎟

⎟

⎟

⎟

⎠

, (2)

constrained by the deeper u∗ observations in the CFHTLS-D2. In any
case we expect negligible influence on our results given our treatment
for faint zC30 ≤ 0.6 galaxies.
4 For the HUDF we interpolate i814 from the i775 and z850 magnitudes
provided in the Coe et al. (2006) catalogue.

Fig. 1. Relation between the mean photometric redshift and i814 magni-
tude for COSMOS, HUDF, and HDF-N, where the error-bars indicate
the error of the mean assuming Gaussian scatter and neglecting sam-
pling variance. The best fit (1) to the COSMOS data from i814 < 25 is
shown as the bold line, whereas the thin lines indicate the conservative
10% uncertainty considered for the extrapolation in the cosmological
analysis. The HDF-N data agree with the relation very well, whereas the
mean redshifts are higher in the HUDF both for i814 < 25 and i814 > 25,
demonstrating the influence of sampling variance in such small fields.

where z0 = z0(i814), and u = max[0, (i814 − 23)]. Using a max-
imum likelihood fit5 we determine best-fitting parameters
(α, β, c, d, γ) = (0.678, 5.606, 0.581, 1.851, 1.464) from the indi-
vidual magnitudes, photo-zs, and (symmetric) 68% photo-z er-
rors of all galaxies with 23 < i814 < 25. From Eqs. (1) and (2)
we then numerically compute the non-linear relation between z0
and i814, for which we provide the fitting formulae

z0 = 0.446(i814 − 23) + 1.235 for 22 < i814 ≤ 23 (3)

z0 =

j=7
∑

j=0

a j[(i814 − 23)/4] j for 23 < i814 < 27 (4)

with (a0, ..., a7) = (1.237, 1.691,−12.167, 43.591,−76.076,
72.567,−35.959, 7.289). The total redshift distribution of
the survey is then simply given by the mean distribution
φ(z) =

∑N
k=1 p(z|i814,k)/N.

We chose the functional form of (2) because its first addend
allows for a good description of the peak of the redshift distribu-
tion, while the second addend fits the magnitude-dependent tail
at higher redshifts; see Fig. 2 for a comparison of the data and
model in four magnitude bins. In Fig. 3 we compare the actual
redshift distribution for the combined HDF-N and HUDF data
to the one we predict from their magnitude distribution and the
fit to the COSMOS data, finding very good agreement also for
25 < i814 < 27. The only major deviation is given by a galaxy
over-density in the HUDF photo-z data near z ∼ 3.2, which is
also partially responsible for the higher mean redshift in Fig. 1
and which may be attributed to large-scale structure.

Our fitting scheme assumes that the COSMOS-30 photo-zs
provide unbiased estimates for the true galaxy redshifts.

5 We employ the CERN Program Library MINUIT (http://
wwwasdoc.web.cern.ch/wwwasdoc/minuit/).

Page 4 of 26

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913577&pdf_id=1
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/


T. Schrabback et al.: Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS

Fig. 2. Redshift histogram for galaxies in our shear catalogue with
COSMOS-30 photo-zs (dotted), split into four magnitude bins. The
solid curves show the fit according to (1) and (2), which is capable to
describe both the peak and high redshift tail.

Fig. 3. Combined redshift histogram for the HDF-N and HUDF photo-
zs, split into two magnitude bins. The solid curves show the prediction
according to (1), (2) and the galaxy magnitude distribution. The good
agreement for 25 < i814 < 27 galaxies confirms the applicability of the
model in this magnitude regime.

However, in Sect. 2.2 we suspected that i+ >∼ 24 galaxies with
assigned z < 0.6 might contain a significant contamination with
high-redshift galaxies. To assess the impact of this uncertainty,
we derive the fits for (1) and (2) using only galaxies with
23 < i+ < 24, reducing the estimated mean redshift of shear
galaxies without COSMOS-30 photo-z by 4%. As an alterna-
tive test, we assume that 20% of the z < 0.6 galaxies with
24 < i+ < 25 are truly at z = 2, increasing the estimated mean
redshift by 8%. Compared to the fit uncertainty in (1) (∼1%)
this constitutes the main source of error for our redshift extrap-
olation. In the cosmological parameter estimation (Sect. 6), we
constrain this uncertainty and marginalize over it using a nui-
sance parameter, which rescales the redshift distribution within
a conservatively chosen ±10% interval. Note that the +4% dif-
ference between the measured and predicted mean redshift of the

combined HDF-N and HUDF data in Fig. 3 actually suggests a
smaller uncertainty.

3. Weak lensing shape measurements

To measure an accurate lensing signal, we have to carefully cor-
rect for instrumental signatures. Even with the high-resolution
space-based data at hand, we have to accurately account for both
PSF blurring and ellipticity, which introduce spurious shape dis-
tortions. To do so, one requires both a good model for the PSF,
and a method which accurately employs it to measure unbi-
ased estimates for the (reduced) gravitational shear g from noisy
galaxy images.

For the latter, we use the KSB+ formalism (Kaiser et al.
1995; Luppino & Kaiser 1997; Hoekstra et al. 1998), see Erben
et al. (2001), Schrabback et al. (2007) and Appendix B.1 for
details on our implementation. As found with simulations of
ground-based weak lensing data, KSB+ can significantly un-
derestimate gravitational shear (Erben et al. 2001; Bacon et al.
2001; Heymans et al. 2006a; Massey et al. 2007a), where the
calibration bias m and possible PSF anisotropy residuals c,
defined via

gobs − gtrue = mgtrue + c, (5)

depend on the details of the implementation. Massey et al.
(2007a, STEP2) detected a shear measurement degradation for
faint objects for our pipeline, which is not surprising given the
fact that the KSB+ formalism does not account for noise. While
Schrabback et al. (2007) simply corrected for the resulting mean
calibration bias, the 3D weak lensing analysis performed here
requires unbiased shape measurements not only on average, but
also as function of redshift, and hence galaxy magnitude and size
(see e.g. Kitching et al. 2008, 2009; Semboloni et al. 2009). We
therefore empirically account for this degradation with a power-
law fit to the signal-to-noise dependence of the calibration bias

m = −0.078

(

S/N

2

)−0.38

, (6)

where S/N is computed with the galaxy size-dependent KSB
weight function (Erben et al. 2001), and corrected for noise
correlations as done in Hartlap et al. (2009). As S/N relates
to the significance of the galaxy shape measurement, it pro-
vides a more direct correction for noise-related bias than fits
as a function of magnitude or size. We have determined this
correction using the STEP2 simulations of ground-based weak
lensing data (Massey et al. 2007a). In order to test if it per-
forms reliably for the ACS data, we have analysed a set of simu-
lated ACS-like data (see Appendix B.2). In summary, we find
that the remaining calibration bias is m = +0.008 ± 0.002 on
average, and |m| < 0.02 over the entire magnitude range used,
which is negligible compared to the statistical uncertainty for
COSMOS. Likewise, PSF anisotropy residuals, which are char-
acterized in (5) by c, are found to be negligible in the simulation
(dispersion σc = 0.0006), assuming accurate PSF interpolation.

Weak lensing analyses usually create PSF models from the
observed images of stars, which have to be interpolated for the
position of each galaxy. Typically, a high galactic latitude ACS
field contains only ∼10−20 stars with sufficient S/N, which are
too few for the spatial polynomial interpolation commonly used
in ground-based weak lensing studies. In addition, a stable PSF
model cannot be used, given that substantial temporal PSF vari-
ations have been detected, mostly caused by focus changes re-
sulting from orbital temperature variations (telescope breathing),
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mid-term seasonal effects, and long-term shrinkage of the op-
tical telescope assembly (OTA) (e.g. Krist 2003; Lallo et al.
2006; Anderson & King 2006; Schrabback et al. 2007; Rhodes
et al. 2007). To circumvent this problem, we have implemented
a PSF correction scheme based on principal component analy-
sis (PCA), as first suggested by Jarvis & Jain (2004). We have
analysed 700 i814 exposures of dense stellar fields, interpolated
the PSF variation in each exposure with polynomials, and per-
formed a PCA analysis of the polynomial coefficient variation.
We find that ∼97% of the total PSF ellipticity variation in ran-
dom pointings can be described with a single parameter related
to the change in telescope focus, confirming earlier results (e.g.
Rhodes et al. 2007). However, we find that additional varia-
tions are still significant. In particular, we detect a dependence
on the relative angle between the pointing and the orbital tele-
scope movement6, suggesting that heating in the sunlight does
not only change the telescope focus, but also creates slight addi-
tional aberrations dependent on the relative sun angle. These de-
viations may be coherent between COSMOS tiles observed un-
der similar orbital conditions. To account for this effect, we split
the COSMOS data into 24 epochs of observations taken closely
in time, and determine a low-order, focus-dependent residual
model from all stars within one epoch. We provide further de-
tails on our PSF correction scheme in Appendix B.5.

As an additional observational challenge, the COSMOS data
suffer from defects in the ACS CCDs, which are caused by the
continuous cosmic ray bombardment in space. These defects act
as charge traps reducing the charge-transfer-efficiency (CTE), an
effect referred to as charge-transfer-inefficiency (CTI). When the
image of an object is transferred across such a defect during par-
allel read-out, a fraction of its charge is trapped and statistically
released, effectively creating charge-trails following objects in
the read-out y-direction (e.g. Rhodes et al. 2007; Chiaberge et al.
2009; Massey et al. 2010). For weak lensing measurements the
dominant effect of CTI is the introduction of a spurious ellip-
ticity component in the read-out direction. In contrast to PSF
effects, CTI affects objects non-linearly due to the limited depth
of charge traps. Thus, the two effects must be corrected sepa-
rately. As done by Rhodes et al. (2007), we employ an empir-
ical correction for galaxy shapes, but also take the dependence
on sky background into account. Making use of the CTI flux-
dependence, we additionally determine and apply a parametric
CTI model for stars, which is important as PSF and CTI-induced
ellipticity get mixed otherwise. We present details on our CTI
correction schemes for stars in Appendix B.4 and for galaxies
in Appendix B.6. Note that Massey et al. (2010) recently pre-
sented a method to correct for CTI directly on the image level.
We find that the methods employed here are sufficient for our sci-
ence analysis, as also confirmed by the tests presented in Sect. 4.
However, for weak lensing data with much stronger CTE degra-
dation, such as ACS data taken after Servicing Mission 4, their
pixel-based correction should be superior.

4. 2D shear-shear correlations and tests

for systematics

To measure the cosmological signal and conduct tests for sys-
tematics we compute the second-order shear-shear correlations

ξ±(θ) =

∑

i, j(γt,iγt, j ± γ×,iγ×, j)∆i j
∑

i, j ∆i j

(7)

6 Technically speaking, we show a dependence on the velocity aberra-
tion plate scale factor in Fig. B.6.

from galaxy pairs separated by ϑ = |ϑi − ϑ j|. Here, ∆i j = 1 if
the galaxy separation ϑ falls within the considered angular
bin around θ, and ∆i j = 0 otherwise. In (7) we approximate
our reduced shear estimates g = γ/(1 − κ) ≃ γ with the shear γ
as commonly done in cosmological weak lensing (typically
|κ| ∼ 1%−3%; correction employed in Sect. 6.4), decompose it
into the tangential component γt and the 45 degree rotated cross-
component γ× relatively to the separation vector, and employ
uniform weights.

As an important consistency check in weak gravitational
lensing, the signal can be decomposed into a curl-free compo-
nent (E-mode) and a curl component (B-mode). Given that lens-
ing creates only E-modes, the detection of a significant B-mode
indicates the presence of uncorrected residual systematics in the
data. Crittenden et al. (2002) show that ξ± can be decomposed
into E- and B-modes as

ξE/B(θ) =
ξ+(θ) ± ξ′(θ)

2
, (8)

with

ξ′(θ) = ξ−(θ) + 4
∫ ∞

θ

dϑ
ϑ
ξ−(ϑ) − 12θ2

∫ ∞

θ

dϑ
ϑ3
ξ−(ϑ). (9)

We plot this decomposition for our COSMOS catalogue in the
left panel of Fig. 4. Given that the integration in (9) extends
to infinity, we employ ΛCDM predictions for θ > 40′, leading
to a slight model-dependence, which is indicated by the dashed
curves corresponding to σ8 = (0.7, 0.9), whereas the points have
been computed for σ8 = 0.8. Within this section, error-bars and
covariances are estimated from 300 bootstrap resamples of our
galaxy shear catalogue, which accounts for both shot noise and
shape noise. As seen in Fig. 4, we detect no significant B-mode
ξB. However, note that different angular scales are highly corre-
lated for ξE/B, which mixes power on a broad range of scales and
potentially smears out the signatures of systematics.

An E/B-mode decomposition, for which the correlation be-
tween different scales is weaker, is provided by the dispersion of
the aperture mass (Schneider 1996)

〈M2
ap/⊥〉(θ) =

1
2

∫ 2θ

0

dϑϑ
θ2

[

ξ+(ϑ)T+

(

ϑ

θ

)

± ξ−(ϑ)T−

(

ϑ

θ

)]

, (10)

with T± given in Schneider et al. (2002), where we em-
ploy the aperture mass weight function proposed by Schneider
et al. (1998). The computation of (10) requires integration
from zero, which is not practical for real data. We there-
fore truncate ξ± for θ < 0.′05, where the introduced bias is
small compared to our statistical errors (Kilbinger et al. 2006).
Massey et al. (2007c) measure a significant B-mode compo-
nent 〈M2

⊥〉 at scales 1′ <∼ θ <∼ 3′, whereas this signal is neg-
ligible in the present analysis. We quantify the on average
slightly positive 〈M2

⊥〉 by fitting a mean offset taking the boot-
strap covariance into account (correlation between neighbour-

ing points ≃0.5), yielding an average 〈M2
⊥〉 = (1 ± 4) × 10−7 if

all points are considered, and 〈M2
⊥〉(θ < 6′) = (1.0 ± 1.4) × 10−6

or 〈M2
⊥〉(θ < 2′) = (4.0 ± 4.7) × 10−6 if only small scales are in-

cluded, consistent with no B-modes.
The cleanest E/B-mode decomposition is given by the ring

statistics (Schneider & Kilbinger 2007; Eifler et al. 2010; see
also Fu & Kilbinger 2010), which can be computed from the
correlation function using a finite interval with non-zero lower
integration limit

〈RR〉E/B(Ψ) =
1
2

∫ Ψ

ηΨ

dϑ
ϑ

[

ξ+(ϑ)Z+(ϑ, η) ± ξ−(ϑ)Z−(ϑ, η)
]

, (11)
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Fig. 4. Decomposition of the shear field into E- and B-modes using the shear correlation function ξE/B (left), aperture mass dispersion 〈M2
ap/⊥〉

(middle), and ring statistics 〈RR〉E/B (right). Error-bars have been computed from 300 bootstrap resamples of the shear catalogue, accounting for
shape and shot noise, but not for sampling variance. The solid curves indicate model predictions for σ8 = (0.7, 0.8). In all cases the B-mode is
consistent with zero, confirming the success of our correction for instrumental effects. For ξE/B the E/B-mode decomposition is model-dependent,
where we have assumed σ8 = 0.8 for the points, while the dashed curves have been computed for σ8 = (0.7, 0.9). The dotted curves indicate the
signal if the residual ellipticity correction discussed in Appendix B.6 is not applied, yielding nearly unchanged results. Note that the correlation
between points is strongest for ξE/B and weakest for 〈RR〉E/B .

with functions Z± given in Schneider & Kilbinger (2007). We
compute 〈RR〉E/B using a scale-dependent integration limit η as
outlined in Eifler et al. (2010). As can be seen from the right
panel of Fig. 4, also 〈RR〉B is consistent with no B-mode signal.

The non-detection of significant B-modes in our shear cat-
alogue is an important confirmation for our correction schemes
for instrumental effects and suggests that the measured signal is
truly of cosmological origin.

As a final test for shear-related systematics we compute the
correlation between corrected galaxy shear estimates γ and un-
corrected stellar ellipticities e∗

ξ
sys
tt/××

(θ) =
〈γt/×e∗

t/×
〉|〈γt/×e∗

t/×
〉|

〈e∗
t/×

e∗
t/×
〉

, (12)

which we normalize using the stellar auto-correlation as sug-
gested by Bacon et al. (2003). As detailed in Appendix B.6, we
employ a somewhat ad hoc residual correction for a very weak
remaining instrumental signal. We find that ξsys is indeed only
consistent with zero if this correction is applied (Fig. 5), yet
even without correction, ξsys is negligible compared to the ex-
pected cosmological signal. The negligible impact can also be
seen from the two-point statistics in Fig. 4, where the points are
computed including residual correction, while the dotted lines
indicate the measurement without it. We suspect that this resid-
ual instrumental signature could either be caused by the limited
capability of KSB+ to fully correct for a complex space-based
PSF, or a residual PSF modelling uncertainty due to the low
number of stars per ACS field. In any case we have verified that
this residual correction has a negligible impact on the cosmo-
logical parameter estimation in Sect. 6, changing our constraints
on σ8 at the 2% level, well within the statistical uncertainty.

5. Weak lensing tomography

In this section we present our analysis of the redshift dependence
of the lensing signal in COSMOS. We start with the definition
of redshift bins in Sect. 5.1, summarize the theoretical frame-
work in Sect. 5.2, describe our angular binning and treatment
of intrinsic galaxy alignments in Sect. 5.3, elaborate on the co-
variance estimation in Sect. 5.4, present the measured redshift

Fig. 5. Cross-correlation between galaxy shear estimates and uncor-
rected stellar ellipticities as defined in (12). The signal is consistent
with zero if the residual ellipticity correction discussed in Appendix B.6
is applied (circles). Even without this correction (triangles) it is at a
level negligible compared to the expected cosmological signal (dotted
curves), except for the largest scales, where the error-budget is anyway
dominated by sampling variance.

scaling in Sect. 5.5, and discuss indications for a contamina-
tion of faint zphot < 0.6 galaxies with high redshift galaxies in
Sect. 5.6.

5.1. Redshift binning

We split the galaxies with individual COSMOS-30 photo-zs into
five redshift bins, as summarized in Table 1 and illustrated in
Fig. 6. We chose the intermediate limits z = (0.6, 1.0, 1.3) such
that the Balmer/4000 Å break is approximately located at the
centre of one of the broadband r+i+z+ filters. This minimizes
the impact of possible artifical clustering in photo-z space and
hence scatter between redshift bins for galaxies too faint to be
detected in the Subaru medium bands. Given our chosen limits,
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Table 1. Definition of redshift bins, number of contributing galaxies,
and mean redshifts.

Bin zmin zmax N 〈z〉

1 0.0 0.6 i+ < 24 : 22 294a 0.37
i+ > 24 : 29 817

2 0.6 1.0 58 194 0.80
3 1.0 1.3 36 382 1.16
4 1.3 2.0 25 928 1.60
5 2.0 4.0 21 718 2.61
6 0.0 5.0 251 958 1.54 ± 0.15

Notes. (a) Here we also exclude 259 galaxies with i+ < 24, which have
a significant secondary peak in their redshift probability distribution at
zphot,2 > 0.6.

Fig. 6. Redshift distributions for our tomography analysis. The solid-
line histogram shows the individual COSMOS-30 redshifts used for
bins 1 to 5, while the difference between the dashed and solid his-
tograms indicates the 24 < i+ < 25 galaxies with zphot < 0.6, which are
excluded in our analysis due to potential contamination with high-
redshift galaxies. The long-dashed curve corresponds to the estimated
redshift distribution for i814 < 26.7 shear galaxies without individual
COSMOS-30 photo-z, which we use as bin 6.

most catastrophic redshift errors are faint bin 5 galaxies identi-
fied as bin 1 (Sect. 2.2.1). Thus, we do not include z < 0.6 galax-
ies with i+ > 24 in our analysis due to their potential contamina-
tion with high redshift galaxies, but study their lensing signal
separately in Sect. 5.6. We use all galaxies without individual
photo-z estimates with 22 < i814 < 26.77 as a broad bin 6, for
which we estimated the redshift distribution in Sect. 2.2.2.

5.2. Theoretical description

Extending the formalism from Sect. 4, we split the galaxy sam-
ple into redshift bins and cross-correlate shear estimates between
bins k and l

ξ̂kl
± (θ) =

∑

i, j

(

γk
t,i
γl

t, j
± γk
×,i
γl
×, j

)

∆i j

∑

i, j ∆i j

, (13)

7 Including galaxies with i+ < 25 which are located in masked regions
for the ground-based photo-z catalogue, but not for the space-based
lensing catalogue.

where the summation extends over all galaxies i in bin k, and
all galaxies j in bin l. These are estimates for the shear cross-
correlation functions ξkl

± , which are filtered versions of the con-
vergence cross-power spectra

ξkl
+/−(θ) =

1
2π

∫ ∞

0
dℓ ℓ J0/4(ℓθ)Pkl

κ (ℓ), (14)

where Jn denotes the nth-order Bessel function of the first kind
and ℓ is the modulus of the two-dimensional wave vector. These
can be calculated from line-of-sight integrals over the three-
dimensional (non-linear) power spectrum Pδ (see Sect. 6.2) as

Pkl
κ (ℓ) =

9H4
0Ω

2
m

4c4

∫ χh

0
dχ
gk(χ)gl(χ)

a2(χ)
Pδ

(

ℓ

fK(χ)
, χ

)

, (15)

with the Hubble parameter H0, matter densityΩm, scale factor a,
comoving radial distance χ, comoving distance to the horizon χh,
and comoving angular diameter distance fK(χ). The geometric
lens-efficiency factors

gk(χ) ≡
∫ χh

χ

dχ′ pk(χ′)
fK(χ′ − χ)

fK(χ′)
(16)

are weighted according to the redshift distributions pk of the two
considered redshift bins (see e.g. Kaiser 1992; Bartelmann &
Schneider 2001; Simon et al. 2004).

5.3. Angular binning and treatment of intrinsic galaxy
alignments

Our six redshift bins define a total of 21 combinations of red-
shift bin pairs (including auto-correlations). For each redshift bin
pair (k, l), we compute the shear cross-correlations ξkl

+ and ξkl
− in

six logarithmic angular bins between 0.′2 and 30′. We include
all of these angular and redshift bin combinations in the analy-
sis of the weak lensing redshift scaling presented in this section,
to keep it as general as possible. Yet, for the cosmological pa-
rameter estimation in Sect. 6, we carefully select the included
bins to minimize potential bias by intrinsic galaxy alignments
and uncertainties in theoretical model predictions.

In order to minimize potential contamination by intrinsic
alignments of physically associated galaxies, we exclude the
auto-correlations of the relatively narrow redshift bins 1 to 5.
These contain the highest fraction of galaxy pairs at similar red-
shift, and hence carry the strongest potential contamination.

An additional contamination may originate from alignments
between intrinsic galaxy shapes and their surrounding density
field causing the gravitational shear (e.g. Hirata & Seljak 2004;
Hirata et al. 2007). A complete removal of this effect requires
more advanced analysis schemes (e.g. Joachimi & Schneider
2008), which we postpone to a future study. Yet, following
the suggestion by Mandelbaum et al. (2006), we exclude lu-
minous red galaxies (LRGs) in the computation of the shear-
shear correlations used for the parameter estimation. This re-
duces potential contamination, given that LRGs were found to
carry the strongest alignment signal (Mandelbaum et al. 2006,
2009; Hirata et al. 2007). We select these galaxies from the Ilbert
et al. (2009) photo-z catalogue with cuts in the photometric type
modgal ≤ 8 (“ellipticals”) and absolute magnitude MV < −19,
excluding a total of 5751 galaxies8. We accordingly adapt the
redshift distribution for the parameter estimation.

8 In the cross-correlation between two redshift bins, it would be suf-
ficient to exclude LRGs in the lower redshift bin only. However, for
convenience we generally exclude them.
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In the cosmological parameter estimation, we additionally
exclude the smallest angular bin (θ < 0.′5), for which the the-
oretical model predictions have the largest uncertainty due to
required non-linear corrections (Sect. 6.2) and the influence of
baryons (e.g. Rudd et al. 2008).

While we do not exclude LRGs and the smallest angular
bin for the redshift scaling analysis presented in the current
section, we have verified that their exclusion leads to only very
small changes, which are well within the statistical errors and do
not affect our conclusions.

5.4. Covariance estimation

In order to interpret our measurement and constrain cosmolog-
ical parameters, we need to reliably estimate the data covari-
ance matrix and its inverse. Massey et al. (2007c) estimate a co-
variance for their analysis from the variation between the four
COSMOS quadrants. This approach yields too few indepen-
dent realizations and may substantially underestimate the true
errors (Hartlap et al. 2007). We also do not employ a covari-
ance for Gaussian statistics (e.g. Joachimi et al. 2008) due to
the neglected influence of non-Gaussian sampling variance. This
is particularly important for the small-scale signal probed with
COSMOS (Kilbinger & Schneider 2005; Semboloni et al. 2007).
Instead, we estimate the covariance matrix from 288 realizations
of COSMOS-like fields obtained from ray-tracing through the
Millennium Simulation (Springel et al. 2005), which combines a
large simulated volume yielding many quasi-independent lines-
of-sight with a relatively high spatial and mass resolution. The
latter is needed to fully utilize the small-scale signal measureable
in a deep space-based survey.

The details of the ray-tracing analysis are given in Hilbert
et al. (2009). In brief, we use tilted lines-of-sight through the
simulation to avoid repetition of structures along the backwards
lightcone, providing us with 32 quasi-independent 4 deg×4 deg
fields, which we further subdivide into nine COSMOS-like sub-
fields, yielding a total of 288 realizations. We randomly popu-
late the fields with galaxies, employing the same galaxy number
density, field masks, shape noise, and redshift distribution as in
the COSMOS data. We incorporate photometric redshift errors
for bins 1 to 5 by randomly misplacing galaxy redshifts assum-
ing a (symmetric) Gaussian scatter according to the 1σ errors in
the photo-z catalogue. In contrast, the redshift calibration uncer-
tainty for bin 6 is not a stochastic but a systematic error, which
we account for in the cosmological model fitting in Sect. 6.

The value of σ8 = 0.9 used for the Millennium Simulation
is slightly high compared to current estimates. This will lead to
an overestimation of the errors, hence our analysis can be con-
sidered slightly conservative. We have to neglect the cosmology
dependence of the covariance (Eifler et al. 2009) in the parame-
ter estimation, given that we have currently only one simulation
with high resolution and large volume at hand.

We need to invert the covariance matrix for the cosmologi-
cal parameter estimation in Sect. 6. While the covariance esti-
mate Ĉ∗ from the ray-tracing realizations is unbiased, a bias is
introduced by correlated noise in the matrix inversion. To obtain
an unbiased estimate for the inverse covariance C−1, we apply
the correction

Ĉ−1 = c Ĉ∗
−1 =

n − p − 2
n − 1

Ĉ∗
−1 for p < n − 2 (17)

discussed in Hartlap et al. (2007), where n = 288 is the number
of independent realizations and p is the dimension of the data

Fig. 7. Shear-shear cross-correlations ξk6
+ between bins 1 to 6 and bin 6,

where points are plotted at their effective θ, weighted within one bin ac-
cording to the θ-dependent number of contributing galaxy pairs. The
curves indicate ΛCDM predictions for our reference cosmology with
σ8 = 0.8. Corresponding points and curves have been equally offset
along the x-axis for clarity. The error-bars correspond to the square root
of the diagonal elements of the full ray-tracing covariance. Note that
the points are substantially correlated both between angular and red-
shift bins, leading to the smaller scatter than naively expected from the
error-bars.

vector. As discussed in Sect. 5.3, we exclude the smallest an-
gular bin and auto-correlations of redshift bins 1 to 5, yielding
p = 160 and a moderate correction factor c ≃ 0.4390. In con-
trast, for the full data vector including all bins and correlations
(p = 252), a very substantial correction factor c ≃ 0.1185 would
be required. Thus, our optimized data vector also leads to a more
robust covariance inversion.

In order to limit the required correction for the covariance
inversion, we do not include more angular bins in our analy-
sis. We have therefore optimized the bin limits using Gaussian
covariances (Joachimi et al. 2008) and a Fisher-matrix analysis
aiming at maximal sensitivity to cosmological parameters.

5.5. Redshift scaling of shear-shear cross-correlations

We plot the shear-shear cross-correlations ξk6
+ between all red-

shift bins and the broad bin 6 in Fig. 7. These cross-correlations
carry the lowest shot noise and shape noise due to the large
number of galaxies in bin 6. The good agreement between the
data and ΛCDM model already indicates that the weak lens-
ing signal roughly scales with redshift as expected. The errors
correspond to the square root of the diagonal elements of the
full ray-tracing covariance. Points are correlated not only within
a redshift bin pair, but also between different redshift combi-
nations, as their lensing signal is partially caused by the same
foreground structures. In addition, galaxies in bin 6 contribute to
different cross-correlations. Note that our relatively broad angu-
lar bins lead to a significant variation of the theoretical models
within a bin. When computing an average model prediction for
a bin, we therefore weight according to the θ-dependent number
of galaxy pairs within this bin. Likewise, we plot points at their
effective θ, which has been weighted accordingly.
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Fig. 8. Shear-shear redshift scaling for ξ+ (left) and ξ− (right). Each point corresponds to one redshift bin combination, where we have combined
different angular scales by fitting the signal amplitude ξkl,rel

± relative to the model prediction ξkl,mod
± (θ) for our reference ΛCDM cosmology with

σ8 = 0.8. The lower plots show the relative amplitude as a function of the model prediction ξkl,mod
± (0.′8) for a reference angular bin centred at

θ = 0.′8, whereas the amplitude has been scaled with ξkl,mod
± (0.′8) for the upper plots. Symbols of one kind correspond to cross-correlations of one

bin with all higher-numbered bins. Within one symbol the partner redshift bins sort according to the mean lensing efficiency, from left to right as 1,
2, 3, 6, 4, 5. Note that points are correlated as each redshift bin is used for six bin combinations, and given that foreground structures contribute to
the signal of all bin combinations at higher redshift. The error-bars are computed from the full ray-tracing covariance, accounting for this influence
of large-scale structure.

Instead of plotting 21 separation-dependent, noisy cross-
correlations, we condense the information into a single plot
showing the redshift dependence of the signal. Here we assume
that the predictions for our reference cosmology describe the rel-
ative angular dependence of the signal sufficiently well, and fit
the data points as

ξ
kl,fit
± (θ) = ξkl,rel

± ξ
kl,mod
± (θ), (18)

where ξkl,mod
± (θ) is the model for the reference cosmology with

σ8 = 0.8, and ξkl,rel
± is the fitted relative amplitude. In this fit,

we take the full ray-tracing covariance between the angular
scales into account. We plot the resulting 21 “collapsed” cross-
correlations for both ξ+ and ξ− in Fig. 8, as a function of their
model prediction at a reference angular scale of 0.′8, where
points are again correlated. For both cases the redshift scaling
of the signal is fully consistent with ΛCDM expectations, show-
ing a strong increase with redshift. This demonstrates that 3D
weak lensing does indeed perform as expected. We note that
for ξ− the signal is somewhat low for lower redshift combi-
nations (smaller ξkl,mod

± ), whereas it is slightly increased com-
pared to predictions at higher redshifts. This behaviour is not
surprising as most massive structures in COSMOS are located
at 0.7 <∼ z <∼ 0.9 (Scoville et al. 2007b), which create a lensing
signal only for the higher redshift source bins. Slight differences
between ξ+ and ξ− are also expected, given that they probe the
power spectrum with different filter functions, see Eq. (14).

5.6. Contamination of the excluded faint z < 0.6 sample
with high-z galaxies

As discussed in Sect. 2.2, we expect a significant fraction of faint
i+ >∼ 24 galaxies with assigned photometric redshift zphot < 0.6

to be truly located at high redshifts ztrue >∼ 2. To test this hypoth-
esis, we plot the collapsed shear cross-correlations for differ-
ent samples of galaxies with assigned zphot < 0.6 in Fig. 9. For
the i+ < 24 galaxies used in the cosmological analysis the sig-
nal is well consistent with expectations, suggesting negligible
contamination. For a 24 < i+ < 25 sample with single-peaked
photo-z probability distribution a mild increase is detected. This
is still consistent with expectations, suggesting at most low con-
tamination. We also study a sample of galaxies each of which
has a significant secondary peak in their photometric redshift
probability distribution at zphot,2 > 0.6, amounting to 36% of
all 24 < i+ < 25 galaxies with zphot < 0.6. This sample shows a
strong boost in the lensing signal, suggesting strong contamina-
tion with high-redshift galaxies.

We can obtain a rough estimate for this contamination if we
assume that the shear signal does actually scale as in our ref-
erence ΛCDM cosmology. For simplicity we assume that the
cross-contamination can be described as a uni-directional scatter
from bin 5 to bin 1, and that the true redshifts of the misplaced
galaxies follow the distribution within bin 5. The expected con-
taminated signal is then given as a linear superposition of the
cross-correlation predictions with bin 1 and bin 5 respectively,
according to the relative number of contributing galaxy pairs

ξ
11,cont
+ = (1 − r)2ξ

11,mod
+ + r2ξ

55,mod
+ + 2r(1 − r)ξ15,mod

+ (19)

ξ
1l,cont
+ = (1 − r)ξ1l,mod

+ + rξ
l5,mod
+ , for l > 1,

where r is the contamination fraction, i.e. the fraction of the
bin 1 galaxies with 24 < i+ < 25 and a significant secondary
peak in their photo-z PDF, which should have been placed
into bin 5. We fit the measured shear-shear cross-correlations
ξ1l
+ with (19) as a function of r, where we fix the reference
ΛCDM cosmology and employ a special ray-tracing covariance
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Fig. 9. Shear-shear redshift scaling for ξ1l
+ as in Fig. 8, but now only

cross-correlations with bin 1 (z < 0.6) are shown, hence the different
axis scale. The signal from the i+ < 24 galaxies used in our cosmolog-
ical analysis (crosses), is well consistent with the ΛCDM prediction
(curve). Galaxies with 24 < i+ < 25 and a single-peaked photo-z prob-
ability distribution (circles) show a mildly increased but still consistent
signal. In contrast, 24 < i+ < 25 galaxies with a significant secondary
peak at zphot,2 > 0.6 in their individual photo-z probability distribution,
show a strong signal excess (squares), suggesting strong contamination
with high-redshift galaxies.

(generated for r = 0.5), yielding an estimate for the contamina-
tion r = 0.7 ± 0.2 (stat.) ± 0.1 (sys.), where the systematic error
indicates the response to a change in σ8 by 0.1. This translates to
a total contamination of (25±7±4)% for the 24 < i+ < 25 galax-
ies with zphot < 0.6, which is consistent with our estimate for the
redshift calibration uncertainty for bin 6 (Sect. 2.2.2). Note that
we also measure an increased signal in ξ1l

− for the sample with
secondary photometric redshift peak, but do not include it in the
fit (19) due to the stronger deviations for ξkl,rel

− in Fig. 8. An ad-
equate inclusion would then require a more complex analysis
scheme, with a comparison not to the model predictions, but to
all measured cross-correlations.

Our analysis provides an interesting confirmation for the
photometric redshift analysis by Ilbert et al. (2009), which appar-
ently succeeds in identifying sub-samples of (mostly) uncontam-
inated and potentially contaminated galaxies quite efficiently.

6. Constraints on cosmological parameters

6.1. Parameter estimation and considered cosmological
models

The statistical analysis of the shear tomography correlation
functions, assembled as data vector d, is based on a standard
Bayesian approach (e.g. MacKay 2003). Therein, prior knowl-
edge of model parameters p is combined with the information
on those parameters inferred from the new observation and ex-
pressed as posterior probability distribution function (PDF) of p:

P(p|d) =
P(d|p)P(p)

P(d)
· (20)

Here, P(p) is the prior based on theoretical constraints and pre-
vious observations, and P(d) denotes the evidence. The likeli-
hood function P(d|p) is the statistical model of the measurement
noise, for which we choose a Gaussian model

ln P(d|p) = −
1
2

[

d − m(p)
]t

C−1 [

d − m(p)
]

+ const, (21)

where m(p) is the parameter-dependent model, and C−1 the in-
verse covariance, which we estimated from the ray-tracing real-
izations in Sect. 5.4.

In our analysis we consider different cosmologi-
cal models, which are characterized by the parameters
p = (ΩDE,Ωm, σ8, h, w, fz), with the dark energy density ΩDE,
matter density Ωm, power spectrum normalization σ8, Hubble
parameter h, and (constant) dark energy equation of state
parameter w. Here, fz denotes a nuisance parameter encap-
sulating the uncertainty in the redshift calibration for bin 6
as p6(z, fz) ≡ p6( fzz), which was discussed in Sect. 2.2.2. We
consider

– a flatΛCDM cosmology with fixedw = −1,Ωm ∈ [0, 1], and
ΩDE = ΩΛ = 1 −Ωm,

– a general (non-flat) ΛCDM cosmology with fixed w = −1
and ΩDE = ΩΛ ∈ [0, 2], Ωm ∈ [0, 1.6], and

– a flat wCDM cosmology with w ∈ [−2, 0], Ωm ∈ [0, 1], and
ΩDE = 1 −Ωm.

In all cases, we employ priors with flat PDFs for σ8 ∈ [0.2, 1.5]
and fz ∈ [0.9, 1.1].

In our default analysis scheme we also apply a Gaussian
prior for h = 0.72 ± 0.025, and assume a fixed baryon den-
sity Ωb = 0.044 and spectral index ns = 0.96 as consistent with
Dunkley et al. (2009), where the small uncertainties onΩb and ns
are negligible for our analysis. Note that we relax these priors for
parts of the analysis in Sects. 6.3.2 and 6.4.

The practical challenge of the parameter estimation is to
evaluate the posterior within a reasonable time, as the compu-
tation of one model vector for shear tomography correlations
is time-intensive. For an efficient sampling of the parameter
space, we employ the Population Monte Carlo (PMC) method
as described in Wraith et al. (2009). This algorithm is an adap-
tive importance-sampling technique (Cappé et al. 2008): in-
stead of creating a sample under the posterior as done in tra-
ditional Monte-Carlo Markov chain (MCMC) techniques (e.g.
Christensen et al. 2001), points are sampled from a simple dis-
tribution, the so-called proposal, in our case a mixture of eight
Gaussians. Each point is then weighted by the ratio of the pro-
posal to the posterior at that point. In a number of iterative steps,
the proposal function is adapted to give better and better ap-
proximations to the posterior. We run the PMC algorithm for
up to eight iterations, using 5000 sample points in each itera-
tion. To reduce the Monte-Carlo variance, we use larger samples
with 10 000 to 20 000 points for the final iteration. These are
used to create density histograms, mean parameter values, and
confidence regions. Depending on the experiment, the effective
sample size of the final importance sample was between 7500
and 17 700. We also cross-checked parts of the analysis with
an independently developed code which is based on the tradi-
tional but less efficient MCMC approach, finding fully consistent
results.

6.2. Non-linear power spectrum corrections

To calculate model predictions for the correlation functions ac-
cording to (14), (15), and (16), we need to evaluate the involved
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Fig. 10. Comparison of the fit formulae for the non-linear growth of
structure in wCDM cosmologies. Shown is the three-dimensional mat-
ter power spectrum, normalized by the corresponding ΛCDM power
spectrum, as a function of the wave vector k. In the upper panel we con-
sider a wCDM cosmology with w = −0.5, in the lower panel one with
w = −1.5. Solid curves show the fit to the simulations by McDonald
et al. (2006), while the dashed lines have been obtained by interpolating
the Smith et al. (2003) fitting formulae between the cases of an OCDM
and a ΛCDM cosmology as outlined in Sect. 6.2. Each fit formula has
been computed at redshifts z = 0 (black), z = 0.5 (blue), and z = 1 (or-
ange). While deviations are substantial at z = 0, the lensing analysis of
the deep COSMOS data is mostly sensitive to structures at z>∼0.4, where
deviations are reasonably small. Note that the remaining cosmological
parameters have been set to their default WMAP5-like values, except
for σ8 = 0.9.

distance ratios and compute the non-linear power spectrum
Pδ(k, z). Given a set of parameter values, the computation of
the distances and the linearly extrapolated power spectrum is
straightforward. We employ the transfer function by Eisenstein
& Hu (1998) for the latter, taking baryon damping but no oscil-
lations into account (“shape fit”).

For ΛCDM models we estimate the full non-linear power
spectrum according to Smith et al. (2003). McDonald et al.
(2006) also provide non-linear power spectrum corrections
for w � −1, but these were tested for a narrow range in
σ8 = 0.897 ± 0.097 only. We want to keep our analysis as gen-
eral as possible, not having to assume such a strong prior on
σ8. Following the icosmo code (Refregier et al. 2008) we in-
stead interpolate the non-linear corrections from Smith et al.
(2003) between the cases of a ΛCDM cosmology (w = −1) and
an OCDM cosmology, acting as a dark energy with w = −1/3.
This is achieved by replacing the parameter f = ΩΛ/(1 −Ωm)
in the halo model fitting function (Smith et al. 2003). This pa-
rameter is used to interpolate between spatially flat models with
dark energy ( f = 1) and an open Universe without dark energy
( f = 0). We substitute f by a new parameter f ′ ≡ −0.5(3w + 1).
Thus, we obtain f ′ = 1 for ΛCDM and f ′ = 0 for wCDM
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Fig. 11. Comparison of our constraints on Ωm and σ8 for a flat ΛCDM
cosmology using a 3D (blue solid contours) versus a 2D weak lens-
ing analysis (green dashed contours). The contours show the 68.3% and
95.4% credibility regions, where we have marginalized over the param-
eters which are not shown. The 2D analysis favours slightly lower σ8

resulting from the lack of massive structures in the field at low redshifts.
Nonetheless, the constraints are fully consistent as our ray-tracing co-
variance properly accounts for sampling variance.

with w = −1/3, mimicking an OCDM cosmology for which the
original parameter f vanished as well.

To test this simplistic approximation, we compare the com-
puted corrections for w = (−0.5,−1.5) to the fitting formulae
from McDonald et al. (2006) in Fig. 10. Note that we use our
fiducial cosmological parameters to obtain these curves, except
forσ8 = 0.9, to matchσ8 = 0.897 ± 0.097 from McDonald et al.
(2006). For most of the scales probed by our measurement the
two descriptions agree reasonably well. The modification of the
halo fit follows the fits to the simulations more accurately on
large scales and at higher redshift, while it does not reproduce
the tendency of the fits by McDonald et al. (2006) to drop off for
large wave vectors. The precision of the modification outlined
above is sufficient for our aim to provide a proof of concept for
weak lensing dark energy measurements. However, future mea-
surements with larger data sets will require accurate fitting for-
mulae for general w cosmologies.

6.3. Cosmological constraints from COSMOS

6.3.1. Flat ΛCDM cosmology

We plot our constraints on Ωm and σ8 for a flat ΛCDM cos-
mology and our default 3D lensing analysis scheme in Fig. 11
(solid contours), showing the typical “banana-shaped” degener-
acy, from which we compute9

σ8 (Ωm/0.3)0.51 = 0.79 ± 0.09 (68.3% conf.).

Here we marginalize over the uncertainties in h and the pa-
rameter fz encapsulating the uncertainty in the redshift cali-
bration for bin 6, where we find that fz is nearly uncorrelated

9 Here, we fit a power-law with slope α minimizing the separation to
all posterior-weighted points in the Ωm − σ8 plane, and compute the 1D
marginalized mean of σ8 (Ωm/0.3)α within Ωm ∈ [0.275, 0.325].
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Table 2. Constraints on σ8 (Ωm/0.3)α, Ωm, ΩDE, and w from the COSMOS data for different cosmological models and analysis schemes.

Cosmology Analysis α σ8 (Ωm/0.3)α Ωm ΩDE w

Flat ΛCDM 3D 0.51 0.79 ± 0.09 0.32+0.34
−0.11 0.68+0.11

−0.34 −1
Flat ΛCDM 2D 0.62 0.68 ± 0.11 0.30+0.44

−0.15 0.70+0.15
−0.44 −1

General ΛCDM 3D 0.77 0.74 ± 0.12 0.43+0.40
−0.19 0.97+0.39

−0.60 −1
Flat wCDM 3D 0.47 0.79 ± 0.09 0.30+0.39

−0.11 0.70+0.11
−0.39 −1.23+0.79

−0.50

Notes. Here we use our default priors and quote the marginalized mean and 68.3% confidence limits (16th and 84th percentiles) assuming non-
linear power spectrum corrections according to Smith et al. (2003) and the description given in Sect. 6.2. Our analysis of the Millennium Simulation
(Sect. 6.4) suggests that the σ8-estimates should be reduced by a factor ×0.95 due to biased model predictions for the non-linear power spectrum
and reduced shear corrections. The power-law slopes α have typical fit uncertainties of σα ≃ 0.02.

with Ωm, and only weakly correlated with σ8. The data allow
us to weakly constrain fz = 1.03+0.06

−0.04, with a maximum posterior
point at fz = 1.05. This constraint is nearly unchanged for the
other cosmological models considered below.

For comparison we also conduct a classic 2D lensing
analysis (dashed contours in Fig. 11), where we use only the
total redshift distribution and do not split galaxies into red-
shift bins. We find that the 2D and 3D analyses yield consis-
tent results with substantially overlapping 1σ regions, as ex-
pected. Yet, the constraints from the 2D analysis shift towards
lower σ8 (Ωm/0.3)0.62 = 0.68 ± 0.11. The difference is not sur-
prising given that the strongest contribution to the lensing sig-
nal in COSMOS comes from massive structures near z ∼ 0.7
(Scoville et al. 2007b; Massey et al. 2007b), boosting the signal
for high redshift sources, but leading to a lower signal for galax-
ies at low and intermediate redshifts (see right panel of Fig. 8).
The 3D lensing analysis can properly combine these measure-
ments, also accounting for the stronger impact of sampling vari-
ance at low redshifts. In contrast, the 2D lensing analysis leads
to a rather low (but still consistent) estimate for σ8, due to the
large number of low and intermediate redshift galaxies with low
shear signal.

The tomographic analysis also reduces the degeneracy be-
tween Ωm and σ8 by probing the redshift-dependent growth of
structure and distance-redshift relation, which differ substan-
tially for a concordanceΛCDM cosmology and e.g. an Einstein-
de Sitter cosmology (Ωm = 1). We summarize our parameter
estimates in Table 2, also for the other cosmological models con-
sidered in the following subsections.

We also test our selection criteria for the optimized data vec-
tor (Sect. 5.3) by analysing several deviations from it for a flat
ΛCDM cosmology. We find negligible influence if the small-
est angular scales θ < 0.′5 or LRGs are included, suggesting
that the measurement is robust regarding the influence of small-
scale modelling uncertainties and intrinsic alignments between
galaxy shapes and their surrounding density field. Performing
the analysis using only the usually excluded auto-correlations of
the relatively narrow redshift bins 1 to 5, we measure a slightly
lower σ8 (Ωm/0.3)0.52 = 0.70 ± 0.13, which is still consistent
given the substantially degraded statistical accuracy. If intrin-
sic alignments between physically associated galaxies contami-
nate the lensing measurement, we expect these auto-correlations
to be most strongly affected. However, models predict an ex-
cess signal (e.g. Heymans et al. 2006b), whereas we measure
a slight decrease within the statistical errors. Thus, we detect
no significant indication for contamination by intrinsic galaxy
alignments.

6.3.2. General (non-flat) ΛCDM cosmology

We plot our constraints for a generalΛCDM cosmology without
the assumption of flatness in Fig. 12. From the lensing data we
find

ΩΛ > 0.32 (90% conf.),

where our prior excludes negative densities ΩΛ < 0. Based on
our Ωm −ΩΛ constraints, we compute the posterior PDF for the
deceleration parameter

q0 = −äa/ȧ2 = Ωm/2 −ΩΛ (22)

as shown in Fig. 13, which yields

q0 < 0 (96.0% conf.).

Relaxing our priors to h = 0.72 ± 0.08 (HST Key Project,
Freedman et al. 2001),Ωbh2 = 0.021 ± 0.001 (Big-Bang nucleo-
synthesis, Iocco et al. 2009), and ns ∈ [0.7, 1.2], weakens this
constraint only slightly to

q0 < 0 (94.3% conf., weak priors).

Employing the recent distance ladder estimate
h = 0.742 ± 0.036 (Riess et al. 2009) instead of the HST
Key Project constraint, we obtain q0 < 0 at 94.8% confidence.

Our analysis provides evidence of the accelerated expansion
of the Universe (q0 < 0) from weak gravitational lensing. While
the statistical accuracy is still relatively weak due to the limited
size of the COSMOS field, this evidence is independent of ex-
ternal constraints on Ωm and ΩΛ.

We note that the lensing data alone cannot formally exclude
a non-flat OCDM cosmology. However, the cosmological pa-
rameters inferred for such a model would be inconsistent with
various other cosmological probes10. We therefore perform our
analysis in the context of the well-established ΛCDM model,
where the lensing data provide additional evidence for cosmic
acceleration.

10 For a lensing-only OCDM analysis the posterior peaks at
Ωm ≃ 0.1, σ8 ≃ 1.4 (close to the prior boundaries). In the comparison
with a ΛCDM analysis, the additional parameter ΩΛ causes a penalty
in the Bayesian model comparison (computed as in Kilbinger et al.
2009b). This leads to an only slightly larger evidence for the non-flat
ΛCDM model compared to the OCDM model, with an inconclusive ev-
idence ratio of 65:35. The evidence ratio becomes a “weak preference”
(77:23) if we employ a (still conservative) prior σ8 < 1. Thus, with this
prior the ΛCDM model makes the data more than 3 times more proba-
ble than the OCDM model.
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Fig. 12. Constraints on Ωm, ΩΛ, and σ8 from our 3D weak lensing analysis of COSMOS for a general (non-flat) ΛCDM cosmology using our
default priors. The contours indicate the 68.3% and 95.4% credibility regions, where we have marginalized over the parameters which are not
shown. The non-linear blue-scale indicates the highest density region of the posterior.

6.3.3. Flat wCDM cosmology

For a flat wCDM cosmology we plot our constraints on the (con-
stant) dark energy equation of state parameterw in Fig. 14, show-
ing that the measurement is consistent with ΛCDM (w = −1).
From the posterior PDF we compute

w < −0.41 (90% conf.)

for the chosen prior w ∈ [−2, 0]. The exact value of this upper
limit depends on the lower bound of the prior PDF given the non-
closed credibility regions. We have chosen this prior as more
negative w would require a worrisome extrapolation for the non-
linear power spectrum corrections (Sect. 6.2). For comparison,
we repeat the analysis with a much wider prior w ∈ [−3.5, 0.5]
leading to a stronger upper limit w < −0.78 (90% conf.). While
the COSMOS data are capable to exclude very high values
w ≫ −1, larger lensing data sets will be required to obtain re-
ally competitive constraints on w.

To test the consistency of the data with ΛCDM, we compare
the Bayesian evidence of the flat ΛCDM and wCDM models,
which we compute in the PMC analysis as detailed in Kilbinger
et al. (2009b). Here we find completely inconclusive probabil-
ity ratios for wCDM versus ΛCDM of 52 : 48 (w ∈ [−2, 0]) and
45 : 55 (w ∈ [−3.5, 0.5]), confirming that the data are fully con-
sistent with ΛCDM.

6.4. Model recalibration with the millennium simulation
and joint constraints with WMAP-5

Heitmann et al. (2010) and Hilbert et al. (2009) found that
the Smith et al. (2003) fitting functions slightly underestimate
non-linear corrections to the power spectrum. To test whether
this has a significant influence on our results, we performed
a 3D cosmological parameter estimation using the mean data
vector of the 288 COSMOS-like ray-tracing realizations from
the Millennium Simulation. Here we modify the strong priors
given in Sect. 6.1 to match the input values of the simulation
(Ωm = 0.25, σ8 = 0.9, ns = 1, h = 0.73, Ωb = 0.045), and find
σ8 = 0.947 ± 0.00611 for Ωm = 0.25. This confirms the result

11 Here we have scaled the uncertainty for the mean ray-tracing data
vector from the uncertainty for a single COSMOS-like field assuming
that all realizations are completely independent. This is slightly opti-
mistic given the large but finite volume of the simulation, and fact that
the realizations were cut from larger fields.
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Fig. 13. Posterior PDF for the deceleration parameter q0 as computed
from our constraints on Ωm and ΩΛ for a general (non-flat) ΛCDM cos-
mology, using our default priors (solid curve), and using weaker pri-
ors from the HST Key Project and Big-Bang nucleosynthesis (dashed
curve). The line at q0 = 0 separates accelerating (q0 < 0) and deceler-
ating (q0 > 0) cosmologies. We find q0 < 0 at 96.0% confidence using
our default priors, or 94.3% confidence for the weaker priors.

0.2 0.4 0.6 0.8 1.0
−2.0

−1.5

−1.0

−0.5

0.0

Ωm

w

Fig. 14. Constraints on Ωm and w from our 3D weak lensing anal-
ysis of COSMOS for a flat wCDM cosmology, assuming a prior
w ∈ [−2, 0]. The contours indicate the 68.3% and 95.4% credibility re-
gions, where we have marginalized over the parameters which are not
shown. The non-linear blue-scale indicates the highest density region of
the posterior.
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of Heitmann et al. (2010) and Hilbert et al. (2009), indicating
that models based on Smith et al. (2003) slightly underestimate
the shear signal, hence a higher σ8 is required to fit the data.
Here we use actual reduced shear estimates from the simula-
tion, but employ shear predictions, as done for the real data
(see Sect. 4). Using shear estimates from the simulation yields
σ8 = 0.936 ± 0.006. Thus, a minor contribution to the overesti-
mation of σ8 is caused by the negligence of reduced shear cor-
rections (see also Dodelson et al. 2006; Shapiro 2009; Krause &
Hirata 2009).

To compensate for this underestimation of the model pre-
dictions and reduced shear effects, we scale our derived con-
straints on σ8 for a flat ΛCDM cosmology by a factor
0.9/0.947 ≃ 0.95012, yielding

σ8 (Ωm/0.3)0.51 = 0.75 ± 0.08 (68.3% conf., MS-calib.).

Note that we did not apply this correction for the values given in
the previous section and listed in Table 2, as we can only test it
for the case of a flat ΛCDM cosmology. Additionally, we want
to keep the results comparable to previous weak lensing studies,
which we expect to be similarly affected.

Having eliminated this last source of systematic uncertainty,
we now estimate joint constraints with WMAP-5 CMB-only
data (Dunkley et al. 2009), conducted similarly to the analy-
sis by Kilbinger et al. (2009a). Here we assume a flat ΛCDM
cosmology, completely relax our priors to Ωb ∈ [0.01, 0.1],
ns ∈ [0.7, 1.2], h ∈ [0.2, 1.4], and scale σ8 for the lensing model
calculation according to the Millennium Simulation results.
Here we also marginalize over an additional 2% uncertainty in
the lensing σ8 calibration to account for the dropped remaining
mean shear calibration bias (0.8%, Sect. 3) and limited accuracy
of the employed residual shear correction (Sect. 4), which we
estimate to be 1% in σ8. From the joint analysis with WMAP-5
we find

Ωm = 0.266+0.025+0.057
−0.023−0.042

σ8 = 0.802+0.028+0.055
−0.029−0.060 (68.3%/95.4% conf., MS-calib.),

which reduces the size of WMAP-only 1σ (2σ) error-bars on
average by 21% (27%). We plot the joint and individual con-
straints in Fig. 15, illustrating the perfect agreement of the two
independent cosmological probes.

7. Summary, discussion, and conclusions

We have measured weak lensing galaxy shear estimates from the
HST/COSMOS data by applying a new model for the spatially
and temporally varying ACS PSF, which is based on a principal
component analysis of PSF variations in dense stellar fields. We
find that most of the PSF changes can be described with a single
parameter related to the HST focus position. Yet, we also correct
for additional PSF variations, which are coherent for neighbour-
ing COSMOS tiles taken closely in time. We employ updated
parametric corrections for charge-transfer inefficiency, for both
galaxies and stars, removing earlier modelling uncertainties due
to confused PSF- and CTI-induced stellar ellipticity. Finally, we
employ a simple correction for signal-to-noise dependent shear
calibration bias, which we derive from the STEP2 simulations of

12 We expect that this correction factor depends on cosmological pa-
rameters. Yet, considering the weak lensing degeneracy for Ωm and σ8,
the input values of the Millennium Simulation are quasi equivalent to
σ8 ≃ 0.82 for Ωm = 0.3, which is sufficiently close to our constraints to
justify the application.
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Fig. 15. Comparison of the constraints on Ωm and σ8 for a flat ΛCDM
cosmology obtained with our COSMOS analysis (dashed), WMAP-5
CMB data (dotted), and joint constraints (solid). The contours indi-
cate the 68.3%, 95.4%, and 99.7% credibility regions. Note that the
weak lensing alone analysis uses stronger priors. The weak lensing con-
straints on σ8 have been rescaled to account for modelling bias of the
non-linear power spectrum and reduced shear corrections according to
the ray-tracing constraints from the Millennium Simulation.

ground-based weak lensing data. Tests on simulated space-based
data confirm a relative shear calibration uncertainty |m| ≤ 2%
over the entire used magnitude range if this correction is applied.
We decompose the measured shear signal into curl-free E-modes
and curl-component B-modes. As expected from pure lensing,
the B-mode signal is consistent with zero for all second-order
shear statistics, providing an important confirmation for the suc-
cess of our correction schemes for instrumental systematics.

We combine our shear catalogue with excellent ground-
based photometric redshifts from Ilbert et al. (2009) and care-
fully estimate the redshift distribution for faint ACS galaxies
without individual photo-zs. This allows us to study weak lens-
ing cross-correlations in detail between six redshift bins, demon-
strating that the signal indeed scales as expected from general
relativity for a concordanceΛCDM cosmology.

We employ a robust covariance matrix from 288 simu-
lated COSMOS-like fields obtained from ray-tracing through
the Millennium Simulation (Hilbert et al. 2009). Using our
3D weak lensing analysis of COSMOS, we derive con-
straints σ8(Ωm/0.3)0.51 = 0.79 ± 0.09 for a flat ΛCDM cos-
mology, using non-linear power spectrum corrections from
Smith et al. (2003). A recalibration of these predictions
based on the ray-tracing analysis changes our constraints to
σ8 (Ωm/0.3)0.51 = 0.75 ± 0.08 (all 68.3% conf.). Our results are
perfectly consistent with WMAP-5, yielding joint constraints
Ωm = 0.266+0.025+0.057

−0.023−0.042, σ8 = 0.802+0.028+0.055
−0.029−0.060 (68.3% and 95.4%

confidence). They also agree with weak lensing results from the
CFHTLS-Wide (Fu et al. 2008) and recent galaxy cluster con-
straints from Mantz et al. (2009) within 1σ. Our errors include
the full statistical uncertainty including the non-Gaussian sam-
pling variance, Gaussian photo-z scatter, and marginalization
over remaining parameter uncertainties, including the redshift
calibration for the faint i+ > 25 galaxies.
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Our results are consistent with the 3D lensing constraints
σ8(Ωm/0.3)0.44 = 0.866 ± 0.033 (stat.)+0.052

−0.035 (sys.) from Massey
et al. (2007c) assuming non-linear power spectrum corrections
according to Smith et al. (2003), at the ∼1σ level. The analyses
differ systematically in the treatment of PSF- and CTI-effects,
where the success of our methods is confirmed by the vanish-
ing B-mode. Furthermore, Massey et al. (2007c) employ earlier
photo-zs based on fewer bands (Mobasher et al. 2007). Note that
the analysis of Massey et al. (2007c) yields tighter statistical er-
rors, which may be a result of their covariance estimate from the
variation between the four COSMOS quadrants. This potentially
introduces a bias in the covariance inversion due to too few in-
dependent realizations (Hartlap et al. 2007). While the absolute
calibration accuracy of the shear measurement method was es-
timated to be the dominant source of uncertainty in their error
budget, we were able to reduce it well below the statistical er-
ror level. As a further difference, our analysis employs photo-
metric redshift information to reduce potential contamination by
intrinsic galaxy alignments, where we exclude the shear-shear
auto-correlations for the relatively narrow redshift bins 1 to 5
to minimize the impact of physically associated galaxies. In ad-
dition, we exclude luminous red galaxies, which were found to
carry the strongest intrinsic alignment with the density field of
their large-scale structure environment causing the shear (Hirata
et al. 2007). Finally, we do not include angular scales θ < 0.′5 due
to increased modelling uncertainties for the non-linear power
spectrum.

Similarly to Massey et al. (2007c), we obtain a lower esti-
mate σ8(Ωm/0.3)0.62 = 0.68 ± 0.11 for a non-tomographic (2D)
analysis, assuming Smith et al. (2003) power spectrum correc-
tions. The lower signal compared to the 3D lensing analysis is
expected, given that the most massive structures in COSMOS
are located at 0.7 <∼ z <∼ 0.9 (Scoville et al. 2007b), creating a
strong shear signal for high redshift sources only, which is de-
tected by the 3D analysis. In contrast, the bulk of the galaxies
in the 2D lensing analysis are located at too low redshifts to
be substantially lensed by these structures, yielding a relatively
low estimate for σ8. Nonetheless, as sampling variance is prop-
erly accounted for in our error analysis, the constraints are still
consistent.

For a general (non-flat) ΛCDM cosmology, we find a neg-
ative deceleration parameter q0 < 0 at 96.0% confidence us-
ing our default priors, and at 94.3% confidence if only priors
from the HST Key Project and BBN are applied. Thus, our
tomographic weak lensing measurement provides independent
evidence of the accelerated expansion of the Universe. For a
flat wCDM cosmology we constrain the (constant) dark energy
equation of state parameter to w < −0.41 (90% conf.) for a prior
w ∈ [−2, 0], fully consistent with ΛCDM. Our dark energy con-
straints are still weak compared to recent results from inde-
pendent probes (e.g. Kowalski et al. 2008; Hicken et al. 2009;
Allen et al. 2008; Mantz et al. 2008, 2009; Vikhlinin et al. 2009;
Komatsu et al. 2009). This is solely due to the limited area of
COSMOS, leading to a dominant contribution to the error bud-
get from sampling variance.

While the area covered by COSMOS is still small
(1.64 deg2), the high resolution and depth of the HST
data allowed us to obtain cosmological constraints which
are comparable to results from substantially larger ground-
based surveys. However, note that HST was by no means
designed for cosmic shear measurements. In contrast,
future space-based lensing mission such as Euclid13 or

13 http://sci.esa.int/euclid

JDEM14 will be highly optimized for weak lensing mea-
surements. High PSF stability, a much larger field-of-view
providing thousands of stars for PSF measurements, carefully
designed CCDs which minimize charge-transfer inefficiency,
and improved algorithms will remove the need for some of the
empirical calibrations employed in this paper.

In order to fully exploit the information encoded in the weak
lensing shear field, second-order shear statistics, as used here,
can be complemented with higher-order shear statistics to probe
the non-Gaussianity of the matter distribution (e.g. Bergé et al.
2010; Vafaei et al. 2010). Based on our COSMOS shear cata-
logue, Semboloni et al. (2010) present such a cosmological anal-
ysis using combined second and third-order shear statistics.

Finally, we stress that weak lensing can only provide preci-
sion constraints on cosmological parameters if sufficiently accu-
rate models exist to compare the measurements to. Our analysis
of the relatively small COSMOS Survey is still limited by the
statistical measurement uncertainty, for which our approximate
model recalibration using the Millennium Simulation is suffi-
cient. Most of the cosmological sensitivity in COSMOS comes
from quasi-linear and non-linear scales. We cut our analysis only
at highly non-linear scales θ < 0.′5, corresponding to a comov-
ing separation of ∼360 kpc at z = 0.7 (roughly the redshift of
the most massive structures in COSMOS). At these scales non-
linear power spectrum corrections have substantial uncertain-
ties, in particular due to the influence of baryons (e.g. Rudd
et al. 2008). Given that our results are basically unchanged if
even smaller scales are included (insignificant increase in σ8 by
<1%), we expect that the model uncertainty for the larger scales
should still be sub-dominant compared to our statistical errors.
However, analyses of large future surveys will urgently require
improved model predictions including corrections for baryonic
effects, also for dark energy cosmologies with w � −1, and op-
tionally also for theories of modified gravity. Once these are
available, careful analyses of large current and future weak lens-
ing surveys will deliver precision constraints on cosmological
parameters and dark energy properties.
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Appendix A: Additional image calibrations

In this appendix we describe additional calibrations which
we apply to the flat-fielded _flt images before running
MultiDrizzle.

Background subtraction. We perform a quadrant-based back-
ground subtraction due to an anomalous bias level variation be-
tween the four ACS read-out amplifiers. Here we detect and
mask objects with SExtractor (Bertin & Arnouts 1996), com-
bine this mask with the static bad pixel mask, and estimate
the background as the median of all non-masked pixels in the
quadrant. We modulate the offset from the mean background
level with the normalized inverse flat-field to correct for the
fact that the improperly bias-subtracted image has already been
flat-fielded15.

Bad pixel masking. We manually mask satellite trails and scat-
tered stellar light if its apparent sky position changes between
different dither positions, allowing us to recover otherwise unus-
able sky area. In addition, we update the static bad pixel mask
rejecting pixels if:

– their dark current exceeds 0.04 e−/s in the associated dark
reference file (default 0.08 e−/s), or

– they are affected by variable bias structures, which we iden-
tify in a variance image of five subsequent bias reference
frames taken temporally close to the science frame consid-
ered, or

– they show significantly positive or negative values in a me-
dian image computed from 50 background-subtracted and
object-masked COSMOS frames taken closely in time, in-
dicating any other semi-persistent blemish.

The latter two masks mainly aim at the rejection of variable bias
structures which show up as positive or negative bad column
segments in the stacked image if not properly masked. For the
mask creation we utilize the IRAF task noao.imred.ccdmask.
It computes the local median signal and rms variation in moving
rectangles. A pixel is then masked if its values is either lsigma
below or hsigma above the local median value. This is done for
individual pixels and sums of pixels in column sections, where in
the latter case the background dispersion is scaled by the square
root of the number of pixels in the section. Finally each col-
umn is scanned for short segments of un-flagged pixels in be-
tween masked pixels. We additionally mask these segments if
their length is less than 15 pixels. We summarize the values ap-
plied for the thresholds lsigma and hsigma in Table A.1. Due
to variations in image noise properties they do not perform opti-
mally in all cases, so that we iteratively increase hsigma by +5
if otherwise more than 2.5% of the pixels in the bias variance
image would be masked.

15 This procedure performs well for relatively empty fields such as the
large majority of the COSMOS tiles. For fields dominated by a very
bright star or galaxy, it can, however, lead to erroneous jumps in the
background level. Thus, we generally adopt a maximal accepted differ-
ence in the background estimates of 4 e−, which, if exceeded, leads to a
subtraction of the minimum background estimate for all quadrants.

Table A.1. Lower and upper σ thresholds for pixel masking with
ccdmask in the bias variance and the sky-subtracted and object-masked
median images.

Image type lsigma hsigma

Bias variance 100 25, +5 if more than 2.5% masked
Median, gain = 1 13 11
Median, gain = 2a 15 15

Notes. (a) The COSMOS images were taken with gain = 1, whereas
the gain = 2 setting has been applied for some of the HAGGLeS fields
(Marshall et al. 2010, in prep.). While we do not include these fields in
the current analysis, they have been processed with the same pipeline
upgrades described here. Thus, we list these values for completeness.

Noise model. We compute a rms noise model for each pixel as

ERR = F−1
√

sF + texpD + σ2
r + γ

2V [e−], (A.1)

with the normalized flat-field F, the sky background s [e−], the
dark reference frame D [e−/s], the exposure time texp [s], the
read-noise σr ≃ 5 e−, and the bias variance image V [counts2]
described in the previous paragraph, which requires scaling with
the gain γ [e−/count]. Containing all noise sources except object
photon noise, this rms model is used for optimal pixel weighting
in MultiDrizzle.

Appendix B: Correction for PSF and CTI effects

B.1. Summary of our KSB+ implementation

We measure galaxy shapes using the Erben et al. (2001) imple-
mentation of the KSB+ formalism (Kaiser et al. 1995; Luppino
& Kaiser 1997; Hoekstra et al. 1998), as done in the earlier
ACS weak lensing analysis of Schrabback et al. (2007). Object
ellipticities16

e = e1 + ie2 =
Q11 − Q22 + 2iQ12

Q11 + Q22
(B.1)

are measured from weighted second-order brightness moments

Qi j =

∫

d2θWrg (|θ|) θi θ jI(θ), i, j ∈ {1, 2}, (B.2)

where Wrg is a 2D Gaussian with dispersion rg. The response
of a galaxy ellipticity to reduced gravitational shear g and PSF
effects is given by

eα − es
α = P

g

αβ
gβ + Psm

αβq
∗
β, (B.3)

with the (seeing convolved) intrinsic source ellipticity es and the
“pre-seeing” shear polarizability

P
g

αβ
= Psh

αβ − Psm
αγ

[

(

Psm∗)−1
γδ Psh∗

δβ

]

, (B.4)

where the shear and smear polarizability tensors Psh and Psm

are calculated from higher-order brightness moments as de-
tailed in Hoekstra et al. (1998). The PSF anisotropy ker-
nel q∗α = (Psm∗)−1

αβ
e∗
β

and ratio of Psh∗ and Psm∗ must be measured
from stars and interpolated for each galaxy position, where we
approximate the latter as T ∗ = Tr

[

Psh∗
]

/Tr [Psm∗].

16 We adopt the widely used term “ellipticity” here, but note that,
strictly speaking, (B.1) corresponds to the definition of the polarization.
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In the application of the KSB+ formalism several choices
lead to subtle differences between different KSB implementa-
tions, see Heymans et al. (2006a) for a detailed comparison.
In short, we use sub-pixel interpolation for integral evalua-
tions, measure galaxy shapes with rg = rf , the SExtractorflux-
radius, and apply PSF measurements computed with the same
filter scale as used for the corresponding galaxy (interpolated be-
tween 24 values with 1 ≤ rg ≤ 15 pixels). We invert the Pg tensor
as measured from individual galaxies using the approximation
(Pg)−1 = 2/Tr[Pg] commonly applied to reduce noise (Erben
et al. 2001). In contrast to Schrabback et al. (2007) we do not
apply a constant calibration correction, but employ the signal-
to-noise dependent correction (6).

B.2. Tests with simulated space-based data

We test our KSB+ shape measurement pipeline on simu-
lated space-based weak lensing data with ACS-like properties,
which were provided for testing in the framework of the Shear
Testing Programme17. The images were created with the Massey
et al. (2004) image simulation pipeline, which uses shapelets
(Refregier & Bacon 2003; Massey & Refregier 2005) to model
galaxy and PSF shapes, as already employed for the STEP2 sim-
ulations (Massey et al. 2007a). All images have 4k × 4k pixels
of size 0.′′04, HST-like resolution, and a depth equivalent to 2ks
of ACS imaging. The data are subdivided into eight sets with
different PSFs (|e∗| <∼ 7%), seven of which utilize TinyTim18

ACS PSF models, and one was created by stacking stars of
similar ellipticity in an ACS stellar field (M). One of the sets
uses simplified exponential profiles for galaxy modelling (F),
while the others include complex galaxy morphologies modelled
with shapelets. Four sets comprise 100 images, while the oth-
ers include 200 frames. Within each set, the images are split
into “rotated pairs”, where the intrinsic galaxy ellipticities in
one frame resemble 90 degree-rotated versions from the other
frame, an approach used in Massey et al. (2007a) to reduce the
analysis uncertainty due to shape-noise. Galaxies are sheared
with |g| < 0.06 and convolved with the PSF, both effects being
constant within one frame, but with varying g within one set.
Realistic image noise was added similarly to the STEP2 analy-
sis, except that no noise correlations were introduced.

We analyse the images with the same pipeline and cuts as
the real COSMOS data, with the only difference that the PSF is
assumed to be constant across the field, but still measured from
the simulated stars. Figure B.1 shows the mean calibration bias
m and PSF anisotropy residuals c defined in (5), separately for
each image simulation set, estimated from matched galaxy pairs
(for details on this fit see Massey et al. 2007a). While some data
sets deviate from the optimal m = c = 0, the residuals are at a
level which is negligible compared to the statistical uncertainty
of COSMOS. Combining all sets and both shear components,
we estimate the mean calibration bias m = +0.008 ± 0.002, and
the scatter of the PSF anisotropy residuals σc = 0.0006.

As discussed in Sect. 3, a possible magnitude-dependence
of the shear calibration bias m is particularly problematic for 3D
weak lensing studies. We therefore study m as a function of mag-
nitude in Fig. B.2, both for the simulated ground-based STEP2
and the simulated space-based ACS-like data. Although the ap-
plied correction (6) was determined from the simulated ground-
based data, it also performs very well for the ACS-like simula-
tions, showing its robustness. Over the entire magnitude range

17 http://www.physics.ubc.ca/~heymans/step.html
18 http://www.stsci.edu/software/tinytim/

Fig. B.1. Shear calibration bias m and PSF anisotropy residuals c as
measured in the simulated ACS-like lensing data. The left and right
panels show the results for the γ1 and γ2 shear components respec-
tively. Each letter corresponds to a different PSF model. Although some
data sets deviate from the optimal m = c = 0, the residuals are at a level
which is negligible compared to the statistical errors for COSMOS.

Fig. B.2. Magnitude-dependence of the shear calibration bias for our
KSB implementation after correction for S/N-dependent bias accord-
ing to (6). The top panel shows results for the STEP2 simulations of
ground-based lensing data (Massey et al. 2007a), which have been used
to derive (6), where we have excluded the untypically elliptical PSFs D
and E. The bottom panel shows the remaining calibration bias for the
ACS-like simulations of space-based lensing data. In both panels we
plot the average computed from all PSF models and the two shear com-
ponents, with error-bars indicating the uncertainty of the mean. Despite
the very different characteristics of the two sets of simulations, (6) per-
forms also very well for the ACS-like data, with a bias |m| ≤ 0.02 over
the entire magnitude range. The remaining calibration uncertainty is
negligible compared to the statistical errors for COSMOS.

the remaining calibration bias is |m| ≤ 0.02, which is negligible
compared to our statistical errors.

B.3. Stellar fields

We have analysed 700 i814 exposures of dense stellar fields,
which were taken between 2002 Apr. 18 and 2006 Jun. 3
and contain at least 300 non-saturated stars with S/N > 50
(for rg = 1.5 pixels). This large set enables us to study in de-
tail the impact of CTI on stars, as well as the temporal and
positional ACS PSF variation, which cannot be achieved from
the COSMOS exposures due to their low stellar density.
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We determine both CTI and PSF models for the cosmic ray-
cleansed COR images before resampling, and their resampled
(but not stacked) counterparts (DRZ). The reason is that resam-
pling unavoidably adds extra noise. Therefore it is best to fit the
available stars in a galaxy field exposure before resampling. Yet,
the combined PSF model for a stack has to be determined from
resampled image models according to the relative dithering. For
the COR-image analysis we employ a fixed Gaussian filter scale
rg = 1.5 pixels, in order to maximize the fitting signal-to-noise
(see Schrabback et al. 2007), and characterize the PSF by the
ellipticity e∗α and stellar half-light radius r∗h as suggested by Jee
et al. (2007). For the DRZ images we require CTI-corrected PSF
models for all 24 values of rg used for the galaxy correction.

B.4. Stellar CTI correction

CTI charge trails stretch objects in the readout y-direction, lead-
ing to an additional negative e1 ellipticity component. Internal
calibrations (Mutchler & Sirianni 2005), photometric studies
(e.g. Chiaberge et al. 2009), as well as the analysis of warm pix-
els (Massey et al. 2010) and cosmic rays (Jee et al. 2009) demon-
strate that the influence of CTI increases linearly with time and
the number of y-transfers, where the latter has also been shown
for the influence on galaxy ellipticities by Rhodes et al. (2007).
In addition, the limited depth of charge traps leads to a stronger
influence of CTI for faint sources, which lose a larger fraction of
their charge than bright sources. Likewise, the effect is reduced
for higher sky background values leading to a fraction of contin-
uously filled traps. Here we only study the effect of CTI on stars,
whereas galaxies will be considered in Appendix B.6.

Following Chiaberge et al. (2009), we assume a power-law
dependence on sky background and integrated flux as measured
in apertures of 4.5 rf ≃ 5.8 pixels, leading to the parametric CTI
model

ecti,∗
1 (rg) = −e0

1(rg)

(

FLUX
104e−

)−F(rg) (SKY
30e−

)−S (rg) (
t

1000d

)

×

(

ytrans

2048

)

, (B.5)

with the time t = MJD − 52 340 since the installation of ACS on
2002 Mar. 08, and the number of y-transfers ytrans. We expect
that the normalization e0

1(rg) and power law exponents F(rg) and
S (rg) depend on the Gaussian filter scale rg of the KSB ellip-
ticity measurement. E.g., for a measurement of the PSF core
with small rg, charge traps may already be filled by electrons
from the outer stellar profile, leading to an expected strong flux-
dependence. On the contrary, the PSF wings measured at large rg
will be more susceptible to trap filling by background electrons,
leading to a stronger sky-dependence.

In order to separate CTI and PSF effects we make use of
the fact that CTI-induced ellipticity is expected to depend on
flux, while PSF ellipticity is flux-independent. In our analysis of
stellar field exposures we first fit the spatial ellipticity variation
of bright non-saturated stars with S/N > 50 using a third-order
polynomial in each chip, and apply this model to all stars with
S/N > 5. For the high S/N stars used in the fit, the strongest el-
lipticity contribution comes from the spatially varying PSF. Yet,
for these stars the polynomial fit also corrects for the position-
dependent but flux-averaged CTI effect, leading to a net negative
e1 ellipticity for fainter than average stars (CTI under-corrected),
and net positive e1 for brighter stars (CTI over-corrected). For
even fainter stars with S/N < 50 we expect an increasingly more
negative e1 ellipticity component. Thus, the CTI influence can be

Fig. B.3. CTI-induced stellar ellipticity for four example stellar field ex-
posures: The bold points show the mean stellar e1 ellipticity-component
as a function of stellar flux after subtraction of a spatial third-order poly-
nomial model derived from bright stars (S/N > 50) to separate PSF and
CTI effects. Each stellar ellipticity has been scaled to a reference num-
ber of ytrans = 2048 parallel readout transfers. The curves show the CTI
model (B.5), where the fit parameters have been jointly determined from
S/N > 20 stars in all 700 exposures, and an offset shown by the horizon-
tal line has been applied, corresponding to the mean CTI model elliptic-
ity of the bright stars used for the polynomial interpolation. The crosses
indicate the corrected ellipticities after subtraction of the CTI model.
Note the strong increase of the CTI-induced ellipticity with time (top
left to bottom right) and moderate dependence on sky background (top
right versus bottom left at similar times). Also note the turnaround oc-
curring for faint stars at ∼1000e− (corresponding to S/N ∼ 5−10) in the
right panels, see Jee et al. (2009) for a further investigation of this effect.
The plots shown correspond to the non-resampled COR-images with el-
lipticities measured using a Gaussian filter scale of rg = 1.5 pixels.

measured from the flux-dependence of the polynomial-corrected
residual ellipticity, as illustrated in Fig. B.3 for four example ex-
posures. We note a turnaround in the CTI flux-dependence for
some exposures at low S/N ∼ 5 − 10 (right panels in Fig. B.3),
which was also reported for CTI measurements from cosmic
rays and further investigated by Jee et al. (2009). This does not
affect our stellar models, given that we only use S/N > 20 stars
both for PSF measurement and to constrain (B.5). Yet, it sug-
gests that CTI models may not be valid over very wide ranges
in signal-to-noise, motivating the use of a separate model for the
typically much fainter galaxies in Appendix B.6.

We determine the three fit parameters in (B.5) jointly from
the polynomial-corrected residual ellipticities in all stellar expo-
sures. For each exposure it is necessary to add an offset, which
has been linearly scaled with ytrans for each star, in order to com-
pensate for the flux-averaged correction included in the poly-
nomial fit. We compute this offset within the non-linear fitting
routine19 for a given set of fit parameters from the positions and

19 For the non-linear CTI fits we utilize the CERN Program Library
MINUIT: http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/.
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Fig. B.4. Dependence of the best fitting parameters of the stellar CTI
model (B.5) on the Gaussian filter scale rg used for shape measure-
ments in the resampled DRZ-images. The curves correspond to the fit-
ting functions (B.6).

Table B.1. Fitted coefficients for the rg-dependent CTI-ellipticity model
(B.6) in the resampled DRZ frames.

j a j b j c j

0 −5.623 × 10−3 8.371 × 10−1 1.417 × 10−3

1 9.573 × 10−3 −1.372 × 10−1 6.182 × 10−2

2 −8.307 × 10−4 1.037 × 10−2 −6.410 × 10−3

3 2.739 × 10−5 −2.597 × 10−4 2.155 × 10−4

fluxes of the bright stars used in the polynomial fit, and apply it
to all stars.

We conduct this fit both for the COR-image
ellipticities (rg = 1.5) yielding best fitting values
(e0

1, F, S ) = (0.0073± 0.0002, 0.65± 0.02, 0.06± 0.01), and
for the resampled DRZ-images for all values of rg. For the
latter we adjust the S/N cuts in order to keep enough stars for
large rg. The best fit values are shown in Fig. B.4 as function of
rg, indeed confirming the expected trends. We provide the fitting
functions

e0
1(rg) =

j=3
∑

j=0

a jr
j
g , F(rg) =

j=3
∑

j=0

b jr
j
g , S (rg) =

j=3
∑

j=0

c jr
j
g , (B.6)

where the coefficients are listed in Table B.1, being valid for
1 ≤ rg ≤ 15 pixels. We correct the ellipticities of all stars both in
the stellar and galaxy fields with the derived models, as implic-
itly assumed in the following sections.

B.5. Principal-component correction for the time-dependent
ACS PSF

As discussed in Sect. 3, ACS PSF variations are expected to be
mostly caused by changes in telescope focus (e.g. Krist 2003;
Lallo et al. 2006; Anderson & King 2006). If the temporal varia-
tions indeed depend on one physical parameter only, it should be
possible to construct a one-parametric PSF model, which can be
well constrained with the ∼10−20 stars available in an ACS field
at high galactic latitudes. Such an approach was implemented by
Rhodes et al. (2007), who measure the mean focus offset for a
COSMOS stack from simulated focus-dependent TinyTim PSF

models. They then interpolate the ACS PSF between all stars in
COSMOS using polynomial functions dependent on both po-
sition and focus offset (Leauthaud et al. 2007; Massey et al.
2007c). However, as suggested by the residual aperture mass
B-mode signal found by Massey et al. (2007c), this approach
appears to be insufficient for a complete removal of systemat-
ics. In an alternative approach, Schrabback et al. (2007) fit the
stars present in each galaxy field exposure using a large library
of stellar field PSF models. While this approach led to no sig-
nificant residual systematics within the statistical accuracy of
GEMS, it is also not sufficient for the analysis of the much larger
COSMOS data set. We therefore implement a new PSF interpo-
lation scheme based on principal component analysis. It effec-
tively combines the idea of exposure-based empirical models,
which optimally account for time variations and relative dither-
ing (Schrabback et al. 2007), with the aim to describe the PSF
variation with a single parameter (Rhodes et al. 2007).

Jarvis & Jain (2004) introduced the application of principal
component analysis (PCA) for ground-based PSF interpolation,
which we adapt here to obtain well-constrained PSF models for
our ACS weak lensing fields. Note that Jee et al. (2007) and
Nakajima et al. (2009) employed PCA to efficiently describe the
two-dimensional ACS PSF shape, which they then spatially in-
terpolated with normal polynomial functions. This is conceptu-
ally very different to the approach suggested by Jarvis & Jain
(2004) and used here, which employs PCA for the spatial and
temporal interpolation of certain quantities needed for PSF cor-
rection, such as the stellar ellipticity e∗.

We represent all quantities which we want to interpolate
as pα. This includes e∗1, e

∗
2, r
∗
h measured in the COR images for

rg = 1.5 pixels, but also e∗1, e
∗
2, q
∗
1, q
∗
2, T

∗ as measured in the DRZ
images for varying rg. The only exception is when we specif-
ically allude to COR quantities, which only includes the first
group.

The first step of the PCA analysis is to fit the positional vari-
ation of the three COR PSF quantities in all j ≤ N = 700 stellar
exposures jointly for both chips with 3rd-order polynomials

P
(3)
α, j

(x̂, ŷ) =
m

∑

i=1

di j x̂
µi ŷνi , (B.7)

yielding m = 10 coefficients each, where we generally denote
polynomials using a capital P with the order indicated by the
superscript. Here we account for the gap between the chips
and rescale the pixel range to the interval x̂, ŷ ∈ [0, 1]. While
this fit is unable to account for some small-scale features such
as a small discontinuity between the two chips, it captures all
major large-scale PSF variations and is very well constrained
by the required ≥300 stars. For each exposure we arrange the
M = 3 × m = 30 polynomial coefficients in a data vector d j, with
components di j (now i ≤ M). We then subtract the mean vector
and divide each component with an adequately chosen normal-
ization ni, yielding the modified data vector d̂ j with

d̂i j =
di j − di

ni

· (B.8)

We then arrange all modified data vectors into a M × N dimen-
sional data matrix D = {d̂1, ..., d̂N}. The central step of the PCA
is a singular value decomposition D =WΣVT, where the or-
thonormal matrix W consists of the singular vectors of D, and
the diagonal matrix Σ contains the ordered singular values sll of
D as diagonal elements. Here the lth largest singular value cor-
responds to the lth singular vector, which is also named the lth
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principal component. In the coordinate system spanned by the
singular vectors, the matrix C = DDT =WΣΣTWT =WΛWT

corresponding to the covariance matrix for ni = 1, becomes di-
agonal, where the sorted eigenvalues λl = s2

ll
are equal to the

variance of the vectors d̂ j along the direction of the lth principal
component.

Note that the relative values and absolute scale of the eigen-
values λl depend on the normalizations ni. Uniform ni = 1 would
not be adequate given that we combine PSF quantities with dif-
ferent units (dimensionless e∗α versus r∗h in pixels). A correla-

tion analysis with ni = σi =

√

∑N
j=1(di j − di)2/N could be used,

but here relatively stable polynomial coefficients with small σi

would unnecessarily add noise, effectively increasing the rela-
tive eigenvalues of higher principal components. Aiming at a
compact description of most of the actual PSF variation in the
field with a small number of important principal components,
we employ the normalization

ni = (µi + 1)(νi + 1)σα, (B.9)

where we use the mean variance of all coefficients belonging to
the corresponding PSF quantity pα:

σ2
α =

1
m

imax,α
∑

i=imin,α

1
N

N
∑

j=1

(di j − di)
2 . (B.10)

In this way the d̂i j in (B.8) become dimensionless, all three PSF
quantities contribute similarly to the total variation, and the un-
desired noise from relatively stable polynomial coefficients is
avoided, as their variation is averaged with that from the less
stable coefficients. The pre-factor in (B.9) equals the inverse of

the integral
∫ 1

0
dx̂ dŷ x̂µi ŷνi of the corresponding polynomial term

in (B.7). It accounts for our aim to scale according to the actual
PSF variation, where e.g. a 0th-order term affects the whole field
while a 3rd-order term with similar amplitude gets lower weight
as it contributes substantially in a smaller area only.

We plot the fractional eigenvalues in Fig. B.5, once using the
analysis as described above (solid curve) and once considering
only the two ellipticity components without r∗h (dashed curve). In
both cases the first principal component is clearly dominant, con-
tributing with 95% (97%) of the total variance. We identify this
variation as the influence of focus changes, which are expected
to dominate the actual PSF variation. The reason why the second
principal component has a larger eigenvalue if r∗h is included in
the analysis (fractional λ2 = 1.1% versus λ2 = 0.6%) can be seen
if we project the data variation onto the space spanned by the
singular vectors Y =WT D, with components yl j. Looking at the
y1 j − y2 j variation in the left panel of Fig. B.6, where r∗h has been
included, we see that the data points roughly follow a quadratic
curve in the plane defined by the first two singular vectors. The
reason for this is the linear response of PSF ellipticity on defocus
caused by astigmatism, while PSF width responds to leading or-
der quadratically (see e.g. Jarvis et al. 2008). Given that PCA is
a purely linear coordinate transformation, it is not capable to di-
rectly capture this one-parametric variation (separation between
primary and secondary mirror) with a single principal compo-
nent. This is only possible if PSF quantities with the same de-
pendence on physical parameters are included, hence the smaller
λ2 if only the two ellipticity components are considered. Thus,
for other applications it might be more favourable to perform
a PCA analysis for each considered PSF quantity separately, as
also done by Jarvis & Jain (2004). Yet, here we want to include
the extra information encoded in the r∗h variation to constrain the

Fig. B.5. Fractional PCA eigenvalues for the PSF variation in 700 i814

ACS stellar field exposures. The dashed (solid) curve has been com-
puted considering the variation of e∗1 and e∗2 (e∗1, e∗2, and r∗h). The domi-
nant first principal component contains 97% (95%) of the variation and
is caused by focus variations.

galaxy field PSF models, and will therefore account for the non-
linear dependence below. The mean stellar half-light radius in
each exposure, r∗h is plotted as a function of the first principal
component coefficient in Fig. B.7, showing that a fourth-order
polynomial fit is capable to describe the full non-linear variation.

In order to obtain a well constrained model for all pα with
high spatial resolution, we jointly fit all stars from all j ≤ N ex-
posures with a model

p
pcafit
α, j,chip(x̂, ŷ) =

lmax
∑

l=0

cl,max
∑

cl=1

[yl j]cl P
(5)
α,chip,l,cl

(x̂, ŷ), (B.11)

separately for both chips, where P
(5)
α,chip,l,cl

(x̂, ŷ) indicates a fifth-
order polynomial in the corresponding rescaled x̂, ŷ coordinates,
and l = 0 with c0,max = 1 and y0 j = 1 corresponds to the sub-
tracted mean data vector, now modelled with high spatial res-
olution. We aim to fit the few stars in the galaxy fields with as
few parameters as reasonably possible. Due to the dominant role
of focus changes we therefore use only the first principal com-
ponent in our analysis lmax = 1, but include up to fourth-order
terms (c1,max = 4) in y1 j. This takes out the non-linear distortion
visible in Figs. B.6 and B.7, and hence the bulk of the variation
in the second principal component. This combination yields a to-
tal of (1 + 4) × 21 = 105 coefficients per PSF quantity and chip,
which are very well constrained from a total of 5 × 105 stars per
chip.

For illustration we plot the field-of-view dependence of the
high-resolution DRZ ellipticity model measured for rg = 1.4 pix-
els in Fig. B.8, where the left panel shows the mean PSF elliptic-
ity (l = 0), while the right panel depicts the first singular vector
(l = 1). Note the slight discontinuity of the mean PSF ellipticity
between the chips, which is likely caused by small height differ-
ences between the CCDs as reported by Krist (2003). See also
Rhodes et al. (2007) who measure a stronger discontinuity in the
TinyTim PSF model but not for stars in COSMOS, and Jee et al.
(2007) who notice it in the PSF size but not ellipticity variation.

To obtain PSF models for our COSMOS stacks, we fit
e∗1, e

∗
2, r
∗
h of all stars in the single COSMOS COR exposures

with the PCA model (B.11) to determine the first principal
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Fig. B.6. Variation of 700 i814 stellar field exposures in the space spanned by the first three principal components, which have been computed using
the polynomial coefficients of e∗1, e∗2, and r∗h. Note the different axis scales. The non-linear dependence in the left panel is caused by the different
response of PSF ellipticity and size on defocus, and leads to the increased eigenvalue λ2 in Fig. B.5 if the r∗h variation is included in the PCA. The
data points have been split according to the velocity aberration plate scale factor VAFACTOR. The fact that the three subsets scatter differently for
fixed y1 j shows that deviations from pure focus variations are not completely random, but depend on orbital parameters and may hence be coherent
for surveys such as COSMOS.

Fig. B.7. Mean stellar half-light radius r∗h as a function of the first prin-
cipal component coefficient y1 j for the 700 i814 stellar field exposures.
At y1 j ≃ 1 the telescope is optimally focused. The curve shows the best
fitting fourth-order polynomial fit. The outliers are caused by crowded
fields with very broad stellar locus.

component coefficient y1 j for this exposure. We then average
the corresponding DRZ-image PSF models of all exposures con-
tributing to a tile, taking their relative dither offsets and rotations
into account, as detailed in Schrabback et al. (2007).

We plot the time dependence of the estimated coefficient y1 j

for both the COSMOS and stellar field exposures in Fig. B.9.
Note that HST has been refocused at several occasions to com-
pensate long-term shrinkage of the OTA, with one correction
by +4.2 microns being applied during the time-span of the
COSMOS observations on 2004 Dec. 2220. To ease the com-
parison, all plots shown in Figs. B.5 to B.9 have been created
using a single PCA model determined from all star fields. Yet,
to exclude any possible influence of the refocusing, we actually
use separate (but very similar) PCA models for the two epochs
in our weak lensing analysis.

20 http://www.stsci.edu/hst/observatory/focus/

mirrormoves.html

While the fit (B.11) captures ∼97% of the total PSF varia-
tion in the stellar fields and metric defined above, it is important
to realize that further PSF variations beyond focus changes do
actually occur. These are indicated by the higher principal com-
ponents and the additional scatter beyond the curved distortion
in the second principal component. The subdivision of fields ac-
cording to the velocity aberration plate scale factor VAFACTOR in
Fig. B.6, which depends on the angle between the pointing and
the telescope orbital velocity vector (see e.g. Cox & Gilliland
2002), indicates that these distortions are not random but may
be coherent for neighbouring fields observed under similar con-
ditions. This is not surprising given that HST undergoes sub-
stantial temperature changes and the relative angle towards the
sun may lead to pointing-dependent effects21. For a survey like
COSMOS, where neighbouring fields have often been observed
under similar conditions, we thus expect coherent residual PSF
distortions beyond the one-parameter model introduced here.

These residuals cannot be constrained reliably from the few
stars present in a single ACS galaxy field, as one would have
to fit >∼10 principal components given the slow decline of the
l ≥ 3 eigenvalues (Fig. B.5). However, under the assumption that
they are semi-stable for fields observed under similar conditions,
we can constrain these PSF residuals by combining the stars of
multiple COSMOS tiles taken closely in time.

For this purpose, we split the COSMOS fields into
24 epochs. Within each epoch the data were taken closely in
time, with the same orientation and similar sun angles. The
only exception are two tiles which were reobserved between
2005 Oct. 28 and 2005 Nov. 24 due to previous guide-star fail-
ures (Koekemoer et al. 2007), which we add to epochs observed
one year earlier under similar conditions. Within each epoch we
combine the stars of all tiles and compute residuals of the DRZ
image PSF quantities e∗1, e

∗
2, q
∗
1, q
∗
2, T

∗ by correcting their values
measured from the stacks with the (dithered and averaged) mod-
els (B.11). We then fit these residuals as

presfit
α, j (x̂, ŷ) = P

(2)
α,0(x̂, ŷ) + y1 jP

(2)
α,1(x̂, ŷ) (B.12)

21 Note that the actual impact of velocity aberration on object shapes is
negligible for our analysis, as long as it is properly accounted for in the
image stacking, as done by MultiDrizzle.
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Fig. B.8. PCA PSF model (B.11) for the DRZ field-of-view ellipticity variation measured with rg = 1.4 pixels. The left panel shows the mean
ellipticity (l = 0), whereas the right panel depicts the first singular vector (l = 1, cl = 1) which corresponds to focus changes, for an arbitrary scale
y1 = −3.0 (for positive y1 the ellipticities are rotated by 90◦).

Fig. B.9. Temporal variation of the first principal component coefficient y1 j, which is related to the HST focus position, measured in the stellar
field and COSMOS exposures. The long-term shrinkage of the OTA is well visible as a decrease in the mean y1 j, which was compensated with
the marked focus adjustments. The wide spread at a given date is not caused by measurement errors but orbital breathing leading to substantial
short-term focus variations.

where y1 j has been averaged between the four exposures con-
tributing to the stack j, and P

(2)
α,0 and P

(2)
α,1 indicate second-order

polynomials in the rescaled coordinates x̂, ŷ determined for both
chips together. Here we assume that the additional PSF varia-
tions are in principle stable during each epoch, but their impact
might depend on the actual focus position and hence y1 j. Note
that we do not use higher-order polynomials in x̂, ŷ or non-linear
powers of y1 j, as we would otherwise risk over-fitting for epochs
with few contributing exposures. Yet, we tested slightly higher
orders for those epochs containing sufficiently many stars, yield-
ing nearly unchanged results. In general we found that the fit-
ted coherent PSF residuals are small, with a mean rms model
ellipticity of 0.3% (for rg = 1.4 pixels). However, some epochs
showed somewhat enhanced ellipticity residuals, with two exam-
ples given in Fig. B.10, motivating us to include this extra term in
the galaxy PSF correction. In contrast we found that the residuals

for T ∗ are negligible. Also note that we deviate from our philoso-
phy to obtain purely exposure-based models at this point, which
is justified by the small and smooth (low-order) corrections ap-
plied, which are only marginally affected by dithering.

B.6. Galaxy correction and selection

We measure galaxy shapes and correct for PSF effects as detailed
in the previous subsections. We then select galaxies with cuts
rh > 1.2r∗,max

h , where r∗,max
h is the maximum half-light radius of

the 0.25 pixel wide, automatically determined stellar locus in
the image, S/N > 2.0, and Tr[Pg]/2 > 0.1, identical to the cuts
applied to the simulated data in Appendix B.2. We also reject
saturated stars and galaxies containing masked pixels (Sect. 2).
In order to correct galaxy shapes for spurious CTI ellipticity,
we fit the PSF anisotropy-corrected galaxy ellipticity component
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Fig. B.10. Examples for the residual ellipticity model (B.12) determined after subtraction of the 1-parametric PCA model (B.11) from the stellar el-
lipticities measured in COSMOS stacks with rg = 1.4 pixels. The left (right) plot has been determined from all COSMOS fields with 732 < t < 735
(950 < t < 954.5), where t = MJD − 52340. Each whisker represents the residual ellipticity model for one star in the epoch. In some cases the
model appears to be discontinuous due to the dependence on y1 j or focus. Note the different scale compared to Fig. B.8.

eani
1 = e1 − Psm

1β q∗
β

with the power law model

e
cti,gal
1 = −e0

1

(

FLUX
103e−

)−F (

rf

3 pixel

)−R (

SKY
30e−

)−S

×

(

t

1000d

) (

ytrans

2048

)

, (B.13)

with the mean sky level of the contributing exposures SKY,
the time t = MJD − 52340 since the installation of ACS, the
number of y-transfers ytrans, the SExtractor flux-radius rf
(FLUX_RADIUS), and the mean integrated flux per exposure
FLUX = texp · FLUX_AUTO measured by SExtractor. We scale
the latter with the mean exposure time per exposure as the
stacks are in units of e−/s. This model is similar to the one
employed by Rhodes et al. (2007), but additionally accounts
for the sky background-dependence of CTI effects and allows
us to separate the dependence on galaxy flux and size. Despite
the similarity to the stellar model (B.5), we do not deter-
mine a common CTI model for the typically bright stars and
faint galaxies, as a simple power law fit is not guaranteed to
work well over such a wide range in S/N. Considering all
selected COSMOS galaxies we determine best fitting param-
eters (e0

1, F,R, S ) = (0.0230, 0.134, 0.638, 1.46). The correction
for field distortion leads to a mean rotation of the original y-axis
and hence readout direction in ACS stacks and DRZ exposures
by φ ∼ −2.5◦. Thus, CTE degradation has also a minor effect on
the e2 ellipticity component, which we account for in both the
galaxy and stellar correction as ecte

2 = tan (2φ) ecte
1 ≃ −0.087 ecte

1 .
Note that CTI affects an image after convolution with the PSF.
Thus, one would ideally wish to correct for it first. Yet, in or-
der to determine the impact of CTI, we need to correct for PSF
anisotropy first, which would otherwise dominate the mean e1 el-
lipticity. We then subtract the CTI model (B.13) and compute the
fully corrected galaxy ellipticity eiso

α = (2/Tr[Pg])(eani
α − e

cti,gal
α )

with (B.3), which is an unbiased estimate for the shear gα
if (5), (6) are taken into account. As it may be easier ap-
plicable for non-KSB methods, we also quote best-fitting pa-
rameters (e0

1, F,R, S ) = (0.0342, 0.068, 1.31, 1.26) if the actual
shear estimates are fitted instead of the PSF anisotropy-corrected

ellipticities, where the difference is caused by the PSF seeing
correction blowing up the CTI ellipticity.

As a test for residual instrumental signatures we create a
stacked shear catalogue from all COSMOS tiles. Doing this,
we marginally detect a very weak residual shear pattern, which
changes with cuts on y1 j. To quantify and model this residual
pattern, we fit it from the PSF anisotropy and CTI-corrected
galaxy ellipticities with a focus-dependent, second-order model
(B.12) jointly for all fields, yielding a very low rms ellipticity
correction of ∼0.003. One possible explanation for these resid-
uals could be the limited capability of KSB+ to fully correct
for a complex space-based PSF, despite the very good perfor-
mance on the simulated data in Appendix B.2. Alternatively the
limited number of stars per field may ultimately limit the possi-
ble PSF modelling accuracy. In order to assess if these residuals
have any significant impact on our results, we have performed
our science analysis twice, once with and once without subtrac-
tion of this residual model. The resulting changes in our con-
straints on σ8 are at the 2% level, which is negligible compared
to the statistical uncertainties. Also the E/B-mode decomposi-
tion is nearly unchanged (Fig. 4). We only detect a significant
influence for the star-galaxy cross-correlation, which is strictly
consistent with zero only if this correction is applied, but even
without correction it is negligible compared to the expected cos-
mological signal (Fig. 5).

As last step in the catalogue preparation, we create a joint
mosaic shear catalogue from all fields, carefully rejecting dou-
ble detections in neighbouring tiles, where we keep the detec-
tion with higher S/N and refine relative shifts between tiles.
In the case of close galaxy pairs with separations <0.′′5 we ex-
clude the fainter component. Our filtered shear catalogue con-
tains 472 991 galaxies, corresponding to 80 galaxies/arcmin2,
with a mean ellipticity dispersion per component σe,α =

0.31. To limit the redshift extrapolation in Sect. 2.2.2, we ap-
ply an additional cut i814 < 26.7, leaving 446 934 galaxies, or
76 galaxies/arcmin2.

We rotate all shear estimates to common coordinates, and
accordingly create a joint mosaic star catalogue for the analysis
in Sect. 4.
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